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ABSTRACT

In this paper, we provide a novel way to estimate the out-of-sample predictive ability of a trading rule. Usually, this
ability is estimated using a sample-splitting scheme, true out-of-sample data being rarely available. We argue that this
method makes poor use of the available data and creates data-mining possibilities. Instead, we introduce an alternative
.632 bootstrap approach. This method enables building in-sample and out-of-sample bootstrap datasets that do not
overlap but exhibit the same time dependencies. We show in a simulation study that this technique drastically reduces
the mean squared error of the estimated predictive ability. We illustrate our methodology on IBM, MSFT and DJIA
stock prices, where we compare 11 trading rules specifications. For the considered datasets, two different filter rule
specifications have the highest out-of-sample mean excess returns. However, all tested rules cannot beat a simple
buy-and-hold strategy when trading at a daily frequency. Copyright © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Whether technical trading rules can consistently generate profits is a question that has been investigated by
researchers, for a variety of reasons. In particular, it can be used to study whether a market is efficient or not. Indeed,
profitable technical trading rules would be in opposition to the market efficiency hypothesis, which states that all avail-
able information must be contained in the price of a security (Bajgrowicz and Scaillet, 2012). Besides, the profitability
of trading rules may also be used to detect a time-varying risk premium (Kho, 1996). Moreover, as a high propor-
tion of practitioners rely on technical trading rules to trade, it may be interesting to know whether these investment
strategies have any economic value (see Park and Irwin, 2007, for a review).

However, answering this question poses several econometric challenges. Until now, the literature has focused
mainly on multiple testing (also called data-mining) issues; see Lo and MacKinlay (1990), White (2000), Sullivan
et al. (1999), Hansen (2005), Romano and Wolf (2005) and Hsu et al. (2010) for more discussion of this question),
whereas it neglected the issue of computing an adequate estimator of the out-of-sample predictive ability of a trading
rule. By out-of-sample predictive ability, we mean the ability of a rule, with its parameters determined ex ante on
in-sample data, to generate buy-and-sell signals that correctly predict the future ups and downs of an asset price.
Recently, Fang et al. (2014) stressed the need for fresh out-of-sample data, as it is considered to offer the strongest
safeguard against possible statistical bias. Kuang et al. (2014) and Sullivan et al. (1999) point out that an out-of-
sample analysis is often an effective way of detecting a data-snooping bias. In practice, however, fresh data are not
always available and a true out-of-sample analysis is rarely possible. Therefore, researchers use various sample-
splitting approaches. Kuang et al. (2014) and Bajgrowicz and Scaillet (2012) study the out-of-sample profits obtained
with strategies based on ex ante selected trading rule parametrizations. Kuang et al. (2014) select all rules apparently
profitable on a subsample and then compute the out-of-sample performance on a second subsample. In Bajgrowicz
and Scaillet (2012) the authors build monthly portfolios of rules using data of a single month and compute the out-
of-sample performance over the following month. Bajgrowicz and Scaillet (2012) call this task persistence analysis.
Both studies conclude that despite a superior in-sample performance of some rules (without taking the transaction
costs into account) these results cannot be reproduced on out-of-sample data. According to Park and Irwin (2007), this
is also the methodology followed by Lukac et al. (1988). Allen and Karjalainen (1999) compute the out-of-sample
performance of trading rules obtained via genetic algorithms in a similar way (4 years of data to build the rules, 2
years to select the best ones and the remaining data to assess the performance).

There exist several drawbacks to this splitting technique. First, the results are very dependent on the cut-off point
and are very volatile, because the estimation is based on a single realization of a stochastic process. Also, it is a
suboptimal use of the available data: by setting aside some data for the purpose of validation, we do not use all the
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information at hand to select ex ante the best parametrizations of the rules (as an investor would likely do in the real
life), and therefore we usually decrease the quality of this selection. Note also that some authors (Bajgrowicz and
Scaillet, 2012; Kuang et al., 2014) do not assume parameter uncertainty and consider all parameters as a priori fixed:
they assume that each parametrization is a rule in itself, and their selection of the best rules (or of the profitable ones)
is made across all rule specifications. Oddly, to the best of our knowledge and despite the apparent weaknesses of
this technique, no study in the field of technical trading rules tries to focus on these issues and to solve them. This
is surprising, as one could expect evolved investors to search for trading rules that correctly forecast the future, not
the past.

In this work, we introduce a methodology that avoids these weaknesses. We propose a way to improve the basic
sample splitting technique by adapting advanced cross-validation and bootstrap techniques to the time series context.
Our goal here is to obtain a better measure of the out-of-sample predictive ability of a trading rule. This idea is
briefly suggested in White (2000), when the author tells us that ‘cross-validation represents a more sophisticated
use of hold-out data. It is plausible that our methods may support testing that the best cross-validated model is no
better than a benchmark’. Cross-validation techniques are quite common in the field of neural networks modeling and
classification problems but did not attract a lot of attention from researchers in the area of technical trading. Moreover,
few adaptations to the time series context currently exist.

Among the best-known techniques in the regression context, one method is to split the sample not into two parts
but into k parts (Efron and Tibshirani, 1993). Hence we estimate the parameters on k � 1 parts and compute the
out-of-sample prediction error (or the value of the score function) on the last part. This operation is performed for
the k different parts, before averaging to obtain our final estimator of the prediction error. This technique is called
k-fold cross-validation. The roll-over month-by-month approach followed by Bajgrowicz and Scaillet (2012) and
Taylor (2014) can be linked to this idea. Now, if k is equal to the size of the sample, we perform a leave-one-out
cross-validation. A second method relies on the bootstrap (Efron and Tibshirani, 1993). With a resampling procedure,
we build a statistical world replicating the properties of the true world, where we are able to estimate B sets of
parameters. Then, the initial sample is used as a validation (out-of-sample) set. It is as if we had at hand multiple
realizations of the same stochastic process for estimation purposes and the opportunity to validate these results on
the whole population. The disadvantage of this method is the large overlap between training sets and validation sets,
which causes a bias. To solve this issue, the bootstrap .632 and +.632 techniques (Efron, 1983; Efron and Tibshirani,
1993, 1997) can be used to compute estimators based on validation sets that do not overlap with the training sets.
Overall, these techniques must be seen as generalizations of the sample splitting technique.

