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Summary

This paper introduces distributional regression, also known as generalized additive models

for location, scale and shape (GAMLSS), as a modeling framework for analyzing treatment

effects beyond the mean. By relating each parameter of the response distribution to explana-

tory variables, GAMLSS model the treatment effect on the whole conditional distribution.

Additionally, any nonnormal outcome and nonlinear effects of explanatory variables can be

incorporated. We elaborate on the combination of GAMLSS with program evaluation methods

in economics and provide practical guidance on the usage of GAMLSS by reanalyzing data

from the Mexican Progresa program. Contrary to expectations, no significant effects of a cash

transfer on the conditional inequality level between treatment and control group are found.
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1 Introduction

Program evaluation typically identifies the effect of a policy or a program on the mean of the

response variable of interest. This effect is estimated as the average difference between treatment

and comparison group with respect to the response variable, potentially controlling for confound-

ing covariates. However, questions such as “How does the treatment influence a person’s future

income distribution” or “How does the treatment affect consumption inequality conditional on

covariates” cannot be adequately answered when evaluating mean effects alone. Concentrating on

mean differences between a treatment group and a comparison group is likely to miss important

information about changes along the whole distribution of an outcome, for example in terms of an

unintended increase in inequality, or when targeting ex ante vulnerability to a certain risk. These

are economic concepts that do not only take the expected mean into account but rely on other

measures such as the variance and skewness of the response.

As shown recently by Bitler et al. (2017), analysing average effects in subgroups does not ade-

quately capture heterogeneities along the outcome distribution. For a systematic and coherent

analysis of treatment effects on all functionals of the response distribution, we introduce general-

ized additive models for location, scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005) to

the evaluation literature. GAMLSS allow all parameters of the response distribution to vary with

explanatory variables and can hence be used to assess how the conditional response distribution

changes due to the treatment. In addition, GAMLSS constitute an overarching framework to easily

incorporate nonlinear, random, and spatial effects. Hence, the relationship between the covariates

and the predictors can be modeled very flexibly for example by using splines for nonlinear effects or

Gaussian-Markov random fields for spatial information. The method encompasses a wide range of

potential outcome distributions, including discrete and multivariate distributions, and distributions

for shares. Due to estimating only one model including all distributional parameters, practically

every distribution functional (quantiles, Gini coefficient, etc.) can be derived consistently from the

conditional distribution making the scope of application manifold.

Besides a brief review of the methodological background for GAMLSS, our main aim is to practi-

cally demonstrate how to implement them in the course of treatment effects and what additional

information can be drawn from those models. For this, we have chosen an example that is very

familiar to the evaluation community: We rely on the same household survey used in Angelucci

and De Giorgi (2009) to evaluate Progresa/Oportunidades/Prospera - a cash transfer program in

Mexico. Initiated in 1997, the experimental design of the program allocated cash transfers to poor

families in treatment villages in exchange for the households’ children regularly attending school

and for utilizing preventive care measures regarding health and nutrition. By using this exten-

sively researched program as our application example, we show additional results using GAMLSS.

In fact, we find no significant decline in food consumption inequality after the introduction of con-

ditional cash transfers - a result that has gone unnoticed in the several analyses of the program’s

heterogeneous effects (e.g. Djebbari and Smith, 2008; Chavez-Martin del Campo, 2006).

While GAMLSS have not been used in the context of program evaluation, there is a substantial

strand of literature that focuses on treatment effects on the whole distribution of an outcome or, to

put it differently, on building counterfactual distributions. The idea is to consider the distribution

of the treated versus their distribution if they had not been treated. The literature generally

differentiates between effects on the unconditional distribution and the conditional distribution.

While the effects on the unconditional distribution and unconditional quantile effects have been
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dealt with in Firpo (2007), Firpo et al. (2009), Rothe (2010), Rothe (2012) and Frölich and Melly

(2013) for example, the focus of this paper is the conditional distribution and the functionals

that can be derived from it. Conditional distributions are of interest, when analyzing the effect

heterogeneity based on the observed characteristics (Frölich and Melly, 2013). Especially in the

case of inequality, conditional distributions are important to differentiate between within and

between variance. For example differences in consumption or income might stem from different

characteristics or abilities such as years of education. With conditional distributions, we, however,

assess the differences in consumption or income for individuals with equal or similar education and

work experience. The fair notion would be that a person with higher education and more work

experience earns more. It is the conditional inequality that is perceived as unfair.

To estimate the conditional distribution, a popular approach is to use quantile regression (Koenker

and Bassett, 1978; Koenker, 2005). Quantile regression is a very powerful instrument if one is

interested in the effect at a specific quantile. However, distributional characteristics can be de-

rived only after the effects at a very high number of quantiles have been estimated which then

yields an approximation of the whole distribution. For example Machado and Mata (2005), Melly

(2005), Angrist et al. (2006), and Chernozhukov and Hansen (2006) considered effects over a set

of quantiles. The conditional distribution obtained via quantile regression can be integrated over

the range of covariates to get the effects on the unconditional distribution. As we believe that

quantile regression is most familiar to practitioners when estimating effects beyond the mean, we

will elaborate a direct comparison of GAMLSS and quantile regression in Section 2.

Other interesting approaches to go beyond the mean in regression modelling include Chernozhukov

et al. (2013) and Chernozhukov et al. (2018) who introduce “distribution regression”. Building

upon Foresi and Peracchi (1995), they develop models that do not assume a parametric distribution

but estimate the whole conditional distribution flexibly. The basic idea is to estimate the distribu-

tion of the dependent variable via several binary regressions for F (z|xi) = Pr(yi ≤ z|xi) based on

a fine grid of values z. These models have the advantage of not requiring an assumption about the

form of the response distribution. However, they require constrained estimates to avoid crossing

predictions similar to crossing quantiles in quantile regression. Recently, Shen (2017) proposed a

non-parametric approach based on kernel functions to estimate the effect of minimum wages on

the conditional income distribution. She points out that the flexibility of estimating distributional

effects conditional on the other covariates is also useful for the regression discontinuity design

(RDD). In Shen and Zhang (2016) they develop tests relating the stochastic dominance testing to

the RDD.

Thus, different concepts are already introduced with different scope for application. By applying

GAMLSS to the evaluation context, we provide a flexible, parametric complement to the exist-

ing approaches. The advantage of this approach is that it provides one coherent model for the

conditional distribution which estimates simultaneously the effect on all distributional parameters

avoiding crossing quantiles or crossing predictions. If the distributional assumption is appropriate,

the parametric approach allows us to rely on classical results for inference in either frequentist

or Bayesian formulations, including large sample theory. The parametric formulation furthermore

enables us to derive various quantities of interest from the same estimated distribution (e.g. quan-

tiles, moments, Gini coefficient, interquartile range, etc.) which are all consistent with each other.

As the distributional assumption obviously plays a crucial role in GAMLSS, we suggest guiding

steps and easy-to-use tools for the practitioner to decide on a distribution.

The remainder is structured as follows: Section 2 provides the methodological background of
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GAMLSS. Section 3 elaborates on the potential benefits and limitations of GAMLSS for evaluating

treatment effects. A practical step-by-step implementation and interpretation is given in Section

4. Though this section uses data from a randomized controlled trial (RCT), the methodology

proposed in this paper applies to non-experimental methods as well. The appendix elaborates

on the combination of GAMLSS with other evaluation methods including panel data approaches,

difference-in-differences, instrumental variables (IV), and regression discontinuity design (RDD).

Section 5 concludes.

2 Generalized additive models for location, scale and shape

2.1 A general introduction to GAMLSS

For the sake of illustration, we start with a basic regression as it would be for example the case

when evaluating data from an RCT. Based on observed values (x′i, Ti, yi), i = 1, . . . , n, we are

interested in determining the regression relation between a treatment, Ti, and the response variable

yi, while controlling for a vector of non-stochastic covariates x′i. For simplicity and in line with

the application in Section 4, we describe the method in the context of a binary treatment but it

applies to the continuous case as well. A corresponding simple linear model

yi = β0 + βTTi + x′iβ1 + εi (1)

with error terms εi subject to E(εi) = 0 implies that the treatment and the remaining covariates

linearly determine the expectation of the response via

E(yi) = µi = β0 + βTTi + x′iβ1. (2)

If, in addition, the distribution of the error term is assumed to not functionally depend on the

observed explanatory variables (implying, for example, homoscedasticity); the model focuses ex-

clusively on the expected value, i.e. it is a mean regression model. In other words, all effects

that do not affect the mean but other parameters of the response distribution such as the scale

parameter are implicitly subsumed into the error term.

One possibility to weaken the focus on the mean and give more structure to the remaining effects

is to relate all parameters of a response distribution to explanatory variables. In the case of

a normally distributed response yi ∼ N(µi, σ
2
i ), both mean and variance could depend on the

explanatory variables. Assuming again one treatment variable Ti and additional covariates x′i, the

corresponding relations in a GAMLSS can be specified as follows:

µi = βµ0 + βµTTi + x′iβ
µ
1 , (3)

log(σi) = βσ0 + βσTTi + x′iβ
σ
1 . (4)

Here, the superscripts in βµ0 , β
µ
T ,β

µ
1 , β

σ
0 , β

σ
T and βσ1 indicate the dependency of the intercepts and

slopes on the respective distribution parameters. The log transformation in (4) is applied in order

to guarantee positive standard deviations for any value of the explanatory variable.

Aside from the normal distribution, a wide range of possible distributions is incorporated in the

flexible GAMLSS framework:
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(a) In addition to distributions with location and scale parameters, distributions with skewness

and kurtosis parameters can be modeled.

(b) For count data, not only the Poisson but also alternative distributions that account for

over-dispersion and zero-inflation can be used.

(c) Often we consider nonnegative dependent variables (e.g. income) with an amount of zeros

that cannot be captured by continuous distributions. For these cases, a mixed discrete-

continuous distribution can be used that combines a nonnegative continuous distribution

with a point mass in zero.

(d) For response variables that are shares (also called fractional responses) we can consider

continuous distributions defined on the unit interval.

(e) Even multivariate distributions, i.e. where the response is a vector of dependent variables,

can be placed within this modeling framework (Klein et al., 2015a).

GAMLSS assume that the observed yi are conditionally independent and that their distribution

can be described by a parametric density p(yi|ϑi1, . . . , ϑiK) where ϑi1, . . . , ϑiK are K different

parameters of the distribution. For each of these parameters we can specify an equation of the

form

gk(ϑik) = βϑk
0 + βϑk

T Ti + x′iβ
ϑk , (5)

where the link function gk ensures the compliance with the requirements of the parameter space

(such as the log link to ensure positive variances in equation (3)). Linking the parameters to

an unconstrained domain also facilitates the consideration of semiparametric, additive regression

specifications incuding for example nonlinear, spatial or random effects. Due to assuming a dis-

tribution for the response variable, model estimation can be done by maximum likelihood (Rigby

and Stasinopoulos, 2005) or Bayesian methods (Klein et al., 2015c).

2.2 Additive predictors

The univariate case described in the previous subsection can be easily extended to a multivariate

and even more flexible setting. In particular, each parameter ϑik, k = 1, . . . ,K, of the response

distribution is now conditioned on several explanatory variables and can be related to a predictor

ηϑk
i via a link function gk such that ϑik = g−1

k (ηϑk
i ).

A generic predictor for parameter ϑik takes on the following form:

ηϑk
i = βϑk

0 + βϑk

T Ti + fϑk
1 (x1i) + · · ·+ fϑk

Jk
(xJki). (6)

This representation shows nicely why we refer to ηϑk
i as a “structured additive predictor”. While

βϑk
0 denotes the overall level of the predictor and βϑk

T is the effect of a binary treatment on the

predictor, functions fϑk
j (xji), j = 1, . . . , Jk, can be chosen to model a range of different effects of

a vector of explanatory variables xji:

(a) Linear effects are captured by linear functions fϑk
j (xji) = xjiβ

ϑk
j , where xji is a scalar and

βϑk
j a regression coefficient.

(b) Nonlinear effects can be included for continuous explanatory variables via smooth functions

fϑk
j (xji) = fϑk

j (xji) where xji is a scalar. We recommend using P(enalized)-splines (Eilers

and Marx, 1996) in order to include potentially nonlinear effects of continuous variables.
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(c) An underlying spatial pattern can be accounted for by specifying fϑk
j (xji) = fϑk

j (si), where

si is some type of spatial information such as geographical coordinates or administrative

units.

(d) If the data is clustered, random or fixed effects fϑk
j (xji) = βϑk

j,gi
can be included with gi

denoting the cluster the observations are grouped into.

Consequently, GAMLSS allows the researcher to incorporate very different types of effects within

one modeling framework. Estimation may then be done via a back-fitting approach within the

Newton-Raphson type algorithm that maximizes the penalized likelihood and estimates the un-

known quantities simultaneously. The methodology is implemented in the gamlss package in the

software R, and described extensively in Stasinopoulos and Rigby (2007) and Stasinopoulos et al.

(2017). Alternatively, a Bayesian implementation is available in the open source software BayesX

(Belitz et al., 2015).

2.3 GAMLSS vs. quantile regression

A popular alternative to simple mean regression is quantile regression, see, e.g., Koenker (2005) for

an excellent introduction. Quantile regression relates not the mean but quantiles of the outcome

variable to explanatory variables without making a distributional assumption about the outcome

variable. In addition to requiring independence of observed values yi, a quantile regression model

with one explanatory variable xi only assumes that

yi = β0,τ + β1,τxi + εi,τ (7)

where εi,τ is a quantile-specific error term with the quantile condition P (εi,τ ≤ 0) = τ replacing the

usual assumption E(εi,τ ) = 0. This implies a specific form of the relationship: The explanatory

variable influences the τ -quantile in a linear fashion. Thus, the model can still be misspecified

even though we do not make an assumption about the distribution of the response. A further

disadvantage of quantile regression is that the response variable must be continuous. This is espe-

cially problematic in the case of discrete or binary data, continuous distributions with a probability

greater than zero for certain values or when the dependent variable is a proportion. This is dif-

ferent to the GAMLSS approach that also includes those cases. Note that we appraise GAMLSS

as a generic framework here, even though it does not yield additional benefits if the distribution

has only one parameter such as the binomial or Poisson distribution. Another problem in quantile

regression is the issue of crossing quantiles (Bassett and Koenker, 1982). Theoretically, quantiles

should be monotonically ordered according to their level such that β0,τ1 + β1,τ1xi ≤ β0,τ2 + β1,τ2xi

for τ1 ≤ τ2 and all xi, i = 1, . . . , n. Since the regression models are estimated for each quantile

separately, this ordering does not automatically enter the model and crossing quantiles can occur

especially when the amount of considered quantiles is large in order to approximate the whole

distribution. If one assumes parallel regression lines, crossing quantiles can be avoided. However,

in this case the application of quantile regression becomes redundant since for each quantile only

the intercept parameter shifts while the effect of the explanatory variables would be independent

from the quantile level. Therefore, the models rely on the less restrictive assumption that quantiles

should not cross for the observed values of the explanatory variables. Strategies to avoid quantile

crossing include simultaneous estimation, e.g. based on a location scale shift model (He, 1997),

on spline based noncrossing constraints (Bondell et al., 2010), or on quantiles sheets (Schnabel

and Eilers, 2013). Chernozhukov et al. (2010) and Dette and Volgushev (2008) propose estimating
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the conditional distribution function first and inverting it to obtain quantiles. However, all of

these alternatives require additional steps and most of them cannot easily incorporate an additive

structure for the predictors (Kneib, 2013). In empirical research, conventional quantile regression

is predominantly used by far. In any case, quantile regression estimates the relationship for certain

quantiles separatetely but does not have a model to estimate the complete distribution. This can

be also problematic if measures other than the quantiles such as the standard deviation or Gini

coefficient should be analyzed.

In contrast, GAMLSS are consistent models from which any feature of a distribution can be de-

rived. If the assumed distribution is appropriate, GAMLSS can provide more precise estimators

than quantile regression especially for the tails of the empirical distribution where data points

are scarce. Since we use maximum likelihood for estimation, a variety of related methods and

inference techniques that rely on the distributional assumption can be used such as likelihood ratio

tests and confidence intervals. As simulation studies in Klein et al. (2015b) show bad performance

for likelihood-based confidence intervals in certain situations, we will, however, rely on bootstrap

inference for the application in Section 4. The main drawback of GAMLSS is a potential mis-

specification but Section 4 presents associated model diagnostics to minimize this risk. Besides

the methodological differences, quantile regression and GAMLSS expose their benefits in different

contexts. Following Kneib (2013), we suggest using quantile regression if the interest is on a certain

quantile of the distribution of the dependent variable. On the other hand, the GAMLSS frame-

work is more appropriate if one is interested in the changes of the entire conditional distribution,

its parameters and certain distributional measures relying on these parameters, such as the Gini

coefficient.

3 Potentials and pitfalls of GAMLSS for analyzing treat-

ment effects beyond the mean

GAMLSS can be applied to evaluation questions when the outcome of interest is not the difference

in the expected mean of treatment and comparison group but the whole conditional distribution

and derived distributional measures. Compared to an analysis where the distributional measures

are themselves the dependent variable, the great advantage of GAMLSS is that they yield one

model from which several measures of interest can be coherently derived. In case of income, for

example, these measures might be expected income, quantiles, Gini, the risk of being poor etc.

Thereby, consistent results are obtained since all measures are based on the same model using

the same data. Furthermore, aggregated distributional measures as dependent variables mask the

underlying individual information. On the contrary, GAMLSS allows the researcher to estimate

(treatment) effects on aggregate measures on the individual level.

When evaluating a program, GAMLSS should be used if the final analysis still includes covariates.

In a setting without any covariates, the distribution of the outcome can just be estimated sepa-

rately (e.g. plotting the kernel densities) and contrasted. Likewise, quantities derived from these

distributions (e.g. the Gini coefficient) could be directly compared between treatment and compar-

ison group. GAMLSS are not required in this case as the central idea of relating all distributional

parameters to covariates would become redundant.

After estimating the effects on each distributional parameter, these estimates can be used to calcu-

late the effects on policy-relevant measures or to graphically compare the conditional distributions
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of the treated and untreated groups. The graphical comparison visualizes where and how the

conditional distribution changes due to the treatment.

The GAMLSS framework comprises a wide range of potential distributions and is not bound to

the exponential family only such as generalized linear models (GLM). Basically, the dependent

variable can take on very different types of distributions as mentioned in Section 2.1. For applied

researchers or practitioners in impact evaluation, we consider the easy incorporation of mixed

distributions as particularly fruitful. When evaluating the effect of a treatment, researchers are

often confronted with non-negative outcomes that have a spike at zero. Regarding count data, an

example would be the number of hospital visits with a lot of individuals not having any visit at

all. In the case of continuous data, income is a good example as individuals that do not work have

an income of zero. It is common in the evaluation literature and in empirical economics to log

transform the income variable in order to meet the normality assumption facilitating easy inference

in ordinary least squares (OLS). However, there is an ongoing debate on how to treat values of

zero, i.e. whether observations can be dropped, replaced by a small positive number, or should

not be log transformed at all. While these options might be (arguably) acceptable when there

are only few zero valued outcomes, researchers run into problems if this amount is not negligible.

As an alternative to commonly applied models to tackle these problems (e.g. the tobit model),

zero-adjusted distributions such as the zero-adjusted gamma can be used. This is basically a mixed

distribution, with a parameter for the probability of observing a zero and two parameters for the

positive, continuous part. Similarly, zero inflated Poisson distributions are a popular choice when

modeling count data with a lot of observations at zero. This distribution has two parameters: one

for modeling the probability of zero and one for the discrete part.

Another useful distribution that is included in the GAMLSS framework is a distribution for shares.

A good example would be if the evaluator wants to analyze if farmers change the composition of land

use activities on their fields due to an agricultural intervention. Since shares sum up to one, it is

disadvantageous to analyze them in separate regression specifications. For these cases, the Dirichlet

distribution provides a suitable distribution. The above examples can be of course analyzed with

alternative approaches, we however emphasize the flexibility of GAMLSS in providing a toolbox

that can be applied to a wide range of different research problems. The distributions mentioned

can be easily employed within the GAMLSS framework and all of them except for the Dirichlet

distribution are already implemented in gamlss along with other nonstandard distributions. The

Dirichlet distribution in a distributional regression framework is currently only available in BayesX;

see Klein et al. (2015a) for an application.

Finally, as shown in Section 2.2, GAMLSS structure these models in a modular fashion such that

several type of effects other than linear ones can be incorporated. This is particularly useful if the

relationship between an independent variable and response is nonlinear and better accounted for

by splines, if spatial heterogeneities are present, or if panel or hierarchical data are analyzed.

Despite these potentials, it is important to address some limitations regarding model selection

and a priori model specification. As the researcher has to select explanatory variables for more

than one parameter and a suitable response distribution, uncertainty in estimation can increase

yielding invalid p-values and possibilities for p-hacking open up. Note, however, that there is a

trade-off between misspecification by simplifying the model via assuming constant distributional

parameters and misspecifying a more complex model. Additionally, a linear regression model is

certainly less complex to specify but more limited in its informative value. To reduce the chance for

misclassification of more complex GAMLSS, we suggest scrutinizing the model using the criteria
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and tools for model diagnosis presented in Section 4. It is also common in practice to report more

than one model to check robustness to model specification.

The second point of a priori model specification is not so much of an issue for most studies relying

on observational data when pre-registration is pointless because the data is already available prior

to the pre-analysis plan. It is rather related to planned experiments with associated data collection.

The superior procedure for experiments is conducting a pre-analysis plan including a hypothesis to

be tested, covariates to be included, and an assumption for the response distribution. Specifying

covariates for distributional parameters beyond the mean is more difficult than in linear regression;

still the same recommendations apply: They can be pre-specified either on theoretical grounds or

by using information from previous studies. To some extent, this is also possible for the response

distribution. The type of response (e.g. continuous, non-negative, binary, discrete) already restricts

the set of possible distributions to choose from. Previous studies might also give hints about the

distribution of the response.

To present some examples of beyond-the-mean-measures, we focus in the following on inequality

and vulnerability to poverty but a lot more measures can be analyzed using GAMLSS. For example,

as Meager (2016) points out, risk profiles of business profits which are important for the functioning

of the credit market are based on characteristics of the entire distribution and not only the mean.

Example: GAMLSS and vulnerability as expected poverty

Ex ante poverty measures such as vulnerability to poverty are an interesting outcome if one is not

only interested in the current (static) state of poverty but also in the probability of being poor.

Although there are different concepts of vulnerability, see Celidoni (2013) for an overview and

empirical comparison of different vulnerability measures, we focus on the notion of vulnerability as

expected poverty (Chaudhuri et al., 2002). In this sense, vulnerability is the probability of having

a consumption (or income) level below a certain threshold. To calculate this probability, separate

regressions for mean and variance of log consumption are traditionally estimated using the feasible

generalized least squares estimator (FGLS, Amemiya, 1977), yielding an estimate for the expected

mean and variance for each household. Concretely, the procedure involves a consumption model

of the form

ln yi = βµ0 + x′iβ
µ
1 + εi, (8)

where yi is consumption or income, β0 an intercept, xi is a vector of household characteristics,

β1 is a vector of coefficients of the same length and εi is a normally distributed error term with

variance

σ2
e,i = βσ0 + x′iβ

σ
1 . (9)

To estimate the intercepts βµ0 and βσ0 and the vectors of coefficients β1 and βσ1 the 3-step FGLS

procedure involves several OLS estimation and weighting steps. Assuming normally distributed

log incomes ln yi, the estimated coefficients are plugged into the standard normal cumulative

distribution function

P̂r(ln yi < ln z|x′i) = Φ

 ln z − (β̂µ0 + x′iβ̂
µ
1 )√

β̂σ0 + x′iβ̂
σ
1

 , (10)

where β̂µ0 + x′iβ̂
µ
1 is the estimated mean,

√
β̂σ0 + x′iβ̂

σ
1 the estimated standard deviation, and z

the poverty threshold. A household is typically classified as vulnerable if the probability is equal
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or larger than 0.5. In contrast to the 3-step FGLS procedure, GAMLSS allow us to estimate

the effects on mean and variance simultaneously avoiding the multiple steps procedure. While

the efficiency gain of a simultaneous estimation is not necessarily large, its main advantage is

the quantification of uncertainty as it can be assessed in one model. In a stepwise procedure,

each estimation step is associated with a level of uncertainty that has to be accounted for in the

following step. Additionally, GAMLSS provide the flexibility to relax the normality assumption of

log consumption or log income.

Example: GAMLSS for inequality assessment

Although inequality is normally not a targeted outcome of a welfare program, it is considered as

an unintended effect since a change in inequality is likely to have welfare implications. To assess

inequality, our application in Section 4 concentrates on the Gini coefficient but other inequality

measures are also applied. In general, we focus on the conditional distribution of consumption or

income, i.e. the treatment effects will be derived for a certain covariate combination. In other

words, in order to analyze inequality, we do not measure unconditional inequality of consumption

or income, e.g. for the entire treatment and comparison group, but inequality given that other

factors that explain differences in consumption are fixed at certain values. Thus, for each com-

bination of explanatory variables an estimated inequality measure is obtained which represents

inequality unexplained by these variables. The economic reasoning is that differences in consump-

tion or income are not per se welfare reducing inequality since those differences might stem from

different characteristics or abilities such as years of education. We, however, assess the differences

in consumption or income for those with equal or similar education. The fair notion would be that

a person with higher education should earn more. It is the conditional inequality that is perceived

as unfair.

4 Applying GAMLSS to experimental data

4.1 General procedure

To demonstrate how the analysis of treatment effects can benefit from GAMLSS, we replicate and

extend an evaluation study of a popular intervention and show how a distributional analysis could

be implemented step by step.

In particular, we propose the following procedure to implement GAMLSS:

(a) Choose potentially suitable conditional distributions for the outcome variable.

(b) Make a (pre-) selection of covariates according to your hypothesis, theoretical considerations,

etc.

(c) Estimate your models and assess their fit, decide whether to include nonlinear, spatial, and/or

random effects.

(d) Optionally: Refine your variable selection according to statistical criteria.

(e) Interpret the effects on the distributional parameters (if such an interpretation is available

for the chosen distribution), derive the effects on the complete distribution and identify the

treatment effect on related distributional measures.
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In the following, we apply all of these steps to the Progresa data as used in Angelucci and De Giorgi

(2009) to provide a hands on guide on how to use GAMLSS in impact evaluation. The conditional

cash transfer (CCT) program Progresa (first renamed Oportunidades and then Prospera) in Mex-

ico is a classical development program. In general, conditional cash transfer programs transfer

money to households if they comply with certain requirements. In the case of Progresa, these con-

ditions comprise, e.g., children’s regular school attendance. CCTs have been popular development

instruments over the last two decades and most researchers working in the area of development

economics are well familiar with their background and related literature. They thus provide an

ideal example for our purpose.

4.2 Application: Progresa’s treatment effect on the distribution

In their study “Indirect Effects of an Aid Program”, Angelucci and De Giorgi (2009) investigate

how CCTs to targeted, eligible (poor) households affect, among other outcomes, the mean food

consumption of both eligible and ineligible (nonpoor) households. An RCT was conducted at

the village-level and information is available for four groups: eligible and ineligible households

in treatment and control villages. Aside from the expected positive effect of the cash transfer

on the mean eligible households’ food consumption, Angelucci and De Giorgi (2009) also find a

considerable increase of the mean ineligible households’ food consumption in the treatment villages.

They link the increase to reduced savings among the nonpoor, higher loans, and monetary and in-

kind transfers from family and friends. The strong economic interrelationships between households

within a village presumably result from existing informal credit and insurance markets in the study

region. Accordingly, the average program effect on food consumption for the treated villages is

larger than commonly assumed when only looking at the poor. Estimating the same relationship

using GAMLSS provides important information for the policymakers on the effects within a group,

e.g. whether conditional food consumption inequality decreases for an average household among

the poor (or the nonpoor or all households). We will assess the effect on conditional inequality via

the Gini coefficient, which is in general defined by

G =

n∑
i=1

n∑
j=1

|yi − yj |

2n

n∑
h=1

yi

, 0 ≤ G ≤ 1, (11)

for a group of n households, where yi denotes the non-negative consumption of household i. For

a given continuous consumption distribution function p(y), which we will estimate via GAMLSS,

the Gini coefficient can be written as

G =
1

2µ

∫ ∞
0

∫ ∞
0

p(y)p(z) |y − z| dy dz, (12)

with µ denoting the mean of the distribution.