In the next section we present an adaptation to the time series context of the .632 bootstrap technique. Our proce-
dure is based on the idea that, to correctly assess the predictive ability of a trading rule, we need a large number of
the possible outcomes of the underlying stochastic process. Using the .632 resampling technique, we are able to build
a large number of both training sets (in-sample data) and validation sets (out-of-sample data). Also, we can simul-
taneously control for non-overlapping datasets and keep intact the intrinsic time dependencies of the original data.
In the bootstrap world, we fit the rules on the training sets and then use the bootstrap validation sets to compute an
estimator of the out-of-sample predictive ability of the rules. The bootstrap training samples are generated as in a reg-
ular bootstrap procedure for time series data: by block, or using a nonparametric resampling of the residuals, which
are used to build recursively new data with the estimated model. The bootstrap validation samples, for their part, are
drawn using the residuals (or blocks of data) not used in the training samples. Indeed, an elementary calculation tells
us that, if we draw a sample of size n with replacement from an initial set of n observations, a single observation
has roughly a probability ..n � 1/=n/n of not being selected in the resample. This means that, on average, around
one third of the data would stay unused in each resample. We use these unselected observations to create bootstrap
validation samples that do not overlap with the training samples. These validation samples can be used to assess the
out-of-sample performance, avoiding an overfitting bias. When a good stationary time series model can be found,
the residual-based bootstrap is preferred to the block bootstrap of Politis and Romano (1994). Indeed, the residuals-
based bootstrap has been shown to produce very good results when the hypotheses of the underlying model are met.
Also, it is interesting to note that our approach could easily be extended to all data frequencies (especially very high
frequencies). However, our approach differs slightly from the traditional one. Here, we estimate the out-of-sample
predictive ability of a trading rule with its best parametrization determined ex ante on in-sample data. In Brock et al.
(1992), Allen and Karjalainen (1999), Bajgrowicz and Scaillet (2012) and Kuang et al. (2014), the authors are inter-
ested in computing the out-of-sample performance of the combination parameters—trading rules that perform best
in-sample. In other words, our perspective takes into account the parameter uncertainty around a trading rule, whereas
the traditional approach assumes no parameter uncertainty. As an example, imagine that we consider two rules (let
us say cross-over moving average and support and resistance rules), each with 10 possible parametrizations. We have
20 combination parameters–trading rules. Whereas Brock et al. (1992), Sullivan et al. (1999) and Bajgrowicz and
Scaillet (2012) try to find the combination(s) that generates the highest mean excess return (or those that generate
a profit), we aim at finding, among the two rules, the one that can generate the highest out-of-sample mean excess
return (see below the section ‘Resampling procedure’ for more comments regarding this perspective).
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To sum up, our procedure allows us:

� to select the optimal parameters of the rules on in-sample data (i.e. a training set), regarding a given scoring rule
(e.g. the mean excess return of the positions in the asset, over time);
� to compute, for this rule with its optimal parameters, the value of the scoring rule on new out-of-sample data

(i.e. a validation set built during the resampling procedure);
� and to average over all the bootstrap samples to get our final estimator of the predictive ability of the considered

rules.

With this estimator, we can compare trading rules between each other and identify the one that has the highest
predictive ability. We can also identify those that have a predictive ability above a pre-specified threshold.

More generally, we provide an alternative to the sample-splitting technique (with or without rolling window),
traditionally used by researchers to estimate the out-of-sample performance of trading rules (see, for example, Allen
and Karjalainen, 1999; Lukac et al., 1988; Bajgrowicz and Scaillet, 2012; Kuang et al., 2014). Our method has the
advantage of not being dependent on some subjective cut-off points. Because we use a resampling procedure, we offer
a convenient way to generalize the splitting of the dataset into multiple subsamples. Moreover, by working with a
random resampling procedure instead of a subjective sample-splitting procedure, we can incorporate, in our measure
of the out-of-sample performance, new scenarios (i.e. new patterns of prices). These scenarios are useful to assess a
trading rule on artificial but totally new data. In particular, using a residuals-based resampling, we are able to create
new patterns of (stochastic) shocks and simultaneously to keep the time dependencies intact. In this configuration,
we can combine a large number of different pasts (our bootstrap training sets) with a large set of different futures (the
bootstrap validation sets), although these sequences of events do not exist in our original time series. Eventually, we
also provide a way to create bootstrap in- and out-of-sample time series of interest rate data via the dynamic Nelson–
Siegel model of Diebold and Li (2006). This procedure can be helpful when we use the mean excess return criterion
as a measure of the rules’ performance.