Thus, a positive treatment effect on consumption in one group results in a lower Gini coefficient

if all group members benefit equally, as the deviations in the numerator in (11) and remain the

same, but the denominator increases. An equivalent logic applies to (12). However, there as well

might be reasons why in one group, for instance among the poor, only the better off benefit and

the poorest do not, resulting in higher inequality.
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Using GAMLSS, we investigate the program’s impact on conditional food consumption inequality

measured by the Gini coefficient within the nonpoor and poor by comparing the treatment and

control groups. In particular, we model food consumption by an appropriate distribution and link

its parameters to the treatment variable and other covariates. We obtain estimates for the condi-

tional food consumption distribution for treated and untreated households and the corresponding

Gini coefficients. The pairs cluster bootstrap is applied for obtaining an inferential statement on

the equality of Gini coefficients; see Section B.2 in the appendix for a description of this bootstrap

method.

Furthermore, we investigate the effect of Progresa on global inequality by comparing treatment

and control villages, i.e. all households in treatment villages are considered as treated and all

households in control villages as not treated. Since the average treatment effects found by Angelucci

and De Giorgi (2009) are larger for the poor than for the nonpoor, a lower food consumption

inequality (measured by the Gini coefficent) in the treatment villages is expected. However, a

higher Gini could arise if the program benefits are very unequally distributed. Generally, decreasing

inequality is an expected, even though often not explicitly mentioned and scrutinized target of

poverty alleviation programs and considered to be desirable, especially in highly unequal societies

such as Mexico.

In the following, we will therefore investigate the treatment effect on food consumption inequality

for three groups: the ineligibles, the eligibles and all households (with those located in a treatment

village considered to be treated and vice versa). In particular, we refer to Table 1 in Angelucci and

De Giorgi (2009) and restrict our analyses to the most interesting sample collected in November

1999 and the more powerful specifications including control variables. Generally, we rely on (nearly)

the same data and control variables as Angelucci and De Giorgi (2009). Minor amendments for

estimation purposes include the removal of households which reported no food consumption and

“no answer” categories from categorical variables. The resulting sample size reduction amounts

to less than 1% in all samples. In comparison to Angelucci and De Giorgi (2009), we obtained

very similar point estimates and significance statements even with our slightly amended sample.

Following them, we also remove observations with a food consumption level of more than 10000

pesos per adult equivalent. Along the steps described in Section 4.1 we will show in detail how

to apply our modeling framework to the group of ineligibles which are also the main focus group

of Angelucci and De Giorgi (2009). Result tables on the remaining two groups are reported and

interpreted, whereas a description of the exact proceeding is dropped for the sake of brevity. All

necessary software commands and the dataset are available online. The corresponding software

code can be downloaded from https://www.uni-goettingen.de/de/511092.html, whereas the

dataset is available on https://www.aeaweb.org/articles?id=10.1257/aer.99.1.486.

4.2.1 Choice of potential outcome distributions

The distribution of the outcome variable often gives some indication about which conditional

distributions are appropriate candidates. However, the (randomized) normalized quantile residuals

(Dunn and Smyth, 1996) are the crucial tool to check the adequacy of the model fit and thus the

appropriateness of the chosen distribution, see Section 4.2.3.

The histogram of the dependent variable in the left panel of Figure 1 shows a heavily right-skewed

distribution.
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Figure 1: Histogram of food consumption and log food consumption
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The logarithm of the dependent variable in the right panel of Figure 1 somewhat resembles a normal

distribution such that the log-normal distribution appears to be a reasonable starting point. It has

the additional advantage that it also renders easily interpretable effects of the explanatory variables

on the mean and variance of the dependent variable, at least on the logarithmic scale. As a more

flexible alternative, we will also consider the three-parameter Singh-Maddala that is also known

as Burr Type XII distribution and capable of modeling right-skewed distributions with fat tails

(see Kleiber and Kotz (2003) for details). Note that the three parameters of the Singh-Maddala

distribution do not allow a direct interpretation of effects on moments of the distribution.

4.2.2 Preliminary choice of potentially relevant covariates

We select the same covariates as in Angelucci and De Giorgi (2009) and relate all of them to all

parameters of our chosen distribution. In particular, the model contains nine explanatory variables

per parameter: Aside from the treatment variable, these are six variables on the household level,

namely poverty index, land size, the household head’s gender, age, whether she/he speaks an

indigenous language and is illiterate, as well as a poverty index and the land size as variables on

the locality level. For the model relying on a log-normal distribution, two parameters µ and σ are

related to these variables,

log(µi) = βµ0 + Tiβ
µ
T + x′iβ

µ
1 , (13)

log(σi) = βσ0 + Tiβ
σ
T + x′iβ

σ
1 , (14)

where Ti is the treatment dummy, βµT and βσT are the treatment effects on the parameters µ and σ,

respectively, xi is a vector containing the values of the remaining covariates for household i and βµ1
and βσ1 are the corresponding coefficient vectors of the same length. In the specification relying on

the three-parameter Singh-Maddala distribution, where µ and σ are modeled as in (13) and (14),

respectively, an additional parameter τ is linked to the nine explanatory variables,

log(τi) = βτ0 + Tiβ
τ
T + x′iβ

τ
1 , (15)

resulting in the considerable amount of 30 quantities to estimate as each parameter equation
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includes an intercept. This is, however, still a moderate number considering the sample size of

more than 4,000 households in the sample of ineligibles and even less problematic for the sample

of eligibles with about 10,500 observations and the combined sample. In general, if the sample

size is large, it is advisable to relate all parameters of a distribution to all variables which

potentially have an effect on the dependent variable and its distribution, respectively.Exceptions

may include certain distributions such as the normal distribution when there are convincing

theoretical arguments why a variable might affect one parameter such as the mean, but not

another one, i.e. the variance. For smaller sample sizes, higher order parameters such as skewness

or kurtosis parameters may be modeled in simpler fashion with few explanatory variables.

4.2.3 Model building and diagnostics

The proposed models are estimated using the R package gamlss, see Stasinopoulos and Rigby

(2007), Stasinopoulos et al. (2017) and the software code attached to this paper for details. The

adequacy of fit is assessed by some statistics of the normalized quantile residuals, introduced by

Dunn and Smyth (1996). As a generic tool applicable to a wider range of response distributions than

deviance or Pearson residuals, these residuals were shown to follow a standard normal distribution

under the true model. In Figure 2a and Table 1 it can be seen that both qq-plot and statistics

reveal that the log-normal distribution might be an inadequate choice for modeling the consumption

distribution as especially the overly large coefficient of kurtosis, which should be close to 3, and the

apparent skewness of the normalized quantile residuals, visible in the plot, suggest a distribution

with a heavier right tail.

●
●

●

●●

● ●●

●

●

● ●

●

●

●

●●

●

●
●

●

●●
●

●

● ●
●

●

●
●● ●

●

●
●

●

●
●●

●
●

●

●
●
● ●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●●

●

●

●●●

●
●

●
● ●

●

●
●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●●
●

●●
●●●●

●●

●

●

●

●
●

●

●

●
●●

●●
●

●

●

●
●●

●

●

●
●

●
●

●
● ●●

●●

●

●

●

●
●
●

● ● ●
●
●

●●
●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●
●●

●
●

●
●

●

●●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●
●●

●
●

● ● ●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●

●

●
●

●●
●●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●

●

● ●
●

● ●
●

●

●

●
●

●

●

●

●

●

●● ●

●

●● ●
●

●●

●

●

●

●

● ● ●
●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●
●

● ●
●

●
● ●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

● ●

● ●

●
●

● ●

●

●●

●

●
●●

●

●

●

●
●

●

●
● ●

●

●
● ●

●
●

●

●
●

●
●

●

●
●●

● ●
●

●●●
●●

●
●

●

●
●

●

●●
●

●

● ●

● ●
●

●
● ●●

●

● ●

●●
●

● ●●
● ●

● ●● ● ●

●

●

●
●

●
●

●
●

●● ●

●

●
●

● ●
●

●

●

●●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●● ●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●
●●

●

●

●

●
●

●

●
●

●
●
●

●
●●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●

●
●

● ●

●

●
●●

●

●

●

● ●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
● ●

●
●

●
●

●

●● ●●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●
●

● ●

●●

●

●
●

●

●

●
●
●

●

●
● ●

●

●

●●

●

● ● ●

●
●

●

●
●

●

●

●

●
●

● ●

●
●

●●

●●

●

●
●

●
●

●

●
●

●● ●

●

● ●
●

●
●

●
●●

●●
●●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ● ●●

●

●

● ●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

● ●

●
●

●●

●
●

●
●

●
●

●
●

●

● ●
●

●

●

●

●

●●●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●
●
●●

●
●

●

●

●

●

●
●●● ● ●

●

●

●

●

●
●

●●

●

●
●

●●

●
●●

●

●

●
●

●

●●
●●

●

●

●●

●
●

●

●

●
●● ●● ●
●

●

●
●

●

●

●

● ●●● ●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●●

●

●
●

●

● ●

●
●

●●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●●
●

●●
●●

●

●

●
●
●

●
●

●●
●● ●● ●●

●

● ●

●

●

●

●

●

●
●

●
● ●●

●●●
●

●
●

●

●●

●
●● ●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
● ●●

●●

●●

●

●
●

●
● ●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●
●

●

●

●●
● ● ● ●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●
●

●
●

● ●
●

●

●
●

●●

●

●

● ●

● ●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
● ●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
● ●

●
●

●

●

●●

●●
●

●

●

●

●
●

●

●

●●

●

●●
●

● ●

●

●
●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●
● ●

●

●

●

●

●●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●●

●● ●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●
●

●
●

●

●
●

●

●
●

●
●

●● ●●
●
●

●●

●

●
●●

●
●

●●

●

● ●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●●

●

●
●

●
● ●

●

●

●

●●

●

●
●

●

●●

●●

●●
●

●

●
●

●

●●

●● ●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

● ●● ● ●●●
●

●

●

●●
●

●

●

●
●●

● ●

● ●
● ●●● ●

●●●
●

●

● ● ●

●

●●
●
●

●
●

● ●

●
●●

●
●

●
●

●

●

●
●●

●●

● ●●
●

● ●
●

●
● ●

●

●
●● ●●

●●

●
●

●

●
● ●●● ●

●

●
●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●

●●
●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●
●● ●●

●

●●
●●

●

●

●
●

●
●●

●

●
●

●
●

●
●●●

●
●●●

●
●

●
●

●

●

●

●
● ● ●

● ●

●

●●
●

●
●
●

● ● ●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●●● ●

●

●
●

●
●

●
●

●
●

●

●●

● ●●● ●●

●●

●●

●
●

●

●

● ●●
●●
●

●
●

● ●●
●

●

●

●●

●

●●●
●

●
●

●

●

● ●
●

●● ●
●

●
●

●
●●

●
●

● ●●
● ●

●

●

● ●
●

●

●

●

●

● ●
●●

●

●

●
●

●

●●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●
● ●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●● ●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●●
● ●

●

●

●

●
●

●
●

●

●
●

●

●

●●●
●●

●
●

●
● ●
● ●

●
●●●

●●
●●
●

●

●

●●

●
●●

●
●

●
● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●●●

●

●
●

●●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

● ● ●

●●

●

●
●

●
●

●●

●

●

●
●

●●
●●●●

●

●

●

●

●

●
●●

●
●●

●● ● ●

●● ●●

●

●

●
● ●

●

●
●

●

● ● ●

●● ●
●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●
● ●

●

●●

●

●

● ●

●

●●

●

●

●

●

●
●

●●

●
●

●
●

●

●● ●
●

●
●

●
●

●

●
●

●
●

●● ●●
●

●

●●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●●

● ●

●
●

●
●

●
●

●●

●

●
●

●
●

●

●
●●
● ●

●

●
●

●

●
●

●● ●
●

●

●

●

●● ●

●

●

●●

●

●
●

●
●

●●

●

●
● ●●

●
●

●●
●

●
●

●●
●●

●

●

●
●

●

●

●
●

●

●
●

●
●●●

●

●
●

●

●

●
●

●● ●

●● ●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●●●

●

●
●

●

●
● ●●

●

●

●

● ●

● ●

●
● ●

●

●●
●

●
●

●

● ●

● ●

●●

●

●

●

●

●
●

● ●

●

●

●

●

● ●
●

●

●

●

● ●
●

● ●

●
●
●

●
●

●

●●

●●

●

●

●

●●
●

●

●
●

●
●●

●●

●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

● ● ●● ●
●
●

● ●

●

●●● ●● ●●
●●

●
●
●

●
●●

●
●

●

●
●

●

●
●

●
●

● ●
●

●

●

●

●

●
●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

● ● ●● ●● ●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●
●

●
●

●

●

●

●●
●●

●

●●
●●

●

●

●

●

●
●●

● ●

●

●
●

●
●

●

●
●
●

●
●●●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●
● ●●

●

●
● ●

● ●
● ● ●

●
●

●

●

●

●

● ●●
●

●

●

●
●

●
●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●
● ●

●
●

●●
●

●●●

● ●

●
●

●

●

●

●
●

●
●● ●

●

●

●●

●

●
●

● ●

●

●

●
●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●●

●
●●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●
●
●

●●

●●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●●

●

●●

●
●

●

● ●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

●

●
●
●

●● ●

●

●
●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●●

●● ●●

●
●●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●●

●

●●

●

●

●

●
●

●

●●
●

●
●
● ●

●

●
●

●● ●●

●

●

●
●

● ●
●

●

●

●

●

●

●

●● ●

●

●●●

●

●
●

●

●
●

●

● ●
●

●
●

●

●

●
●

●●

●

●

●

●

●●●
●

●

●

● ●

●

●

●●

●
●

●

●

●
●

●● ●
●

●
●

●
●

●
●● ●

●●

●

●

●

●

●●
●

●

●

●
●

●
●

●

● ● ●

●
●

●
● ●

●

●
●
●

●

●
● ● ● ●

●

●
●

●

●

●

●

●
●●

●● ●
●

●●
●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●
●
●

●● ●
●

●
● ●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●
●●

●

●
● ●

●

●

●

● ●●
●●

●
●

●

●

●

●

●

●

● ●●

●

● ●
●

● ● ●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●●
●

●

●

●

●

●

●●

●

●

●
●

●
●● ●

● ●
●

●
●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●●

●●

●

●
●

●

●
●

●

●
●

●

●

●
●●
●

●

●

●

●●

●
●

●

●

●
●

●

● ● ●
●●

●

●

●

●

●
● ●

●

●
●

● ●●

●

●

●

●
●

●

● ●

● ●

● ●
●●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●
●

●
●

●

●

●
● ●

●

●
●

●
●

●●

●

●

●

●●

●●

●

●
● ●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
● ●

● ●● ●

●

●

●
●

●
●●

●

● ●

●

● ●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●

● ●

●
● ●

●
● ●●●●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●
●

●

● ●
●

●●●

●

●●
●

●
● ●

●●

●
●

●

●
●

●

● ●● ●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●
●

●

●

●
●

●● ●
●

●

●

●

●
●

●
● ●

●

●

●
●

●
●●

●●

●
● ●

●

●
●

●

● ●
● ●

●

●

●

●

●
●
●

●
●

●

●

●

● ●

●

●
●

●
●

● ●

●
●

●●

●● ●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●●
●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●●
●

●

●

●

●
●

●
●

●

● ●●●
●

● ●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●
●

●
●

● ●
●●

●
●●

●
●

● ●
● ●● ●

● ●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●
●

●
●

● ●

●

●
●

●

●
●

●●

● ●

●

● ●●
●●

●

● ●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

● ●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●● ● ●

●
●

●

●
●

●

●

●

●●
●●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●●●

●
●●

● ● ●

●

●
●● ●

●

●●

●

●

● ● ●
●● ●●●

●
●

●●
● ●

● ●●
●

●
●●

●
●●
●

●
●

●

●
●
●●

●

●

●●
●

●
●

●

●

●
●●

● ●
●

● ●

●

●

● ●

●

●

● ●

●

●
●

●●
●●

●

●

●

●●

●

●
●

●●
● ●●

●

●
●

●

●●
●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●●
●

●●

●●●

●

●

●

●
● ●

●
●
●

●

●
●

●
●

●

●
●

●
●
●

●●

●

●

● ●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

● ●● ●
●

●
●

●●
●●

●

●

●
●

●
●●

●
●

●

●
●

●
● ●

●

●

●

●

●●●●●

● ●

●

●

● ●

●
●●

● ●

●●

●

●

●●

●

●

●
●● ●

●●

● ●

●

●

●

●●

● ●

●
●

●

●

● ●

●
●

●

●
●

●

●

●
●

●●

●● ●
●●

●
●

●

●●

●
●
●

●

●●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●●

●

●

●

●●

● ●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●
●
● ●
●●

●

●●
●

●

●

●

●

● ● ●●●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

● ●

●

●

●

●

●●●
●

●

●

●

●●
●●

●

●

●

●

●
●

●

● ●
●

●● ●

●●

●

●
●

●

●

4.9 5.0 5.1 5.2 5.3 5.4

−
4

−
2

0
2

4
6

Against Fitted Values

Fitted Values

Q
ua

nt
ile

 R
es

id
ua

ls

●
●
●

●●

●●
●

●

●

●●

●

●

●

●●

●

●
●
●

●●
●

●

●●●

●

●
●●
●

●

●
●

●

●
●●

●
●

●

●
●
●●

●

●
●

●

●

●

●
●
●
●
●
●
●●

●

●
●

●

●●

●

●

●●●

●
●

●
●●

●

●
●
●

●●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●
●
●●
●

●●
●●●●
●●

●

●

●

●
●

●

●

●
●●

●●
●
●

●

●
●●

●

●

●
●
●
●
●
●●
●

●●

●

●

●

●
●
●
●●●●
●

●●
●

●

●

●
●
●
●

●

●

●

●
●●

●

●

●●
●●

●
●
●
●

●

●●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●
●●

●
●
●●●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●
●

●

●

●
●

●
●

●

●
●●

●

●

●
●

●●
●●●●

●

●
●

●

●

●

●
●
●
●

●

●

●
●

●
●
●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●●●

●

●

●●
●

●●
●
●

●

●
●
●

●

●

●

●

●●
●

●

●●
●
●
●●

●

●

●

●

●●●
●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●
●
●●
●
●
●●

●

●
●

●
●
●
●

●

●

●
●
●

●●

●

●

●●

●●

●
●

●●

●

●●

●

●
●●

●

●

●

●
●

●

●
●●

●

●
●●

●
●
●

●
●
●
●

●

●
●●
●●
●
●●●
●●
●
●

●

●
●
●

●●
●
●

●●

●●
●

●
●●●●

●●

●●
●
●●●●●

●●●●●

●

●

●
●

●
●
●
●

●●●

●

●
●
●●
●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●●

●

●

●
●

●
●
●
●
●
●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●
●
●●
●

●

●

●
●

●

●
●

●
●
●

●
●●
●

●
●
●

●

●
●
●

●
●
●●
●

●

●

●
●
●●

●

●
●●

●

●

●

●●
●

●
●

●

●
●●

●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●●

●
●

●
●
●

●●●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●
●

●●

●●

●

●
●

●

●

●
●
●
●

●
●●
●

●

●●

●

●●●

●
●

●

●
●
●

●

●

●
●
●●

●
●

●●

●●

●

●
●

●
●

●

●
●

●●●

●

●●
●
●
●
●
●●
●●
●●

●●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●●●●
●

●

●●●
●

●

●

●

●
●
●

●

●
●
●
●

●

●

●

●●

●

●●

●
●

●

●

●

●
●
●●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●
●
●●

●
●

●
●

●
●
●
●

●

●●
●
●

●

●

●

●●●

●

●

●

●

●
●
●
●●
●

●

●

●

●

●

●
●

●
●
●●
●

●

●
●
●●
●
●
●

●

●

●

●
●●●●●
●

●

●

●

●
●

●●

●

●
●

●●

●
●●

●

●

●
●

●

●●
●●

●

●

●●

●
●

●

●

●
●●●●
●
●

●

●
●
●

●

●

●●●●●

●
●

●

●

●

●
●
●
●
●

●
●
●
●

●●

●

●

●
●
●
●

●

●

●
●●

●

●

●

●●

●

●
●
●

●●

●
●
●●

●

●

●

●
●

●

●●
●
●

●

●

●
●
●

●
●

●●
●
●●
●●
●

●

●
●
●
●
●

●●
●●●●●
●

●

●●

●

●

●

●

●

●
●

●
●●●

●●●
●
●
●

●

●●

●
●●●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●
●●●

●●

●●

●

●
●
●
●●
●

●

●●●
●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●●

●

●●

●

●
●

●

●

●●
●●●●
●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●
●
●
●

●●
●
●

●
●

●●

●

●

●●

●●
●
●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●●
●
●

●

●
●

●

●
●
●

●
●

●

●

●
●
●

●

●
●●
●
●

●

●

●●

●●
●

●

●

●

●
●

●

●

●●

●

●●
●

●●

●

●
●
●
●
●

●

●

●●●

●
●
●

●
●
●

●

●

●
●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●
●
●

●

●

●

●●
●
●●

●

●

●

●

●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●
●●●

●

●

●

●

●●
●
●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●
●
●
●

●●●
●
●
●
●●

●

●
●●

●
●

●●

●

●●
●

●

●

●
●
●

●
●●

●

●

●

●

●
●●
●

●
●

●
●●
●

●

●

●●

●

●
●
●

●●

●●

●●
●
●

●
●
●

●●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●
●
●

●
●
●

●
●

●●
●●●●●
●
●

●

●●
●

●

●

●
●●

●●

●●
●●●●●
●●●
●

●

●●●

●

●●●
●

●
●

●●

●
●●
●
●

●
●

●

●

●
●●

●●

●●●●
●●
●
●
●●

●

●
●●●●

●●

●
●
●

●
●●●●●
●

●
●

●

●

●

●
●

●
●
●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●
●
●●
●

●
●
●●
●

●

●●●

●

●

●
●
●

●

●

●
●

●

●

●
●

●
●

●

●●

●
●●●●
●

●●
●●

●

●

●
●
●
●●

●

●
●

●
●

●
●●●

●
●●●
●
●
●
●

●

●

●

●
●●●

●●

●

●●●

●
●
●
●●●●

●

●
●
●

●

●

●
●

●

●

●

●
●

●
●●●
●

●

●
●

●
●

●
●
●
●
●

●●

●●●●●●

●●

●●

●
●
●

●

●●
●
●●
●
●
●

●●●●

●

●

●●

●

●●●
●

●
●
●

●

●●
●

●●●
●

●
●

●
●●

●
●
●●
●
●●

●

●

●●●

●

●

●

●

●●
●●
●

●

●
●
●

●●
●

●

●

●●
●

●

●
●
●
●

●

●

●

●
●●

●

●

●

●
●●
●●

●

●

●
●
●

●
●

●
●

●
●
●

●

●
●

●

●●●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●●
●
●

●

●

●
●●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●
●●
●
●
●

●

●●
●●

●

●

●

●
●
●
●
●

●
●

●

●

●●●
●●

●
●
●
●●
●●●
●●●

●●●●
●
●

●

●●

●
●●
●
●

●
●●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●●●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●●
●

●●

●

●
●
●
●
●●

●

●

●
●

●●
●●●●

●

●

●

●

●

●
●●

●
●●
●●●●

●●●●

●

●

●
●●

●

●
●

●

●●●

●●●
●

●

●

●

●

●
●●●
●

●
●
●
●
●
●

●
●●
●

●●

●

●

●●

●

●●

●

●

●

●

●
●
●●

●
●

●
●

●

●●●
●
●
●
●
●

●

●
●
●
●

●●●●
●

●

●●
●

●

●●

●

●

●
●

●

●

●

●
●
●

●

●●

●●

●
●

●
●
●
●
●●

●

●
●

●
●

●

●
●●
●●

●

●
●

●

●
●

●●●
●

●

●

●

●●●

●

●

●●

●

●
●

●
●
●●

●

●
●●
●
●
●
●●
●

●
●

●●
●●

●

●

●
●
●

●

●
●

●

●
●

●
●●●
●

●
●
●

●

●
●

●●●

●●●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●●

●

●
●

●

●
●●●

●

●

●

●●

●●

●
●●
●

●●
●

●
●

●

●●

●●

●●

●

●

●

●

●
●
●●

●

●

●

●

●●
●

●

●

●

●●
●
●●

●
●
●
●
●

●

●●

●●

●

●

●

●●
●

●

●
●

●
●●
●●

●

●
●
●
●●●
●

●

●
●

●

●

●

●

●

●●
●●●
●
●

●●

●

●●●●●●●
●●

●
●
●

●
●●

●
●

●

●
●

●

●
●
●
●
●●
●

●

●

●

●

●
●●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●●●●●●●

●
●
●

●

●

●
●
●
●
●

●

●
●

●
●
●

●
●
●

●

●

●●
●●

●

●●
●●
●

●

●

●

●
●●
●●

●

●
●
●
●
●

●
●
●

●
●●●

●

●

●

●

●
●
●

●

●

●●

●●●
●
●●●

●

●
●●
●●
●●●
●
●

●

●

●

●

●●●
●
●

●

●
●
●
●
●
●

●

●●
●

●

●

●

●

●
●

●

●

●
●●
●
●

●●
●
●●●

●●

●
●

●

●

●

●
●
●
●●●
●

●

●●

●

●
●

●●

●

●

●
●
●
●●

●

●

●

●

●

●

●●

●
●
●

●●

●
●●

●

●

●

●
●

●

●

●
●
●

●●

●

●
●

●

●●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●●

●

●
●
●

●

●
●

●
●
●

●●

●●

●●

●

●

●

●

●
●

●

●
●

●

●
●
●

●
●

●
●

●●

●

●

●

●

●

●

●●

●
●

●
●●
●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●
●
●
●●●

●

●

●

●

●
●

●

●
●
●

●●●

●

●
●
●
●

●

●
●

●
●
●

●

●
●

●

●
●

●
●●●●●●

●
●●

●

●

●
●
●
●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●
●
●

●●
●

●
●
●●

●

●
●

●●●●

●

●

●
●

●●
●

●

●

●

●

●

●

●●●

●

●●●

●

●
●
●

●
●

●

●●●

●
●

●

●

●
●

●●

●

●

●

●

●●●
●

●

●

●●

●

●

●●

●
●

●

●

●
●
●●●
●

●
●
●
●

●
●●
●
●●

●

●

●

●

●●
●
●

●

●
●

●
●

●

●●●

●
●

●
●●

●

●
●
●

●

●
●●●●

●

●
●

●

●

●

●

●
●●

●●
●
●

●●
●
●
●
●
●

●
●

●
●

●●

●

●
●

●

●
●
●
●●●
●

●
●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●
●●

●

●
●●

●

●

●

●●●
●●
●
●

●

●

●

●

●

●

●●●

●

●●
●

●●
●
●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●
●
●●●
●●
●

●
●

●

●

●

●
●
●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●
●
●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●
●●

●

●
●

●

●

●●

●●

●

●
●

●

●
●
●

●
●

●

●

●
●●
●

●

●

●

●●

●
●
●

●

●
●
●

●●●
●●

●

●

●

●

●
●●

●

●
●
●●●

●

●

●

●
●

●

●●

●●

●●
●●

●
●

●

●

●

●
●
●
●●●

●

●

●

●

●

●
●●
●●
●

●

●

●
●
●
●
●
●
●

●

●
●●
●

●
●
●
●

●●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●
●

●

●

●●●

●

●
●●
●●●●

●

●

●
●

●
●●

●

●●

●

●●

●

●

●
●
●
●
●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●
●●
●
●●●●●
●

●

●

●
●
●

●

●

●
●

●

●●
●

●

●

●●

●

●

●●

●
●
●

●●
●

●

●
●
●

●●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●
●

●

●●
●

●●●

●

●●
●

●
●●●●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●
●●
●

●●

●
●
●

●

●
●
●●●
●

●

●

●

●
●
●
●●

●

●

●
●
●
●●

●●

●
●●

●

●
●

●

●●●●
●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●
●
●
●
●●

●
●
●●

●●●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●
●

●

●●
●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●
●
●

●

●

●
●
●
●

●

●●●●
●
●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●●
●

●
●

●●
●●
●
●●

●
●
●●
●●
●●

●●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●
●
●
●●

●

●
●

●

●
●

●●

●●

●

●●●
●●
●

●●
●

●

●
●●
●
●
●

●

●
●

●

●

●

●

●
●

●

●●

●●
●
●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●

●
●
●

●

●

●●
●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●
●

●
●

●

●

●●
●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●●●

●
●●

●●●

●

●
●●●●

●●

●

●

●●●●●●●●●
●
●●
●●
●●●
●
●
●●
●
●●
●

●
●

●

●
●
●●
●

●

●●
●

●
●

●

●

●
●●

●●
●
●●

●

●

●●

●

●

●●

●

●
●
●●
●●

●

●

●

●●

●

●
●

●●●●●

●

●
●

●

●●
●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●●
●
●●

●●●

●

●

●

●
●●
●
●
●

●

●
●

●
●

●

●
●
●
●
●
●●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●
●
●

●

●
●
●
●

●●●●
●

●
●
●●
●●
●

●

●
●
●
●●

●
●

●

●
●
●
●●

●

●

●

●

●●●
●●

●●

●

●

●●

●
●●

●●

●●

●

●

●●

●

●

●
●●●

●●

●●

●

●

●

●●

●●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●
●●

●●●
●●
●
●

●

●●

●
●
●

●

●●●

●

●

●●
●
●

●

●
●

●

●

●
●

●

●
●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●
●●

●

●

●

●
●
●●
●●
●

●●
●
●

●

●

●

●●●●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●●●
●

●

●

●

●●
●●

●

●

●

●

●
●

●

●●
●

●●●

●●

●

●
●
●

●

0 1000 2000 3000 4000

−
4

−
2

0
2

4
6

Against  index

index

Q
ua

nt
ile

 R
es

id
ua

ls

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Density Estimate

Quantile. Residuals

D
en

si
ty

●
●

●

●●

● ●●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●●
●

●

●
●●●

●

●
●

●

●
● ●

●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●●

●

●

●●●

●
●

●
● ●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●●
●

●●
●● ●●

●●

●

●

●

●
●

●

●

●
●●

●●
●

●

●

●
●●

●

●

●
●

●
●

●
●●

●

●●

●

●

●

●
●

●
● ●●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●
●●

●
●

●
●

●

●●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●
●●

●
●

●●●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●

●

●
●

●●
●●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●●
●

●●
●

●

●

●
●

●

●

●

●

●

● ● ●

●

● ●●
●

●●

●

●

●

●

●●●
●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●
●

●●
●

●
●●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●●

●●

●
●

●●

●

●●

●

●
● ●

●

●

●

●
●

●

●
●●

●

●
● ●

●
●

●

●
●

●
●

●

●
●●

●●
●

●●●
●●

●
●

●

●
●

●

●●
●

●

●●

● ●
●

●
●●●

●

●●

● ●
●

●●●
●●

● ●●● ●

●

●

●
●

●
●

●
●

●●●

●

●
●

● ●
●

●

●

● ●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
● ●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●
●●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●
●