Below (‘Empirical illustration’), we illustrate our methodology on three time series: the daily stock prices of IBM,
Microsoft (MSFT) and the Dow Jones Industrial Average (DJIA), for the period 20 September 2002 to 16 May 2014.
We compare 11 trading rule specifications, used by Sullivan et al. (1999) and Bajgrowicz and Scaillet (2012). These
rules rely on daily past prices. We do not consider rules based on high-frequency prices or volumes. We compare the
results of the bootstrap estimations to those obtained with a classical in-sample prediction error and a buy-and-hold
(BH) strategy. To resample the data, we use simple autoregressive moving average–generalized autoregressive con-
ditional heteroskedasticity (ARMA-GARCH) models, as our data appear to exhibit heteroskedasticity and stationary
mean processes. We show that, despite a good in-sample performance (measured with a mean excess return criterion
and a Sharpe ratio criterion), these rules do not have an out-of-sample performance that beats the BH strategy. Our
results are in line with studies (Bajgrowicz and Scaillet, 2012; Sullivan et al., 1999; Brock et al., 1992; Kuang et al.,
2014; Fang et al., 2014) that detect an in-sample superior performance of some trading rules but cannot reproduce this
result on out-of-sample data. In particular, our results for the DJIA data are similar to those of previous studies focus-
ing on this stock index. These results appear to be robust to the resampling method (either block or residuals-based)
and to the different measures of the performance (either a mean excess return criterion or a Sharpe ratio criterion).

Finally, to investigate the validity of our results, we perform a simulation study see the section (‘Simulation’). We
show that under the correct specification of the parametric model used in the resampling procedure our bootstrap
estimator of the predictive ability has a mean squared error (MSE) that is up to 93.9% lower than that obtained with
a sample-splitting procedure. Besides, the bootstrap distribution of the out-of-sample prediction error is very close to
its true distribution (obtained by Monte Carlo simulation), suggesting that our approach is effective.

We conclude and discuss these results extensively in the last section (‘Conclusion’).

METHODOLOGY

Resampling procedure
In this subsection, we detail the resampling procedure used to compute our estimator of the out-of-sample predictive
ability. The goal here is to build a statistical world where the time dependencies are similar to those in the true world.
We want the asymptotic distribution of the considered statistic in the bootstrap world to be close to its distribution in
the true world (Kreiss and Paparoditis, 2011). Remember also that we want to build training sets and validation sets
that do not overlap, to control for a possible overfitting bias.

While the initial bootstrap in Efron (1979) was developed for inference with i.i.d. data, many extensions have been
provided in the context of stationary time series. Besides stationary block bootstrap methods (Kunsch, 1989; Politis
and Romano, 1994), parametric residuals-based bootstrap methods are known to work well for stationary dependent
data, when the assumptions of the underlying model are met (Kreiss and Paparoditis, 2011). The general idea is
to resample the residuals of the model, instead of the original data. Owing to its simplicity, the absence of ‘tuning
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parameters’ (in opposition to the average length of the blocks in the block bootstrap approach) and the availability of
a lot of good models for stock returns, we focus on this kind of resampling procedure.

First, we apply some transformations to the initial time series, to obtain data that can be modeled by stationary
time series models (for daily stock prices, taking the log difference is often enough). Assume that the data-generating
process (DGP) of these data (i.e. the stock log returns) has a representation of the form

Rt D ���.Rt�1; : : : ; Rt�p/C ��� .Rt�1; : : : ; Rt�q/ � ´t ; t 2 Z (1)

where ��� is the conditional mean function with parameters ��, ��� the conditional variance function with param-
eters �� and ´t are i.i.d. innovations with zero-mean and unit variance (see Politis and Romano, 1994; Kreiss and
Paparoditis, 2011). For the rest of the paper, we hypothesize that the parametric forms of ��� and ��� are given by
an ARMA.p; q/-GARCH.p0; q0/ model:

Rt D �t C rt (2)

rt D �t´t (3)

�t D !.m/ C

pX
iD1

˛
.m/
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2
t�j (5)

with ´t
i.i.d.
� f .�/, E.´t / D 0 and E.´2t / D 1. We do not assume any particular distribution on f .:/ but simply

the existence of at least the four first moments, for inference purposes. In the bootstrap procedure, we perform a
nonparametric resampling of the residuals. It has the advantage of avoiding wrong assumptions on f .:/, the choice of
an error distribution being a delicate step in a modeling process (see, for example, Engle and Gonzalez-Rivera, 1991,
for a discussion on the subject). If needed, we can use more complex parametric structures (EGARCH, GJR-GARCH,
M-GARCH, etc.) to capture the dependencies of our data, without loss of generality. We follow the procedure of Hall
and Yao (2003) to obtain i.i.d. residuals that may be resampled. For an initial sample R D ¹R1; : : : ; Rnº of size n:

1. obtain O�� D ¹ O!.m/; Ǫ
.m/
1 ; : : : ; Ǫ

.m/
p ; Ǒ

.m/
1 ; : : : ; Ǒ

.m/
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(e.g. using quasi-maximum likelihood techniques).
2. Compute O�t and O�t for t D 1; : : : ; n, estimations of the conditional means and variances, based on the estimated

parameters.
3. Compute Ó t D .Rt � O�t /= O�t for t D 1; : : : ; n, estimations of the true innovations ´t , and centre them.
4. Generate randomly B � n bootstrap innovations ´�

b;t
, for t D 1; : : : ; n and b D 1; : : : ; B , from the historical

distribution of the estimated centered innovations ¹ Ó1; : : : ; Ónº, with replacement. Save the time indices of the
selected innovations, T .b; t/ (these are used later).

5. Using equations (2)–(5), the estimated sets of parameters O�� and O�� , and the resampled innovations, build
recursively B bootstrap time series R�

b
D ¹R�

b;1
; : : : ; R�
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R�b;t D �
�
b;t C �

�
b;t´
�
b;t (6)

with

r�b;t D ��b;t´
�
b;t (7)

��b;t D O!.m/ C

pX
iD1

Ǫ
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To initialize the recursion, we use O!.m/=

 
1 �

pP
iD1

Ǫ
.m/
i �

qP
jD1

Ǒ.m/
j

!
for the starting conditional mean,

O!=

 
1 �

p0P
iD1

Ǫ i �
qP
jD1

Ǒ
j

!
for the starting conditional volatility, and observed values of Rt (Davidson and

MacKinnon, 2006).

Each bootstrap sample is used to estimate the optimal parameters that minimize the in-sample prediction error, for
a given trading rule. In the context of trading rules, the predictive ability can be measured throughout a prediction
error like a misclassification rate or a score function. If the score function has a positive economic signification (e.g.
the mean excess return), then we need to maximize it. Each rule l D 1; : : : ; L is used to make n � h one-step-
ahead predictions (h being the larger number of past values needed for a single forecast), using the parameters �l . A
prediction error is associated to each forecast throughout a function Q.�/. The value of �l (as suggested before, for
example, the window sizes of the moving averages) that generates the lowest mean prediction error is adopted as an
estimator N��

b;l
of the optimal parameters, for the bth bootstrap sample and the l th rule. Analytically, for b D 1; : : : ; B

and l D 1; : : : ; L, we compute

N��b;l D arg min
�2�

1

n � h

nX
tDhC1

Q.R�b;t ; �/ (10)

The selection of N��
b;l

is performed over a finite set �. For a given rule l , by averaging 1
n�h

Pn
tDhC1Q.R

�
b;t
; N��
b;l
/

over the B resamples, we would obtain an estimator of the expected in-sample prediction error, but we are interested
in the true predictive ability of a rule, i.e. the performance of a rule l with parameters N��

b;l
, measured on a totally new

dataset, ideally very large. How do we obtain new values of R�
b;t

without an excessive overlapping with the training
data? This is where the bootstrap procedure starts to make sense. For a given resample, the bootstrap innovations are
drawn from ¹ Ó1; : : : ; Ónº with replacement. A quick calculation shows that, for n sufficiently large, the probability of
one single innovation (let us say innovation k) not to be selected in the resample is

�
n�1
n

�n
' :368. This means that

more than a third (on average) of the innovations are ‘wasted’, for a single resample. Following the idea of the boot-
strap .632 described in Efron (1983) and Efron and Tibshirani (1997), we propose to take advantage from the fact that
we know exactly how the resamples are built. For each resample b D 1; : : : ; B , we use the Vb unselected innovations
to create a new validation (out-of-sample) dataset that does not overlap with the training set. More formally, we add
the following steps to the initial resampling procedure:

6. for b D 1; : : : ; B , use the indices saved in step 4 to identify all Vb unselected innovations. Arrange them in
increasing order of time index and form a new set of innovations (here re-indexed for clarity) ¹��

b;1
; : : : ; ��

b;Vb
º.

7. For b D 1; : : : ; B , use O�� , O�� and the last values of the associated training resample as starting values to build
the bth out-of-sample datasets R�

b
D ¹R�

b;1
; : : : ;R�

b;Vb
º. R�

b;t
are obtained using equations (2)–(5) with R�

b;t

replacing R�
b;t

and ��
b;t

replacing ´�
b;t

.

With these out-of-sample data at hand, we take the average of the sum of the scores over the B resamples to obtain
a measure of the predictive ability of rule l :

S�l D
1

B

BX
bD1

VbX
tD1

Q.R�
b;t
; N��
b;l
/

Vb
(11)

However, due to the independence between training and validation datasets, this estimator tends to be too large (for
Q having a negative meaning, like a prediction error). To correct for this effect, Efron and Tibshirani (1993, 1997)
propose two ways to combine this quantity with the in-sample prediction error S0

l
obtained on the initial sample. Let

us define NSl , a new estimator of the out-of-sample prediction error of the l th rule:

NSl D :368S
0
l C :632S

�
l (12)

with

S0l D
1

n � h

nX
tDhC1

Q.Rt ; N�l/ (13)

N�l D min
�2�

1

n � h

nX
tDhC1

Q.Rt ; �/ (14)
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where N�l is the estimated optimal set of parameters for rule l , for the initial sample. The origin of the weights in NSl
are discussed at the end of this section. Nevertheless, when the in-sample overfitting is high, these weights may no
longer be appropriate. Therefore, Efron and Tibshirani (1997) proposed also a second weighting between S0

l
and S�

l
,

a function of the in-sample overfitting. Let us define NSC
l

, also an estimator of the out-of-sample prediction error of
the l th rule:

NSC
l
D .1 � w/S0l C w � S

�
l (15)

with

w D
:632

1 � :368J
(16)

and

J D
S�
l
� S0

l

� � S0
l

(17)

where J is defined as the relative overfitting rate and is constrained to take values between 0 and 1. w takes values
between 0.632 and 1 (hence NSC

l
is bounded by S�

l
and NSl ). � is defined as the no information error rate, i.e. the

expected error rate of the rule when the predictors are independent from the predicted variables. Intuitively, � esti-
mates the expected prediction error of the rule in a sort of worst case scenario, i.e. when there are no relationships
between the explicative and the predicted variables. In fact, it is similar to the performance of a rule that predicts
randomly the ups and downs of the considered time series. Hence � � S0

l
estimates the difference between what

could be the performance of a single sequence of random predictions (S0
l

), particularly lucky, and the expectation
of such a random prediction process (�). The closer S�

l
� S0

l
(the discrepancy between the apparent error and the

out-of-sample error) is to � � S0
l

, the more S0
l

is influenced by a high overfitting and should not be used in NSl . See
Appendix D for more details regarding the computation of �. Our empirical study in the next section indicates that
� is close to 1. Also, our simulations emphasize that NS�

l
seems to be closer to the true predictive ability than NSl .

Therefore we decide to use preferably S�
l

or NSC
l

.