●●

●

●
●●

●

●

●

●●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●●

●
●

●
●

●

●●●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●
●

●●

●●

●

●
●

●

●

●
●

●
●

●
●●

●

●

●●

●

●● ●

●
●

●

●
●

●

●

●

●
●

●●

●
●

● ●

● ●

●

●
●

●
●

●

●
●

●●●

●

● ●
●

●
●

●
● ●

●●
● ●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●●●

●

●

●●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●
●

●●

●
●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●●
●

●
●

●

●

●

●
●●●●●

●

●

●

●

●
●

●●

●

●
●

●●

●
●●

●

●

●
●

●

●●
●●

●

●

●●

●
●

●

●

●
●●●● ●

●

●

●
●

●

●

●

●●●●●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●●

●

●
●

●

●●

●
●

●●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●●
●

●●
●●

●

●

●
●

●
●

●

●●
●●●●● ●

●

●●

●

●

●

●

●

●
●

●
●●●

●●●
●

●
●

●

●●

●
●●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●● ●

●●

●●

●

●
●

●
●●

●

●

●●●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●●

●

●
●

●

●

●●
●●●●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●
●

●
●

● ●
●

●

●
●

●●

●

●

●●

●●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●

●●

● ●
●

●

●

●

●
●

●

●

●●

●

●●
●

●●

●

●
●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●●

●

●

●

●

●●
● ●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
● ●

●●●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●
●

●
●

●● ● ●
●

●
●●

●

●
●●

●
●

● ●

●

●●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●

●●

●

●
●

●

●●

●●

●●
●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

● ●● ●●●●
●

●

●

●●
●

●

●

●
●●

● ●

●●
●●●●●

●●●
●

●

●●●

●

●●
●

●

●
●

● ●

●
●●

●
●

●
●

●

●

●
●●

●●

●● ●
●

●●
●

●
● ●

●

●
●●●●

●●

●
●

●

●
●●●●●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●
●

●
●

●●
●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●
●●●●

●

●●
●●

●

●

●
●

●
●●

●

●
●

●
●

●
●●●

●
●●●
●

●
●

●

●

●

●

●
●●●

●●

●

●●●

●
●

●
●●●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●●●●

●

●
●

●
●

●
●

●
●

●

●●

●●●●●●

● ●

●●

●
●

●

●

● ●●
●●

●
●

●

● ●●
●

●

●

●●

●

●●●
●

●
●

●

●

●●
●

●● ●
●

●
●

●
●●

●
●

● ●●
●●

●

●

●
●

●

●

●

●

●

● ●
●●

●

●

●
●

●

● ●
●

●

●

● ●●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●●●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●●●
●●

●
●

●
●●

●●
●

● ●●

●●
● ●

●
●

●

●●

●
● ●

●
●

●
●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●● ●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●●

●●

●

●
●

●
●

●●

●

●

●
●

●●
●●●●

●

●

●

●

●

●
●●

●
●●

●●●●

●●●●

●

●

●
●●

●

●
●

●

●●●

●●●
●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●
●●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●●

●
●

●
●

●

●● ●
●

●
●

●
●

●

●
●

●
●

●●●●
●

●

●●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●
●

●
●

●
●

●●

●

●
●

●
●

●

●
●●

● ●

●

●
●

●

●
●

●●●
●

●

●

●

●●●

●

●

●●

●

●
●

●
●

● ●

●

●
● ●●

●
●

●●
●

●
●

●●
●●

●

●

●
●

●

●

●
●

●

●
●

●
●●●

●

●
●

●

●

●
●

●●●

● ●●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●●●

●

●
●

●

●
●●●

●

●

●

●●

●●

●
●●

●

●●
●

●
●

●

●●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●
●

●●

●
●

●
●

●

●

●●

● ●

●

●

●

●●
●

●

●
●

●
●●

●●

●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

● ●●●●
●

●

●●

●

●●●●●● ●
●●

●
●

●

●
●●

●
●

●

●
●

●

●
●

●
●

● ●
●

●

●

●

●

●
●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●●●●●●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●●
●●

●

●

●

●

●
● ●

●●

●

●
●

●
●

●

●
●

●

●
● ●●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●
●●●

●

●
●●

● ●
● ●●

●
●

●

●

●

●

●●●
●

●

●

●
●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●
●●

●
●

●●
●

●●●

●●

●
●

●

●

●

●
●

●
●● ●

●

●

●●

●

●
●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●
●

●

●●

●
●●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●
●

●

●●

●●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●●

●

●●

●
●

●

●●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●
●

●

●
●

●

● ●●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●●●●●●

●
●●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●●
●

●
●

● ●

●

●
●

● ●●●

●

●

●
●

●●
●

●

●

●

●

●

●

●●●

●

●●●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●●●
●

●

●

●●

●

●

●●

●
●

●

●

●
●

●●●
●

●
●

●
●

●
●●

●
● ●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●●●

●
●

●
●●

●

●
●

●

●

●
● ●●●

●

●
●

●

●

●

●

●
●●

● ●●
●

●●
●

●
●

●
●

●
●

●
●

● ●

●

●
●

●

●
●

●
●●●

●

●
● ●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●
●●

●

●
●●

●

●

●

●●●
● ●

●
●

●

●

●

●

●

●

●●●

●

●●
●

● ● ●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●●
●

●

●

●

●

●

●●

●

●

●
●

●
●●●

●●
●

●
●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●●

●●

●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

● ●

●
●

●

●

●
●

●

●●●
●●

●

●

●

●

●
●●

●

●
●

●●●

●

●

●

●
●

●

●●

●●

●●
● ●

●
●

●

●

●

●
●

●
●●●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●
●

●
●

●

●

●
●●

●

●
●

●
●

●●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
●●

●●●●

●

●

●
●

●
● ●

●

●●

●

● ●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●
●●

●
●●●●●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●●

●
●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●●
●

●●●

●

●●
●

●
●●

●●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●
●

●

●

●
●

●● ●
●

●

●

●

●
●

●
● ●

●

●

●
●

●
● ●

●●

●
●●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●●

●
●

● ●

●●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●
●

●

●

●

●
●

●
●

●

●●●●
●

●●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●
●

●
●

●●
●●

●
● ●

●
●

●●
● ● ●●

●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●
●

●●

●

●
●

●

●
●

●●

●●

●

●●●
●●

●

●●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●●

●
●

●

●
●

●

●

●

●●
●●

●

●

●● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●●

●
●●

●●●

●

●
● ●●●

●●

●

●

● ●●
●●● ●●

●
●

●●
●●

●●●
●

●
●●

●
●●

●

●
●

●

●
●

●●
●

●

●●
●

●
●

●

●

●
●●

● ●
●

● ●

●

●

●●

●

●

●●

●

●
●

●●
●●

●

●

●

●●

●

●
●

● ●
● ●●

●

●
●

●

●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●●

●●●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●

●

●●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●●●
●

●
●

●●
●●

●

●

●
●

●
●●

●
●

●

●
●

●
●●

●

●

●

●

●● ● ●●

●●

●

●

●●

●
●●

●●

● ●

●

●

●●

●

●

●
● ●●

●●

●●

●

●

●

●●

●●

●
●

●

●

● ●

●
●

●

●
●

●

●

●
●

●●

●●●
●●

●
●

●

●●

●
●

●

●

●●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
● ●

●

●

●

●
●

● ●
●●

●

●●
●

●

●

●

●

● ●●●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

● ●

●

●

●

●

● ●●
●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

● ●
●

●●●

●●

●

●
●

●

●

−2 0 2

−
4

−
2

0
2

4
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(a)

●
●

●

●
●

●
●●

●

●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

● ●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
● ●

●

●

●

●
●

●
●

●●
●

●●

●

●

●

●
●

●

●
●●

●
●

● ●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●●

●

●

●

●

● ● ●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●
●

●●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●
● ●

●
●●

●

●●

●
●

●

●

●

●

●●

●
●

● ●

●
●
●

●

● ●●
●

●●

●
●

●
● ●●

● ●

●
●

●●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●
●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

● ●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●●
●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●●

●

●

●
●

●
●

●

●

●

● ●
●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

● ●
●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●
●

●

●

●
●

●● ●● ●
●

●

●
●

●

●

●

●

●

●
●

●
● ● ●

●●●
●

●
●

●

●
●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

● ●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

● ●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●●

● ●
●●

●

●

●

●●

●

●

●

●

●●

●●

●●

● ●●
●●

●●●
●

●

●● ●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●●
●

● ●

●

●

●
●

●

●

●● ●●

●●

●

●

●

●

● ● ●●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●● ●●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●●

● ●

●

● ●
●

●
●

●
● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●● ● ●●

●
●

●●

●

●

●

●

●
●●

●
●

●
●

●

●
●●

●

●

●

●●

●

●
● ●

●

●

●

●

●

● ●
●

●●
●

●

●
●

●
● ●

●

●

●
●●

● ●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●●

●
●

●

● ●
● ●

●
●

●●

●●
●

●

●

●

●

●●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
● ●

● ●

●

●

●

●

●
● ●

●

●

●

●

● ●
●●

●●

●

●

●

●

●

●

●●

●

●●
●
● ●

●

●●
●

●

●

●

●
●

●

●

●
●

●

● ●●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

●

●
● ●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●
● ●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●●
●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●● ●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●

● ●
●

●

●

●

● ●

● ●

●
●

●

●

●●

●

●
●

●

● ●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●●

●
●

●

●

●

●●
●

●

●
●

●

●●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
● ●
● ●

●

●

●●

●

●●
● ●● ●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●● ● ●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

● ●●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●

●

●
●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●
●

●
●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●
●

● ● ●

●

●
●

●

●

●

●

●
●●

●
● ●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

● ●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

● ●

● ●

●●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●
●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

● ●
● ●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
● ●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

● ●

●
●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●●

●
●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●
●

● ●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

● ●● ●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

● ●

●●

●
●

●

●

●

● ●
●

●
● ●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●●

●

●
●●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●● ●

●

●●

● ●●

●

●

●
● ●

●

●●

●

●

●
● ●
●● ●

●●

●
●

●
●

●
●

● ●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
● ●

●
●

●

●●

●

●

●●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●
●

● ●●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●● ●

●

●
●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

● ●

●
●●

● ●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

● ●
●

●●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●
●

●

●

●

●
●

●
●

● ●
●

●●
●
●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●● ●

●
●

●

●

●

●

●

120 140 160 180 200

−
2

0
2

4

Against Fitted Values

Fitted Values

Q
ua

nt
ile

 R
es

id
ua

ls

●
●
●

●
●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●
●
●●

●●

●

●

●

●

●

●

●

●
●●

●
●
●
●

●

●
●●

●

●

●

●
●

●
●
●●
●

●●

●

●

●

●
●

●

●
●●
●
●

●●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●
●

●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●●

●

●

●

●

●●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●
●
●
●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●
●

●
●

●

●

●
●

●

●

●

●●
●●

●
●●
●

●●

●
●

●

●

●

●

●●

●
●

●●

●
●
●

●

●●●
●

●●

●
●

●
●●
●
●●

●
●
●●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●●

●

●

●●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●

●●
●
●

●●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●●●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●●

●

●

●
●

●
●

●

●

●

●●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●

●

●

●

●●●
●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●●
●●
●

●

●

●

●
●

●

●

●●
●●●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●
●

●●
●

●

●
●
●

●

●

●
●

●●●●●
●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●●●
●
●
●

●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●●

●
●

●
●
●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●
●●
●●
●●
●

●

●

●●

●

●

●

●

●●

●●

●●

●●●●●
●●●
●

●

●●●

●

●●
●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●●

●●●●
●●

●

●

●
●

●

●

●●●
●

●●

●

●

●

●

●●●●
●
●

●
●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●

●
●●
●

●

●

●

●

●

●

●

●●●

●●

●

●●
●

●
●

●
●●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●●●
●

●
●

●●

●

●

●

●

●
●●

●
●

●
●

●

●
●●
●

●

●

●●

●

●
●●

●

●

●

●

●

●●
●

●●
●

●

●
●

●
●●

●

●

●
●●

●●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●
●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●
●

●
●

●
●

●

●

●
●●

●●

●
●

●

●●
●●
●
●
●●

●●●
●

●

●

●

●●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●●
●●
●●

●

●

●

●

●

●

●●

●

●●
●
●●
●

●●
●
●

●

●

●
●
●

●

●
●

●

●●●

●
●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●

●●

●●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●
●●
●

●

●●
●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●
●

●●●

●
●●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●
●
●

●

●●

●

●
●

●

●●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●
●

●

●

●

●●
●

●

●
●

●

●●

●●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●●

●

●●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●●●
●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●
●