Some words regarding the notion of trading rule
Finally, some words regarding the notion of trading rule. In Brock et al. (1992), Sullivan et al. (1999) and Bajgrowicz
and Scaillet (2012), the parameters of the considered trading rules are fixed a priori: there are no estimated parameters.
When Sullivan et al. (1999) explained that they tested a universe of 7846 trading rules, this universe stems, in fact,
from five different rule specifications (see Appendix A of their study): filter rules, moving averages, support and
resistance, channel breakouts and on-balance volume averages. Falbo and Pelizzari (2011) speak about classes of
technical trading rules, or trading styles, instead of rule specifications. In our approach, ‘trading rule’ must be seen
as ‘a mathematical relationship with some parameters, producing buy and sell signals’, i.e. a rule specification in
the sense of Sullivan et al. (1999). By naming ‘trading rule’ as a particular parametrization of a rule specification,
Sullivan et al. (1999) adopt a narrow notion of a rule. In our opinion, it seems more interesting to quantify the
predictive ability of a rule specification with its best ex ante parametrization, because what really matters is to find
the mathematical relationship that correctly predicts price variations. By using a bootstrap procedure, we take into
account the parameter uncertainty, considered as non-existent in other approaches. In fact, it is because we assume this
parameter uncertainty that the .632 resampling is useful. Indeed, the initial bootstrap training samples are used to get
estimators of the best parameters, whereas the validation sets are used to estimate the out-of-sample performance. If
the parameters were treated as fixed, then a classical bootstrap approach would have been sufficient to get estimators
of the out-of-sample performance, for each parametrization. Also, we are well aware that most trading rules use
prices (Pt ) and not returns as inputs, to generate their buy and sell signals. Until now, we have only discussed the
resampling of log returns, but the recursive computation of the prices is straightforward. Using an initial price P0, we
obtain series of prices P D ¹P1; : : : ; Pnº with the equation

Pt D Pt�1eRt (18)

that is obtained from the definition of the log returns Rt D log.Pt=Pt�1/.

Alternative to the residuals-based bootstrap: the block bootstrap
As mentioned before, when no parametric model seems suitable to model the data, one can simply use the classical
stationary block bootstrap approach of Romano and Wolf (2005) for strictly stationary and weakly dependent time
series. Under these assumptions, for a broad class of nonlinear statistics, this technique provides consistent estima-
tors of the considered statistics (see Kreiss and Paparoditis, 2011, for more details). Starting from the initial series
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Figure 1. Probability for being in a resample using a block bootstrap procedure. Solid line, probability for an observation, among
a sample of size 2000, being in a resample of the same size, drawn with replacement; dashed line, Monte Carlo estimation of the
probability, for an observation from a sample of size 2000, of being in a resample of same size, drawn by block of average length
1=a. The size of the Monte Carlo simulations is 200

of log returns R, we build block bootstrap training samples by executing the following steps (Sullivan et al., 1999;
Bajgrowicz and Scaillet, 2012):

For b D 1; : : : ; B

1. Define a such that 1=a is equal to the average length of a block.
2. Set t D 1 and draw randomly R�

b;t
from R. Let T .b; t/ be the time index of the t th selected observation (in the

bootstrap sample b), among R. Save it.
3. Set t D t C 1. If t > n, stop. Otherwise, draw a random variable U from the uniform distribution.

(a) If U < a, start a new block by drawing randomly R�
b;t

from R. Save T .b; t/.
(b) If U � a, set T .b; t/ D T .b; t � 1/C 1 and R�

b;t
D RT.b;t/. If T .b; t/ > n, set T .b; t/ D 1.

4. Repeat step 3.

Similarly to the procedure explained above, for each bootstrap sample b D 1; : : : ; B , we use the Vb unselected
observations to build validation sets. Because the drawing is made by blocks, the unselected observations are also a
set of blocks of average length 1=a, but with their original order of appearance conserved. Here, we select a D 0:1

as in Sullivan et al. (1999) and Bajgrowicz and Scaillet (2012), after a trial-and-error phase. This stage could be
improved by using an automatic procedure of selection, as in Politis and White (2004), but this question is beyond
the present research.

A notable difference (even if it should not impact significantly the final conclusions) with the residuals-based
resampling is that the probability of being in the training sample is now different. Indeed, by performing a block
resampling, this probability increases. Figure 1 shows Monte Carlo estimations of this probability as a function of
the block length, for samples of size 2000. This difference seems minimal for small blocks (up to block of average
length 10, we observe a difference in probability of around 0.1%), but for large average block lengths (i.e. above 10)
it increases. Here, we use an average block length of 10, but if one wishes to use larger blocks we propose to use a
Monte Carlo estimator of this probability instead of the weights .368 and .632, in equations (12) and (16).

EMPIRICAL ILLUSTRATION

In this section, we illustrate our methodology by applying it on three time series: IBM, MSFT and DJIA stock prices.
We use data from the period 20 September 2002 to 16 May 2014. We compare 11 different rule specifications with
the goal of finding the one that has the highest predictive ability. We also want to know if some rules can generate a
profit higher than a simple BH strategy. We focus on the rule specifications used in Sullivan et al. (1999). We do not
treat the case of on-balance volume averages specifications and focus on price-dependent rules only. To the best of our
knowledge, no formal mathematical descriptions of the rules are available in the literature. Therefore, our implemen-
tations of the rules could vary a bit compared to other studies on the subject, even though we mainly reproduced the
implementation of Bajgrowicz and Scaillet (2012) (available at http://jfe.rochester.edu/data.htm). Overall, we imple-
mented 11 rule specifications (four filter rules, two moving averages rules, four support and resistance rules and one
channel breakout rule), with a total of 11,668 parametrizations (4320 for the filter rules, 3780 for the moving average
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rules, 1008 for the support and resistance rules and 2560 for the channel breakout rule). A brief description of the
considered rules specifications (largely inspired by those made in Sullivan et al., 1999, and Bajgrowicz and Scaillet,
2012) can be found in Appendix A. For all selected specifications, we use the same sets of parameters as in Sullivan
et al. (1999). Those parameters are also reproduced in Appendix A. First, we discuss the two different score func-
tions used in our application: a mean excess return criterion and a Sharpe ratio criterion. Then, we present the data
and finally we apply our procedure. For the resampling of interest rate data, we use the historical correlation structure
between risk-free rates and log returns, thanks to a joint resampling procedure. We check whether the results obtained
with the residuals-based bootstrap are similar to those obtained with a block bootstrap procedure.