●

●●
●●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●●

●

●

●
●
●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●
●
●●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●
●

●●
●

●
●

●
●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●●
●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●
●●

●
●●

●

●●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●
●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●
●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●●
●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●●

●
●●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●
●

●

●
●
●●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●
●
●
●
●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●●

●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●●

●●

●
●
●

●

●

●●
●
●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●●

●●

●

●
●●
●
●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●●

●●●

●

●

●
●●
●

●●

●

●

●
●●
●●●
●●

●
●
●
●
●
●
●●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●
●●●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●●●

●

●
●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●

●●

●

●

●●

●
●●

●●

●
●

●

●

●
●

●

●

●
●
●
●

●
●

●●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●
●
●●
●

●●
●
●

●

●

●

●
●
●●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●

0 1000 2000 3000 4000

−
2

0
2

4

Against  index

index

Q
ua

nt
ile

 R
es

id
ua

ls

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4 Density Estimate

Quantile. Residuals

D
en

si
ty

●
●

●

●
●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●●

●

●

●

●
●

●
●

●●
●

●●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●
●●

●
●●

●

●●

●
●

●

●

●

●

●●

●
●

●●

●
●

●

●

●●●
●

●●

●
●

●
●●

●
●●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●●
●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●●●●●
●

●

●
●

●

●

●

●

●

●
●

●
●●●

●●●
●

●
●

●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●●
●●

●

●

●

●●

●

●

●

●

●●

●●

●●

●●●
●●

●●●
●

●

●●●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●●
●

●●

●

●

●
●

●

●

●●●●

●●

●

●

●

●

●●●●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●●
●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●●●●

●
●

●●

●

●

●

●

●
●●

●
●

●
●

●

●
●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●
●

●●
●

●

●
●

●
●●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●●

●
●

●

●●
●●

●
●

●●

●●
●

●

●

●

●

●●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●●

●

●●
●

●●
●

●●
●

●

●

●

●
●

●

●

●
●

●

●●●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●●●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

● ●

●●

●
●

●

●

●●

●

●
●

●

●●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●
●

●

●

●

●●
●

●

●
●

●

●●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●●

●

●●
●●●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●●●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●
●

●●

●
●

●

●

●

●
●

●

●●
●

●

●

●●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●●

●
●●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●●
●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●●

●●

●
●

●

●

●

●●
●

●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●●

●

●
●●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●●

●●●

●

●

●
●●

●

●●

●

●

●
●●

●●●
●●

●
●

●
●

●
●

●●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●
●

●●●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●●

●

●
●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●
●●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●●
●

●●
●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●

−2 0 2

−
2

0
2

4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(b)

Figure 2: Diagnosis plots for the model based on (a) the log-normal distribution and (b) the
Singh-Maddala distribution
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Table 1: Summary of the quantile residuals for the model based on the log-normal distribution
and Singh-Maddala distribution

Log-normal Singh-Maddala
Mean -0.000091 -0.001102
Variance 1.000235 0.998379
Coef. of Skewness 0.701639 0.060098
Coef. of Kurtosis 6.016006 3.115085
Filliben Correlation Coef. 0.984499 0.999201
Note: A good fit is indicated by values close to 0, 1, 0, 3 and 1
for mean, variance, skewness, kurtosis, and Filliben correlation coef-
ficient, respectively.

In contrast, a model relying on the Singh-Maddala distribution yields a much more satisfying

diagnostic fit (see Figure 2b and Table 1). The qq-plot does not show severe deviations from

the standard normal distribution, which is confirmed by the summary measures of the quantile

residuals. More specifically, the Filliben correlation coefficient (measuring the correlation between

theoretical and sample quantiles as displayed in the q-q plot) is almost equal to 1, the coefficient

of skewness is now close to 0 and the coefficient of kurtosis close to 3. Additionally, the mean and

the variance do not deviate much from their “desired” values 0 and 1, respectively.

Consequently, the Singh-Maddala distribution is an appropriate choice here for modeling consump-

tion. Other diagnostic tools, as described in Stasinopoulos and Rigby (2007), can be applied as

well. In any case, well-fitting aggregated diagnostics plots and numbers do not entirely protect

against model misspecification and wrong assumptions. Substance knowledge is sometimes re-

quired to detect more subtle issues. In their application, Angelucci and De Giorgi (2009) cluster

the standard errors at the village level as some intra-village correlation is likely to occur. In a

heuristic approach, we regress the quantile residuals of the model above on the village dummies

and obtain an adjusted R2 of about 10% and a very low p-value for the overall F-Test. This sug-

gests unobserved village heterogeneity which we account for by applying a pairs cluster bootstrap

procedure to obtain cluster-robust inference. Alternatively, random effects could be applied to

model unexplained heterogeneity between villages. We use the same covariates as in Angelucci

and De Giorgi (2009). Following them, we refrain from including nonlinear covariate effects in our

model specification. As the model diagnostics indicate a reasonable fit and we are not particularly

interested in the effects of the continuous covariates, there is no necessity to apply nonparametric

specifications here. Nevertheless, we ran a model with nonparametric covariate effects and ob-

tained very similar results. Generally, we advocate the use of nonparametric specifications, e.g.

via penalized splines, for most continuous covariates. Details on when and how to use penalized

splines can be found in Fahrmeir et al. (2013) and Wood (2006).

4.2.4 Variable selection

A comparison between different models, for instance our model of choice from above to more

parsimonious models, may be done by the diagnostics tools described in the previous subsection.

Alternatively and additionally, statistical criteria for variable selection may be used, see Wood

et al. (2016) for a corrected Akaike Information Criterion for GAMLSS. Moreover, boosting is a

valuable alternative especially for high-dimensional models (Mayr et al., 2012). An implementation

can be found in the R package gamboostLSS (see Hofner et al., 2016, for a tutorial with examples),

yet the set of available distributions is somewhat limited. Here, we retain all variables in the model

in order to stay close to the original study.
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4.2.5 Reporting and interpreting the results

GAMLSS using the Singh-Maddala distribution relate three parameters (via link functions) non-

linearly to explanatory variables but do not yield an immediate interpretation of the coefficient

estimates on distributional parameters such as the mean. Yet, it is straightforward to compute

marginal treatment effects, i.e. the effect of the treatment fixing all other variables at some specified

values, on the mean and variance as well as on other interesting features of an outcome distribu-

tion, such as the Gini coefficient or the vulnerability as expected poverty. The latter we define as

the probability of falling below 60% of the median food consumption in our sample (which corre-

sponds to about 95 Pesos). Finally, t-tests and confidence intervals can be calculated for testing

the presence of marginal treatment effects on various measures.

Figure 3: Estimated conditional distributions for an average household
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Table 2: Treatment effects for ineligibles (n = 4248): Point estimates and 95% bootstrap confidence
interval bounds for marginal treatment effects at means (MTE)

Estimate Lower Bound Upper Bound
MTE on mean 16.232 2.343 28.556
MTE on variance 8463.007 -5842.096 22787.013
MTE on Gini coefficient 0.014 -0.011 0.036
MTE on Atkinson index (e=1) 0.012 -0.009 0.031
MTE on Atkinson index (e=2) 0.018 -0.011 0.046
MTE on Theil index 0.019 -0.020 0.051
MTE on vulnerability -0.015 -0.038 0.008

The results in Table 2 show point estimates and 95% bootstrap percentile intervals of marginal

treatment effects for an average household, i.e. evaluated at mean values for the other continuous

explanatory variables and modes for categorical variables (for simplicity, we henceforth refer to the

term “at means”) on various distributional measures. The expected significant positive treatment

effect on the mean of the dependent variable is found and can be interpreted as follows: For an

average household, the treatment induces an expected increase in food consumption of about 16.232

pesos per adult equivalent. Although associated with large confidence intervals including zero, the

effect on the variances is also positive, indicating a higher variability in the food consumption

among the ineligibles in the treatment villages. The Gini coefficient is as well slightly bigger

in treatment villages and the confidence intervals do not reject the null hypothesis of equal food
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consumption inequality (measured by the Gini coefficients) between treatment and control villages.

We also report effects on other inequality measures, namely the Atkinson index with inequality

parameters e = 1, 2 and the Theil index. The results are qualitatively comparable to the effect

on the Gini coefficient. To put it differently: There is no evidence that the treatment decreases

inequality for an average household among the ineligibles, even though a positive effect on the

average food consumption can be found. Furthermore, vulnerability as expected poverty does

not change significantly due to the treatment, yet the point estimate indicates a decrease by -

0.015, corresponding to an estimated probability of falling below the poverty line of 0.111 for

an average household in the control group and the respective probability of 0.096 for an average

household in the treatment group. The findings can be illustrated graphically: Figure 3 shows the

estimated conditional food consumption distributions for an average household once assigned to

the treatment and once assigned to the control group: It can be seen that the distribution for the

treated household is shifted to the right which corresponds to a higher mean and a lower probability

of falling below the poverty line. Moreover, the peak of the mode is somewhat smaller and the

right tail in this right-skewed distribution is slightly fatter, resulting in an increased variance and

thus higher inequality.

The preceding analyses were conducted for an average household in the sample of ineligibles.

Clearly, marginal effects could be obtained for other covariate combinations to investigate how

the (marginal) treatment effect looks like for specific subgroups. Even more heterogeneity can

be allowed for by including interactions between the treatment variable and other covariates. In

general, we recommend computing marginal effects at interesting and well-understood covariate

values rather than average marginal treatment effects which mask the heterogeneity of the single

marginal effects and could be affected overly strongly by observations that are not of primary

interest. However, aggregating marginal treatment effects over all households in the sample is as

straightforward as showing the distribution of all these single marginal effects.

Table 3: Treatment effects for eligibles (n = 10492): Point estimates and 95% bootstrap confidence
interval bounds for marginal treatment effects at means (MTE)

Point Estimate Lower Bound Upper Bound
MTE on mean 28.898 19.970 37.781
MTE on variance 4561.613 406.903 8696.840
MTE on Gini 0.007 -0.010 0.021
MTE on Atkinson (e=1) 0.006 -0.008 0.017
MTE on Atkinson (e=2) 0.012 -0.009 0.028
MTE on Theil-Index 0.007 -0.015 0.026
MTE on Vulnerability -0.077 -0.107 -0.051

Qualitatively the same results emerge for the group of eligibles, as can be seen in Table 3. The

treatment effects on the mean are even bigger, still the Gini coefficient and other inequality mea-

sures do not decline significantly. In contrast, the point estimates rather indicate a slight increase.

A significant decrease is observed for the vulnerability as expected poverty.

Of particular interest are the results on the treatment effects on inequality for all households. In

Table 4,

17



Table 4: Treatment effects for all people in treatment villages (n = 14740): Point estimates and
95% bootstrap confidence interval bounds for marginal treatment effects at means (MTE)

Point Estimate Lower Bound Upper Bound
MTE on mean 25.907 19.571 32.251
MTE on variance 4870.407 1703.281 8852.551
MTE on Gini 0.007 -0.004 0.021
MTE on Atkinson (e=1) 0.006 -0.003 0.017
MTE on Atkinson (e=2) 0.012 -0.002 0.028
MTE on Theil-Index 0.007 -0.008 0.025
MTE on Vulnerability -0.056 -0.073 -0.039

we see no significant decline in food consumption inequality for a household with the average

characteristics, a quite sobering result for a poverty alleviation program, even though we find

evidence for a smaller vulnerability to poverty due to the treatment. As the graph of estimated

conditional distributions looks similar to Figure 3, we do not show it here. However, the reasons

for the findings are equivalent: The shift of the distribution to the right due to the treatment

lowers the risk of falling below the poverty line. Additionally, while unequal benefits from the

treatment increase the variability of the consumption, the right tail of the distribution becomes

fatter, preventing an arguably desired decline in inequality.

5 Conclusion

This paper introduces GAMLSS as a modeling framework for analyzing treatment effects beyond

the mean. These types of effects are relevant if the evaluator or the researcher is interested in

treatment effects on the whole conditional distribution or derived economic measures that take

parameters other than the mean into account. The main advantages of GAMLSS are that they

relate each parameter of a distribution and not just the mean to explanatory variables via an

additive predictor. Hence, moments such as variance, skewness and kurtosis can be modeled and

the treatment effects on them analyzed. GAMLSS provide a broad range of potential distributions

which allows researchers to apply more appropriate distributions than the (log-) normal. This

is especially the case for dependent variables with mass points (e.g. zero savings) or when the

dependent variable are shares of a total (e.g. land use decisions). Furthermore, each distribu-

tion parameter’s additive predictor can easily incorporate different types of effects such as linear,

nonlinear, random, or spatial effects.

To practically demonstrate these advantages, we re-estimated the (mean) regression that Angelucci

and De Giorgi (2009) applied to evaluate the well-known Progresa program. They found positive

treatment effects on poor and nonpoor that were larger for the poor (the target group) than for the

nonpoor. Their findings suggest that the treatment should consequently also decrease inequality

within the two groups and within all households. We tested these hypotheses by applying GAMLSS

and could not find any evidence for a decline of the conditional Gini coefficient or other inequality

measures due to the treatment. An explanation is that the treatment benefited some households

distinctly more than others, leading to a higher variance of consumption between households and

a higher amount of households having a considerably high consumption. We thus argue that

GAMLSS can help to detect interesting treatment effects beyond the mean.

Besides showing the practical relevance of GAMLSS for treatment effect analysis, this paper bridges

the methodological gap between GAMLSS in statistics and popular methods used for impact
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evaluation in economics. While our practical example considers only the case of an RCT, we also

develop frameworks for combining GAMLSS with the most popular evaluation approaches including

regression discontinuity designs, differences-in-differences, panel data methods, and instrumental

variables in the appendix. We show there further how to conduct (cluster robust) inference using

the bootstrap. The bootstrap methods proposed in this paper rely on re-estimation of a GAMLSS

model for each bootstrap sample. In cases of large data sets and complex models, such approaches

are computationally very expensive. The implementation of a computationally more attractive

alternative, maybe in the spirit of the score bootstrap method proposed by Kline and Santos

(2012), is desirable.
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Wood, S. N., Pya, N., and Säfken, B. (2016). Smoothing Parameter and Model Selection for

General Smooth Models. Journal of the American Statistical Association, 1459(8):1–45.

22

http://economics.mit.edu/files/12292


Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT Press,

Boston, Ma, 2nd edition.

Wooldridge, J. M. (2014). Quasi-Maximum Likelihood Estimation and Testing for Nonlinear Mod-

els with Endogenous Explanatory variables. Journal of Econometrics, 182(1):226–234.

Appendix

A Combining evaluation methods for non-experimental

data and GAMLSS

As demonstrated in Section 4.1, GAMLSS can be used for the analysis of randomized controlled

trials, as those are typically handled within the ordinary regression framework. The same applies to

difference-in-differences approaches which only include additional regressors, namely interactions.

In the following, we describe how other commonly used evaluation methods and models (see Angrist

and Pischke, 2008, for an overview) can be combined with GAMLSS.

A.1 GAMLSS and panel data models

In the evaluation literature, linear panel data models with fixed or random effects seem to be the

preferred choice when individuals are observed over time:

yit = β0 + x′itβ1 + αi + εit, i = 1, . . . , N, t = 1, . . . , Ti. (16)

Here, i denotes the individual and t the time period. The vector of explanatory variables xit may

include a treatment effect of interest, time dummies and control variables. In order to capture

unobserved time-invariant factors that affect yit, individual-specific effects αi are incorporated

in the model. Commonly, these are modeled as fixed effects if the random effects assumption

of independence between the time-invariant effects and the explanatory variables is presumed to

fail. The Hausman test is a occasionally used tool to underpin the decision for using fixed effects.

Another approach which loosens the independence assumptions was proposed by Mundlak (1978).

The idea is to extend the random effects model such that for each explanatory variable which is

suspected to be correlated with the random effects, a variable including individual-specific means

of that variable is added. If this procedure is done for all explanatory variables, we obtain the

model

yit = β0 + x′itβ1 + x̄′iδ1 + αi + εit, i = 1, . . . , N, t = 1, . . . , Ti, (17)

where αi, i = 1, . . . , N, are random effects, x̄i is a vector containing the means of the explanatory

variables over all Ti time periods for individual i, and δ1 is the vector of associated coefficients.

In this specification, the other vector of coefficients β1 only includes the effects of the explanatory

variables stemming from their variation around the individual-specific means. Hence, β1 in (17) is

equivalent to β1 in a fixed effects model according to (16).
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For nonlinear (additive) panel data models, the same question about the validity of the indepen-

dence assumption between the random effects and the explanatory variables arises. One can allow

for dependence via the Mundlak formulation in the same fashion as described above for linear mod-

els, i.e avoiding the explicit inclusion of fixed effects while loosening the independence assumption,

see Wooldridge (2002, Ch. 15) for more details. As random effects are an integrated part of the

GAMLSS framework, GAMLSS specifications can be easily used to model panel data. Assume

that yit follows a distribution that can be described by a parametric density p(yit|ϑit1, . . . , ϑitK)

where ϑit1, . . . , ϑitK , are K different parameters of the distribution. Then, according to model

(17), we can specify for each of these parameters an equation of the form

gk(ϑitk) = βϑk
0 + x′itβ

ϑk
1 + x̄′iδ

ϑk
1 + αϑk

i , i = 1, . . . , N, t = 1, . . . , Ti, (18)

with link function gk, see Sections 2.1 and 2.2 in the main text for details and extensions.

A.2 Instrumental variables

Instrumental variable (IV) regression aims at solving the problem of endogeneity bias for example

arising from omitted variables. In this view, an explanatory variable is endogenous, if an unobserved

confounder influences the response and is associated with this endogenous variable. That is, we

consider the regression specification

y = β0 + xeβe + xoβo + xuβu + ε with E(ε|xe, xo, xu) = 0, (19)

where xo is an observed explanatory variable, xe the endogenous variable, xu the unobserved

confounder, ε is an error term and βo, βe, and βu represent regression coefficients for the observed,

endogenous, and unobserved explanatory variable, respectively. However, xu cannot be observed

and thus cannot be included in the model. As xu is correlated with xe, this violates the assumption

that the error term’s expectation given all observed variables is zero. As a consequence, the OLS

estimator for βe is inconsistent. In order to demonstrate how a suitable instrument can be used

to solve this problem in a nonlinear context, we present the approaches developed for generalized

linear models (GLM, Terza et al., 2008), and generalized additive models (GAM, Marra and Radice,

2011) and extend them to the GAMLSS context.

A.2.1 Instrumental variables in generalized linear models (GLM)

Terza et al. (2008) proposed a two-stage residual inclusion procedure (2SRI) that addresses endo-

geneity in nonlinear models. In fact, the procedure was already suggested by Heckman (1978) as a

means to test for endogeneity. The reason why ordinary two-stage least squares does not work in

the nonlinear context is that the expectation of the response variable is associated via a nonlinear

function - the link function in GLMs - with the predictor. Due to this function, the unobserved

part is not additively separable from the predictor (Marra and Radice, 2011; Amemiya, 1974).

In a GLM framework, we consider the model

E(y|Xe,Xo,Xu) = h(Xeβe + Xoβo + Xuβu), (20)
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where y is the outcome variable dependent on Xo, a n × So matrix of observed variables, on

Xe, a n × Se matrix of endogenous variables, and on Xu which is a n × Su vector of unobserved

confounders that are correlated with Xe. Consequently, βo is a So × 1 vector, βe a Se × 1 and βu

a Su × 1 vector of regression coefficients. The function h(·) denotes the response function, or the

inverse of the link function.

The model in (20) can be written as

y = h(Xeβe + Xoβo + Xuβu) + ε (21)

where the error term ε is defined as ε = y − h(Xeβe + Xoβo + Xuβu) such that

E(ε|Xe,Xo,Xu) = 0. (22)

The correlation between Xe and Xu is the core of the endogeneity issue at hand. If we were able

to observe Xu, consistent estimators for the coefficients in equation (21) could, for example, be

obtained via maximum likelihood estimation (under the usual generalized linear model regularity

conditions). Without addressing the endogeneity problem, the Xu would be captured by the error

term leading to a correlation between the explanatory variables and the error.

As in the linear case, to tackle this endogeneity problem, we have to find some observed instru-

mental variables W that account for the unobserved confounders Xu. The endogenous variables

can be related to these instruments and the observed explanatory variables by a set of auxiliary

equations

xes = hs(Xoαos + Wsαws) + ξus, s = 1, . . . , Se (23)

where xes is the s-th column vector of Xe, hs(·) is the response function, Ws is a n × SIVs

matrix of IVs available for xes and αos and αws are So × 1 and SIVs × 1 vectors, respectively, of

unknown coefficients. The number of elements in W must be equal or greater than the numbers

of endogenous regressors and there is at least one instrument in W for each endogenous regressor.

The error term ξus in this model contains information about the unobserved confounders.

The instrumental variables Ws in equation (23) have to fulfill the following conditions:

(a) being associated with xes conditional on Xo

(b) being independent of the response variable y conditional on the other covariates and the

unobserved confounders in the true model, i.e. Xo,Xe,Xu

(c) being independent of the unobserved confounders Xu.

Terza et al. (2008) propose the following procedure to estimate the models in equations (21) and

(23):

(a) First stage: Get the estimates α̂os and α̂ws for s = 1, . . . , Se from the auxiliary equation

(23) via a consistent estimation strategy. One could use maximum likelihood estimation for

GLMs here, but nonlinear least squares is also possible. Define

ξ̂us = xes − h(Xoα̂os + Wsα̂ws) for s = 1, . . . , Se. (24)

(b) Second stage: Estimate β̂e, β̂o, β̂Ξ̂u
via a GLM or a nonlinear least squares method from

E(y|Xe,Xo, Ξ̂u) = h(Xeβe + Xoβo + Ξ̂uβΞ̂u
), (25)
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where Ξ̂u is a matrix containing ξ̂us from the first stage as column vectors.

The intuition behind this procedure is that Ξ̂u contains information on the unobserved confounders

if the instruments fulfill the above mentioned requirements. Though Ξ̂u is not an estimate for the

effect of the unobserved confounder on the response variable, its contained information can be used

to get corrected estimates for the endogenous variable. Since we are eventually interested in βe

and not βu, we only need the Ξ̂u as a quantity containing information about Xu to account for

the presence of these unobserved confounders (Marra and Radice, 2011).

A.2.2 Instrumental variables in generalized additive models (GAM)

Marra and Radice (2011) extend the 2SRI approach to also cover generalized additive models, that

allow for nonlinear effects of the explanatory variables on the response variable. A generalized

additive model has the following form

y = h(η) + ε E(ε|Xe,Xo,Xu) = 0, (26)

where Xe = (X∗e,X
+
e ), Xo = (X∗o,X

+
o ), and Xu = (X∗u,X

+
u ) with matrices containing discrete

variables denoted by ∗ and continuous ones by +. We summarize the discrete parts of the explana-

tory variables Xe, Xo, and Xu into X∗ and the continuous parts into X+, i.e. X∗ = (X∗e,X
∗
o,X

∗
u)

for discrete variables and X+ = (X+
e ,X

+
o ,X

+
u ) for continuous variables. The linear predictor η is

represented by

η = X∗β∗ +

L∑
l=1

fl(x
+
l ), (27)

where β∗ is a vector of unknown regression coefficients and fl are unknown smooth functions of

L continuous variables x+
l . These continuous variables can be modeled, for example, by using

penalized splines (Eilers and Marx, 1996). Since we cannot observe X∗u and X+
u , we get inconsis-

tent estimates for all regression coefficients. Provided that suitable instrumental variables can be

identified, we can model the endogenous variables with the following set of auxiliary regressions

xes = hs(Z
∗
sα
∗
s +

Js∑
j=1

fj(z
+
js)) + ξus, (28)

where Z∗s = (X∗o,W
∗
s) with corresponding coefficients α∗s and Z+

s = (X+
o ,W

+
s ), where Z+

s is

composed of z+
js, j = 1, . . . , Js. Instrumental variables meeting the same requirements mentioned

above are again denoted by Ws. The smooth functions fj for the Js continuous variables z+
js

include continuous observed variables and continuous instruments. Despite the notation, fl in (27)

and fj (28) generally are different functions.

Marra and Radice (2011) propose the following procedure for the 2SRI estimator within the gen-

eralized additive models context:

(a) First stage: Get estimates of α∗s and fj for s = 1, . . . , Se from the auxiliary equation (28)

using a GAM method. Define

ξ̂us = xes − hs(Z∗sα̂∗s +

Js∑
j=1

f̂j(z
+
js)) for s = 1, . . . , Se. (29)
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(b) Second stage: Estimate

E(y|Xe,Xo, Ξ̂u) = hs(X
∗
eβ
∗
e + X∗oβ

∗
o +

J∑
j=1

fj(x
+
jeo) +

Se∑
s=1

fs(ξ̂us)), (30)

where x+
jeo, j = 1, . . . , J, are column vectors of X+

eo = (X+
e ,X

+
o ).

In this procedure, fs(ξ̂us) accounts for the influence of unmeasured confounders Xu, and we get

thus consistent estimates for the observed and the endogenous variables. The set of models in (29)

and (30) can be fitted by using one of the GAM packages in R, for example. In simulation studies,

Marra and Radice (2011) show good performance of the estimates if the instruments are strong.

A.2.3 Instrumental variables and GAMLSS

The IV estimation procedure for generalized linear models and generalized additive models can

now be transferred to the GAMLSS context. In these models, the response y follows a parametric

distribution with K distributional parameters ϑ = (ϑ1, . . . , ϑK)′ and density

p(y|Xo,Xe,Xu) = p(y|ϑ(Xo,Xe,Xu)) (31)

For each of the parameters, a regression specification

ϑk = hk(ηϑk) (32)

is assumed, where ηϑk is the regression predictor. For each of the predictors ηϑk considered over

all n observations, we assume a semiparametric, additive structure

ηϑk(Xo,Xe,Xu) = X∗β∗,ϑk +

L∑
l=1

fϑk

l (x+
l ) (33)

Using the same notation as above, the only difference between the equations (27) and (33) is that

the predictors are now specific for each of the K parameters of the response distribution. Note

that the predictors do not have to include the same variables, though the indexes are dropped here

for notational simplicity.

If Xe and Xu are correlated, then Xe is endogenous and estimating (33) without considering Xu

leads to inconsistent estimates due to omitted variable bias.

We propose a similar procedure for GAMLSS as the one Marra and Radice (2011) developed for

GAMs:

(a) First stage: Same as for the GAM procedure.

(b) Second stage: Instead of a GAM, estimate a GAMLSS with density p(y|Xe,Xo, Ξ̂u) and

predictors

ηϑk = X∗eβ
∗,ϑk
e + X∗oβ

∗,ϑk
o +

J∑
j=1

fϑk
j (x+

jeo) +

Se∑
s=1

fϑk
s (ξ̂us). (34)

Wooldridge (2014) has shown that the 2SRI estimator can be used to model p(y|Xe,Xo, Ξ̂u) in the

second step once models for E(xes|Xo,Ws), s = 1, . . . , Se, are estimated and the ξ̂us are calculated.
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To apply Wooldridge’s insights to our case, assume we can derive control functions

Cs(Xo,xes,Ws), s = 1, . . . , Se, such that

p(Xu|Xo,xes,Ws) = p(Xu|Cs(Xo,xes,Ws)). (35)

Here, Cs(·) acts as a sufficient statistic to take account of the endogeneity. For example, if

xes|Xo,Ws ∼ N(ηϑk(Xo,Ws),σ
2
es), (36)

then

ξu = xes − Z∗sα
∗
s +

Js∑
j=1

fj(z
+
js) (37)

is an appropriate control function in the sense that assumption (35) holds. In this case, including

the first-stage residuals ξ̂u in the second stage, as described in the IV procedures above, is justi-

fied.The control function approach is also adopted e.g. in Blundell and Powell (2004) for binary

responses and continuous regressors. Instead of using splines in the first stage, they rely on simpler

kernel estimators but advocated the use of more sophisticated methods.

Assumption (35) does not hold in general if the model for the endogenous variable is nonlinear (first

stage). However, as Terza et al. (2008) and Marra and Radice (2011) have shown, 2SRI still works

approximately. Wooldridge (2014) recommended including ξ̂u nonlinearily and/or interactions

with Xe,Xo in (34) to improve the approximation. Furthermore, a simulation study on different

2SRI settings suggested standardizing the variance of the first stage residuals (Geraci et al., 2016).

The procedure’s implementation is similar to the previous one. In the first stage, we estimate

a GAM model with one of the available software packages and the second stage is estimated

using gamlss. That is, while in the first stage the expected mean of the endogenous variables

conditional on the other explanatory variables and the instruments are modeled, the distributional

part comes only into play in the second stage. The reason is that our interest is on the distribution

of the response variable and the first stage serves only as an auxiliary model to account for the

endogeneity. In similar contexts, when combining two stage IV estimation and expectile regression,

Sobotka et al. (2013) show in simulations that it is sufficient to focus on the conditional means

in the first stage. They also outline a bootstrap procedure that we modify to our case and is

presented in Section B.3.