The interest in working with these three time series is twofold. First, DJIA, IBM and MSFT are popular stocks,
frequently traded by private investors and fund managers who may rely on these kinds of rules to take investment
decisions. It is therefore of interest to know if they can really expect significant profits from such investment tech-
niques or if excess returns are solely due to luck. Second, working with the DJIA enables us to compare our results
(to a certain extent) with those obtained previously in popular studies (mainly, Sullivan et al., 1999; Bajgrowicz and
Scaillet, 2012).

Prediction error and optimality criterion
An important question in the analysis of trading rules is to determine what kind of prediction error (or score function)
Q.�/ is used as an optimality criterion. Sullivan et al. (1999), Bajgrowicz and Scaillet (2012) and Kuang et al. (2014)
use the mean excess return over the risk-free rate, as an economic indicator of the performance of a trading rule. More
formally, for rft , the risk-free rate at time t , st taking value 1, 0 or �1 according to the fact that we are long, neutral
or short in the asset at time t , 1.st ¤ 0/ taking value 1 if we are not neutral, 0 otherwise, we define

Q.Rt ; �/ D 1.st ¤ 0/
�
stR
0
t � r

f
t

�
(19)

where R0t is the arithmetic return at time t . This definition is used in equations (10)–(14). In this paper, we use the
same risk-free rate as in Sullivan et al. (1999) and Bajgrowicz and Scaillet (2012), i.e. the daily federal funds rate
(available on the web site of the Federal Reserve Bank of New York: http://www.newyorkfed.org). An issue with this
criterion is that, in the bootstrap world, we do not have values of the risk-free rate at our disposal. This said, how can
we proceed to compute values of the criteria on the training samples (Q.R�

b;t
; ��
b;l
/) and on the validation samples

(Q.R�
b;t
; N��
b;l
/)? A solution would be to use bootstrap values rf;�

b;t
of rft . We can draw these bootstrap data exactly in

the same way we draw R�
b;t

and R�
b;t

: either we suppose a parametric model for rft and we perform a residuals-based
bootstrap, building recursively time series using resampled residuals, or we perform a block bootstrap resampling
as above (‘Alternative to the residuals-based bootstrap: the block bootstrap’). If we suppose that rft and Rt are
independent processes, then the resampling procedures are made independently. Conversely, if we assume some
common driving factors, we can perform a paired resampling of the residuals. Mathematically, for a residuals-based
paired resampling procedure, we build risk-free rate training samples throughout the following steps:

For b D 1; : : : ; B

1. Set t D 1.
2. Set u�

b;t
D OuT.b;t/, where Ou D ¹ Ou1; : : : ; Ounº are estimated residuals of the risk-free rate model and T .b; t/ is the

time index of the t th selected innovation of the prices.
3. Build rf;�

b;t
recursively using the estimated parameters of the supposed interest rate model. Set t D t C 1. If

t > n, stop. Otherwise go to step 2.

Similar to what is proposed above (‘Resampling procedure’), risk-free rate validation sets are built using the
unselected innovations. Transposition of these steps to a block bootstrap procedure is straightforward. Eventually,
in this application, we use the Nelson–Siegel model with autoregressive latent factors of Diebold and Li (2006).
This model is parsimonious and the estimation of its parameters is straightforward. Other models (such as the Cox–
Ingersoll–Ross model (Cox et al., 1985), or simple ARMA-(E)GARCH models) can be used without any loss of
generality. An excellent review on the subject of short-term interest rates dynamics, providing comparisons between
a large set of models, can be found in Bali and Wu (2006). Also, Sarno et al. (2005) studied specifically the daily
federal fund rate (for another period, though) and concluded that a simple univariate reaction function has the best
predictive ability. Here, we do not use their model but stick to their recommendation by choosing a simple model.
See Appendix C for details regarding the selected model.

As an optimality criterion, one could also use some kind of Sharpe ratio criterion, where the mean excess return is
divided by the standard deviation of the excess returns over the considered period:
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(20)

This criterion has been used by Bajgrowicz and Scaillet (2012) and Sullivan et al. (1999). Both criteria have also
been used in Kuang et al. (2014). This criterion is interesting, because rational investors are expected to maximize
their ratio risk/return. This criterion can be a good proxy of it.

3.2. Data
We apply our methodology to the three time series (IBM, MSFT and DJIA). Figure 2 shows the evolution of these
prices for the period from 20 September 2002 to 16 May 2014, such as their log returns. For IBM log returns, no
sample autocorrelation function seems to be significantly different from 0 (taking into account the heteroskedasticity).
The mean is assumed to be a constant. However, a typical GARCH effect (volatility clustering, significant sample
autocorrelations of the squared returns at multiple lags) is observed. A simple GARCH(1,1) model seems to be a
reasonable assumption for this series. For MSFT log returns, we observe significant sample autocorrelation functions
at lag 1 and 2, as well as a GARCH effect. After testing various AR.p/, MA.q/ and ARMA.p; q/ models (with
p and q taking values from 0 to 2), it appears that an ARMA(2,2)-GARCH(1,1) specification could be the best
model. For DJIA data, we select an ARMA(3,3)-GARCH(2,1) specification. This specification seems to remove all
time dependencies. We obtain consistent estimations of �� and �� using quasi-maximum likelihood techniques. The
obtained values are displayed in Table I. Figure 3 shows the estimated volatility and residuals of the model for all
time series. Additional information regarding the model selection can be found in Appendix B.

If we apply the rules to the original time series only, we obtain various combinations of optimal parameters for
each rule. Tables II–VII give the optimal parametrizations for each rule, all time series and both criteria (mean excess
returns and Sharpe ratios). Note that searching for good parameters can be difficult, owing to the nonlinear and non-
convex nature of the score function. Figure 4 shows the response surface of the mean return criterion of a simple
filter rule, obtained using the IBM data. We observe multiple local extrema. It illustrates that the delimitation of
the parameters space strongly influences the results. Therefore, it is important to take into account the estimation
procedure of the parameters.
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Figure 2. IBM (top), MSFT (middle) and DJIA (bottom) stock prices (left) and log returns (right) for the period 20 September
2002 to 16 May 2014

Table I. Estimated ARMA and GARCH parameters for IBM, MSFT and DJIA time series, obtained with quasi-
maximum likelihood procedures

Data O!.m/ Ǫ .m/
1

Ǫ .m/
2

Ǫ .m/
3

Ǒ.m/
1

Ǒ.m/
2

Ǒ.m/
3

O! Ǫ1 Ǫ2 Ǒ

IBM 0.0003 — — — - — — 9:2e�6 0.114 - 0.838
MSFT 0.0005 �0:732 �0:352 — 0.655 0.265 — 3:9e�6 0.041 — 0.945
DJIA 0.0002 �0:166 �0:592 0.348 0.051 0.543 �0:3957 4:6e�7 1e�4 0.115 0.859
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Figure 3. IBM (top), MSFT (middle) and DJIA (bottom) estimated standard deviation (left) and associated residuals (right) for
the period 20 September 2002 to 16 May 2014

Table II. Optimal parameters for the mean excess return criterion, for IBM time series

Trading rule Mean excess return (S0
l

) Parameters

Filter rule simple 5:7649e�4 x D 0:005, y D 0:15
Filter rule neutral 4:0558e�4 x D 0:2, y D 0:2
Filter rule constant 5:6298e�4 c D 5, x D 0:04, y D 0:15
Filter rule modified 6:1827e�4 e D 10, x D 0:005, y D 0:025
MA time delay 4:4277e�4 nsmall D 30, nlarge D 40, d D 5
MA filter band 4:3592e�4 nsmall D 25, nlarge D 40, c D 25, b D 0:001
S&R time delay 2:2057e�4 c D 10, n D 2, d D 4
S&R filter band 4:7524e�4 c D 50, n D 5, b D 0:001
S&R modified time delay 2:525e�4 c D 25, e D 2, d D 5
S&R modified filter band 4:9223e�4 c D 50, e D 20, b D 0:005
Channel breakout �1:776e�5 n D 10, x D 0:005, c D 50, b D 0:01

Results of the bootstrap procedure
Tables VIII–X show the values of the mean excess return and the Sharpe ratio computed with the various formulas. We
set B D 500. The bootstrap samples are drawn with a residuals-based bootstrap. Results obtained with a stationary
block bootstrap procedure can be found in Appendix D, Tables D.II–D.IV. For the residuals-based bootstrap, we use
the models selected in the previous section. For the resampling of interest rates data, we use Diebold and Li’s 2006
approach. See Appendix C for more details regarding the estimation procedure and values of the parameters for the
interest rate time series. The resampling of the innovations for both the prices and the interest rates are paired, to take
into account the empirical structure of the correlation. Figure 5 shows some of the generated patterns, in-sample and
out-of-sample.

We observe that the out-of-sample mean excess returns are lower than the in-sample values, for all time series.
This is the case for all rules. Also, we see that the ranking between trading rules can vary between in-sample and out-
of-sample results: for IBM data, whereas the filter rule with modified extrema has the highest in-sample value of the
score function, S�

l
and NSl reveal that the highest out-of-sample value of the score function is obtained with the simple

filter rule. For MSFT data, the highest in-sample mean excess return is obtained for the filter rule with a constant
holding period, whereas the best out-of-sample value is obtained with the simple filter rule. For DJIA data, the best
rule in-sample is the modified filter rule, whereas the best rule out-of-sample is the simple filter rule. Thus, being
good in-sample does not guarantee being good out-of-sample. The in-sample mean excess returns are positive for
all considered rules except for the Channel Breakout rule for IBM data. Conversely, the out-of-sample mean excess
returns of respectively 8, 11 and 9 rules are negative for IBM, MSFT and DJIA time series. Using the NSl estimator,
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Table III. Optimal parameters for the Sharpe ratio criterion, for IBM time series

Trading rule Sharpe ratio (S0
l

) Parameters

Filter rule simple 0.0404 x D 0:005, y D 0:15
Filter rule neutral 0.0292 x D 0:2, y D 0:2
Filter rule constant 0:0396 c D 20, x D 0:025, y D 0:75
Filter rule modified 0.0436 e D 10, x D 0:005, y D 0:025
MA time delay 0:0323 nsmall D 30, nlarge D 40, d D 5
MA filter band 0.0319 nsmall D 25, nlarge D 40, c D 25, b D 0:001
S&R time delay 0:0159 c D 10, n D 2, d D 4
S&R filter band 0.0357 c D 50, n D 5, b D 0:001
S&R modified time delay 0:0185 c D 25, e D 2, d D 5
S&R modified filter band 0.0364 c D 50, e D 20, b D 0:005
Channel breakout �0:0013 n D 10, x D 0:005, c D 50, b D 0:01