A.3 Regression discontinuity design

In the regression discontinuity design (RDD), e.g. see Imbens and Lemieux (2008) and Lee and

Lemieux (2010) for introductions, a forcing variable Xi fully (sharp RDD) or partly (fuzzy RDD)

determines treatment assignment. We first consider the sharp RDD case and adopt a common

notation for the RDD, as used by Imbens and Lemieux (2008), for example. Let the treatment

variable be Ti which equals 1 if Xi is bigger than some cutoff value c and 0 if Xi < c. Then, one

is typically interested in the average treatment effect on the mean at the cutoff value

τSRD = lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x], (38)
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where Yi is the dependent variable of interest. The two quantities in (38) may be generally

estimated by fitting separate regression models for all or a range of data on both sides of the cutoff

value and calculating their predictions at the cutoff value. More precisely, the conditional mean

functions E[Yi|Xi, Xi > c] and E[Yi|Xi, Xi < c] are linked to a linear model via a continuous

link function (e.g. identity or logit link). Note that the full range of generalized linear models is

included in this formulation, so Yi may be for instance binary. Hereby, the crucial assumption is the

continuity in the counterfactual conditional mean functions E[Yi(0)|Xi = x] and E[Yi(1)|Xi = x],

where Yi = Yi(0) if Ti = 0 and Yi = Yi(1) if Ti = 1. Provided that the assumption holds,

the limiting values in (38) can be replaced by the conditional mean functions evaluated at the

cutoff and differences in the conditional means can solely be attributed to the treatment. Equally

reasonable, one can assume continuity in the density functions p[Yi(0)|Xi = x] and p[Yi(1)|Xi = x].

In this case, estimators from a wide range of models on many other quantities of the distribution of

Yi (aside from the mean) can be identified in the sharp RDD framework. One example is given in

Bor et al. (2014) who model the hazard rate in a survival regression. Frandsen et al. (2012) derive

quantile treatment effects within the RDD. Likewise, the toolbox of GAMLSS can be applied in

the sharp RDD. More specifically, assume Yi follows a distribution that can be described by a

parametric density p(Yi|ϑi1, . . . , ϑiK) where ϑi1, . . . , ϑiK , where K are different parameters of the

distribution. Then, in a simple linear model including only the forcing variable, we can specify for

each of these parameters an equation of the form

gk(ϑik) = βϑk
0 +Xiβ

ϑk
2 , i = 1, . . . , N, (39)

on both sides of the cutoff, where gk is the link function.

The inclusion of further pre-treatment (baseline) covariates into the regression models of choice

on both side of the cutoffs has been deemed uncritical, as they are not supposed to change the

identification strategy of the treatment effect of interest, see for instance Imbens and Lemieux

(2008) and Lee and Lemieux (2010). Rigorous proofs in Calonico et al. (2016) confirm that, under

quite weak assumptions, it is indeed justified to adjust for covariates for the frequently used local

polynomial estimators in the sharp and fuzzy RDD.
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As the interest lies in estimating the treatment effect at the cutoff value, one critical question

in the RDD is on which data and in which specification the regressions on both sides of the

cutoff should be conducted. Global functions using all data typically need more flexibility and

include data far from the cutoff, whereas local estimators rely on a smaller sample size and require

the choice of an adequate sample. The seemingly most popular approaches in the literature,

namely those by Calonico et al. (2014) and Imbens and Kalyanamaran (2012), use local polynomial

regression (including the special case of local linear regression) and thus, a restricted sample. The

inherent bandwidth choice is done with respect to a minimized MSE of the estimator for the

average treatment effect on the mean. Based on this minimization criterion, a cross-validation

approach as originally described in Ludwig and Miller (2007) and slightly amended in Imbens

and Kalyanamaran (2012), is a valuable alternative. In principle, such a cross-validation based

bandwidth selection may be transferable to a local polynomial GAMLSS. However, if relying on

local estimates, we do not propose using one single bandwidth but rather check the variability of

the estimates for different bandwidths, as for instance done in Imbens and Kalyanamaran (2012,

Figure 2). Additional caution is advised with regard to the diminished sample size resulting from

local approaches, as the potentially quite complex GAMLSS require a moderate sample size. In

general, we consider global approaches accounting for possibly nonlinear relationships (e.g. via

penalized splines) at least as useful complements to local estimators. In any case, we strongly

advocate the visual inspection of a scatterplot displaying the forcing and the dependent variable

as well as a careful diagnosis for the estimated models, e.g. based on quantile residuals in the case

of GAMLSS.

The extension to a fuzzy RDD, where the treatment variable Ti is only partially determined by

the forcing variable Xi, requires some new thinking, namely the idea of compliers. Let us again

assume that an individual is supposed to get the treatment if its value of the forcing variable Xi is

above a certain cutoff c. Then, a complier is an individual that complies with the initial treatment

assignment, i.e. that would not get the treatment if the cutoff was below Xi, but that would get

the treatment if the cutoff was higher than Xi. Commonly, the interest now lies in the average

treatment effect (on the mean) at the cutoff value for compliers

τFRD =
limx↓c E[Y |Xi = x]− limx↑c E[Y |Xi = x]

lim
x↓c

Pr(Ti = 1|Xi = x)− lim
x↑c

Pr(Ti = 1|Xi = x)
, (40)

where the denominator now includes the probabilities of treatment at both sides near the cutoff.

The treatment effect in (40) is identified under the continuity assumption described above for the

sharp RDD and two additional assumptions:

(a) The probability of treatment changes discontinuously at the cutoff value.

(b) Individuals with Xi who would have taken the treatment if Xi < c would also take the

treatment if Xi > c and vice versa.

The first assumption ensures that the denominator in (40) does not equal zero (in the sharp RDD,

the denominator is by design equal to one). The second assumption, often called the monotonicity

assumption, implies that the initial treatment assignment does not have an unintended effect, i.e.

that individuals do not become ineligible for the treatment or discouragend from taking up the

treatment exactly by the initial treatment assignment. We refer to Imbens and Lemieux (2008)

for a detailed discussion on the average causal effect at the cutoff value for compliers.
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As in the sharp RDD, assuming the continuity assumption for the density functions p[Yi(0)|Xi = x]

and p[Yi(1)|Xi = x] to hold, the numerator in (40) may also contain differences in other quantities

aside from the conditional means. The probabilities in the denominator in (40) can be estimated

separately, e.g. via a logistic regression of the treatment variable on the forcing variable, see also

Wooldridge (2002, ch. 21). All remaining considerations from the sharp RDD carry over to the

fuzzy case, indicating that GAMLSS can be applied both in the sharp and the fuzzy RDD.

B Bootstrap inference

In the following, we first describe very generic bootstrapping strategies to obtain inferential state-

ments in the GAMLSS context (Section B.1). Peculiarities of the models discussed in this paper are

described in the Sections B.2–B.4. Practical recommendations for diagnosing bootstrap estimates

are given in B.5.

B.1 General strategy

To fix ideas, assume without loss of generality that the quantity of interest is the marginal treatment

effect at the means, i.e. for an averag e individual, on the Gini coefficient, denoted by θ. We consider

the parametric bootstrap as the natural choice for a parametric model such as a GAMLSS, although

a nonparametric bootstrap is possible as well. The parametric bootstrap works as follows:

(a) A GAMLSS is fitted to the data set at hand including n observations. Therefore, n estimated

distributions for the dependent variable are obtained.

(b) A bootstrap sample is generated by drawing randomly one number from each of these esti-

mated distributions.

(c) The GAMLSS from the first step is re-estimated for the current bootstrap sample. For treated

and nontreated individuals, the conditional distributions at mean values for other covariates

are predicted. For these distributions, the respective Gini coefficients are computed and their

difference is calculated. This difference between the coefficients is the estimated marginal

treatment effect at means on the Gini coefficient and is denoted by θ̂b for the current bootstrap

sample.

(d) The two preceding steps are repeated for many times, say B times.

From the resulting B bootstrap estimates θ̂1, . . . , θ̂B , bootstrap inference can be conducted in

different ways. One option is to perform a t-test based on the bootstrap variance

V̂boot[θ̂] =
1

B − 1

B∑
b=1

(θ̂b − ¯̂
θ)2 (41)

with
¯̂
θ = 1

B

∑B
b=1 θ̂b. To test for significance of the marginal treatment effect on the Gini, the t

statistic

t =
θ̂√

V̂boot[θ̂]
(42)

can be used, where θ̂ may be the estimate for the marginal treatment effect from the original

sample or the mean of all bootstrap estimates.
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Alternatively, a bootstrap percentile confidence interval can be computed. For instance, the bounds

of a possibly asymmetric 95% percentile bootstrap confidence interval are given by the lower 2.5

and the upper 97.5 percentile of the B bootstrap estimates, θ̂1, . . . , θ̂B . Whereas the idea and

implementation of such a confidence interval are straightforward, generally more bootstrap samples

and thus, more computational power are required than in the case of using bootstrapped standard

errors as outlined above. More elaborate bootstrap confidence intervals exist, for instance Efron

(1987) proposed a bias-corrected and accelerated method that we do not discuss here. We refer

to Efron and Tibshirani (1994) and Chernick et al. (2011) for more details on parametric and

nonparametric bootstrap methods as well as on different techniques to derive bootstrap confidence

intervals and p-values.

B.2 Bootstrap inference for grouped and panel data

For random effects panel data models where individuals are observed over time and more generally

for all random effects models where individuals are grouped into clusters, one has to sample the

random effects from their assumed distribution in each bootstrap step first. The distributions for

the dependent variable for each individual can then be estimated and the bootstrap dependent

variables are drawn from the resulting distributions, corresponding to the first two steps described

in Section B.1.

A different approach to account for grouping structures are cluster-robust standard errors.

Cameron and Miller (2015) give a comprehensive overview on cluster-robust inference, also

within the bootstrap machinery. As a method also applicable to nonlinear models, they propose a

nonparametric pairs cluster bootstrap to obtain cluster-robust inference. Assume again that the

aim is a significance statement on the marginal treatment effect at means on the Gini coefficient

and that the sample consists of G clusters or groups. Then, repeat the following procedure B

times:

(a) Resample G clusters (y1,X1), . . . , (yG,XG) with replacement from the G clusters in the

original sample, where (yg,Xg), g = 1, . . . , G, denote the vector of the dependent variable

and the matrix of the explanatory variables, respectively, for cluster g.

(b) Run the GAMLSS for the bootstrap sample obtained in step (a) and predict the respective

conditional distributions at mean values for other covariates for treated and nontreated in-

dividuals. For these distributions, the respective Gini coefficients are computed and their

difference is calculated. This difference between the coefficients is the estimated marginal

treatment effect at the means on the Gini coefficient and is denoted by θ̂b for the current

bootstrap sample.

In complete analogy to our elaborations for nonclustered data, a bootstrap t-test can be conducted

with the denominator in (42) now based on the cluster-robust variance estimator

V̂clu;boot[θ̂] =
c

B − 1

B∑
b=1

(θ̂b − ¯̂
θ)2, (43)

where
¯̂
θ = 1

B

∑B
b=1 θ̂b and c = G

G−1
N−1
N−K is a finite sample modification with the number of

estimated model quantities denoted by K.

Alternatively, bootstrap percentile confidence intervals and tests can be constructed from the

bootstrap estimates, see the explanations in Section B.1.
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B.3 Bootstrap inference for instrumental variables

Due to the stepwise approach in IV methods, the estimation uncertainty arising from the first

stage has to be accounted for in the second stage. In order to draw inference for IV models, we

propose the following procedure:

(a) Conduct a parametric bootstrap with Nb replications as described in B.1 for the first stage

model in equation 28.

(b) With α̂
[k]
s , k = 1, . . . , Nb, denoting all of the first stage estimates including the estimates for

the smooth functions f , calculate

x̂[k]
es = h(Zsα̂

[k]
s ) (44)

and

ξ̂[k]
us = xes − x̂[k]

es . (45)

(c) For the distributional model in the second stage, replace ξ̂us with ξ̂
[k]
us and proceed as in the

general parametric bootstrap procedure described in B.1.

As an alternative to the parametric bootstrap in step 1, a non-parametric bootstrap approach can

be applied by drawing bootstrap samples from xes and Zs to get estimates α̂
[k]
s of the first stage

model.

Let the number of replicates in the second stage be Nd, yielding a total of Nb ∗ Nd replicates

for the estimates of interest in the second stage. This procedure can be computationally costly

if Nb or Nd are chosen to be large. See Marra and Radice (2011) for a computationally more

efficient procedure that assumes approximately normally distributed estimators in the first and

second stage, respectively.

B.4 Bootstrap inference for RDD

Regressions in the sharp RDD require the estimation of two GAMLSS in each bootstrap sample,

namely one on each side of the cutoff value. In the fuzzy RDD, each bootstrap step should also

include the re-estimation of the models for the probabilities of the treatment assignment which

are chosen to estimate the quantities in the denominator in (40). By doing so, the uncertainty of

those estimates is included in the resulting standard errors or confidence intervals for the treatment

effect of interest.

B.5 Recommendations for diagnosing bootstrap estimates

Irrespective of the impact evaluation and bootstrap method chosen, but especially in the case

of the pairs bootstrap, a thorough inspection of the estimated bootstrap statistics is advisable.

If the resulting distribution contains large outliers, one should carefully contemplate disusing or

at least amending the currently applied bootstrap procedure. Cameron and Miller (2015) give a

more detailed guideline on diagnosing bootstrap estimates. In our example, the distribution of the

bootstrap estimates for the marginal treatment effect at the means on the Gini does not reveal

large outliers or severe skewness, as can be seen in the boxplot and the histogram in Figure 4.
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The question arises of how many bootstrap samples should be generated. Common choices such

as B = 999 may be applied. Alternatively, inspecting graphically the convergence of the estimated

quantities for a growing number of bootstrap samples indicates whether the chosen amount is

sufficient. Exemplarily, Figure 5 shows the percentile interval bounds for the marginal treatment

effects on the Gini in the sample of ineligibles for increasing bootstrap replicates. The chosen

bootstrap sample size of B = 499 seems to be appropriate as a higher amount of replicates would

probably not change the results substantially.

Figure 4: Distribution of bootstrap estimates of MTE on Gini
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Figure 5: Percentile Interval bounds for MTE on Gini for increasing bootstrap replicates
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