Table IV. Optimal parameters for the mean excess returns criterion, for MSFT time series

Trading rule Mean excess return (S0
l

) Parameters

Filter rule simple 2:6816e�4 x D 0:005, y D 0:15
Filter rule neutral 1:8285e�4 x D 0:2, y D 0:2
Filter rule constant 6:4456e�4 c D 20, x D 0:025, y D 0:025
Filter rule modified 4:9557e�4 e D 15, x D 0:005, y D 0:15
MA time delay 4:4964e�4 nsmall D 20, nlarge D 25, d D 5
MA filter band 4:7021e�4 nsmall D 15, nlarge D 30, c D 10, b D 0:001
S&R time delay 3:3983e�4 c D 50, n D 15, d D 2
S&R filter band 2:546e�4 c D 50, n D 20, b D 0:015
S&R modified time delay 3:449e�4 c D 50, e D 10, d D 2
S&R modified filter band 3:0982e�4 c D 50, e D 10, b D 0:015
Channel breakout 2:9315e�4 n D 5, x D 0:02, c D 50, b D 0:01

Table V. Optimal parameters for the Sharpe ratio criterion, for MSFT time series

Trading rule Sharpe ratio (S0
l

) Parameters

Filter rule simple 0.0156 x D 0:005, y D 0:15
Filter rule neutral 0:0107 x D 0:2, y D 0:2
Filter rule constant 0.0378 c D 20, x D 0:025, y D 0:025
Filter rule modified 0.0293 e D 15, x D 0:005, y D 0:15
MA time delay 0:0264 nsmall D 20, nlarge D 25, d D 5
MA filter band 0.0276 nsmall D 15, nlarge D 30, c D 10, b D 0:001
S&R time delay 0.0201 c D 50, n D 15, d D 2
S&R filter band 0:0161 c D 50, n D 20, b D 0:015
S&R modified time delay 0:0205 c D 50, e D 10, d D 2
S&R modified filter band 0:0183 c D 50, e D 10, b D 0:015
Channel breakout 0:0175 n D 5, x D 0:02, c D 50, b D 0:01

Table VI. Optimal parameters for the MER criterion, for DJIA time series

Trading rule Mean excess return (S0
l

) Parameters

Filter rule simple 1:477e�4 x D 0:09, y D 0:1
Filter rule neutral 1:535e�4 x D 0:09, y D 0:1
Filter rule constant 1:55e�4 x D 0:035, y D 0:04, c D 50
Filter rule modified 1:743e�4 x D 0:035, y D 0:04, e D 5
MA time delay 1:192e�4 nsmall D 40, nlarge D 150, d D 5
MA filter band 1:215e�4 nsmall D 10, nlarge D 100, c D 50, b D 0:001
S&R time delay 1:164e�4 c D 50, n D 20, d D 2
S&R filter band 8:09e�5 c D 50, n D 5, b D 0:001
S&R modified time delay 1:13e�4 c D 20, e D 5, d D 2
S&R modified filter band 3:94e�5 c D 5, e D 200, b D 0:001
Channel breakout 4:55e�5 n D 25, x D 0:005, c D 25, b D 0:04
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Table VII. Optimal parameters for the Sharpe ratio criterion, for DJIA time series

Trading rule Sharpe ratio (S0
l

) Parameters

Filter rule simple 0:0297 x D 0:09, y D 0:1
Filter rule neutral 0:0309 x D 0:09, y D 0:1
Filter rule constant 0:0309 x D 0:035, y D 0:04, c D 50
Filter rule modified 0:039 x D 0:035, y D 0:04, e D 5
MA time delay 0:0238 nsmall D 40, nlarge D 150, d D 5
MA filter band 0:0244 nsmall D 10, nlarge D 100, c D 50, b D 0:001
S&R time delay 0:0234 c D 50, n D 20, d D 2
S&R filter band 0:0164 c D 50, n D 5, b D 0:001
S&R modified time delay 0:0227 c D 20, e D 5, d D 2
S&R modified filter band 0:0079 c D 5, e D 200, b D 0:001
Channel breakout 0:0137 n D 25, x D 0:005, c D 25, b D 0:04
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Figure 4. Response surface for the mean excess return of a simple filter rule with x and y parameters ranging from 0 to 0.10, for
IBM daily prices. Parameter e is set up to 5

these numbers become 1, 3 and 2 but the out-of-sample mean excess returns are still much lower than the in-sample
results. To obtain the NSC

l
estimator, we compute the � parameters throughout a Monte Carlo simulation (their values

and more details are shown in Appendix D). Owing to its construction, NSC
l

should take values between NSl and S�
l

,
but the relative overfitting is so high that NSC

l
' S�

l
for almost all rules. Thus it seems more appropriate to use NSC

l

or S�
l

instead of NSl , as a measure of the out-of-sample predictive ability. Overall, it seems that all the tested rules
have a poor out-of-sample performance. The out-of-sample mean excess return (measured by S�

l
) of the best rule

in-sample for IBM is equivalent to an annual performance of 2.03% (these values are �2.62% for MSFT data and
�0.27% for DJIA data), a poor performance regarding the computational efforts. Can these rules beat a simple BH
strategy? For IBM, the lowest bootstrap out-of-sample estimation of the BH performance is 16% (11.86% for MSFT
data and 2.55% for DJIA data). The mean excess returns computed using this rule, over the initial datasets and in
the bootstrap worlds, are displayed in Table XI. Focusing only on in-sample results, most of the rules would be able
to beat the BH strategy. For IBM data, nine rules perform better (if we use the bootstrap in-sample measure of the
performance). For MSFT and DJIA, respectively ten and eight rules provide better results. However, whereas the BH
strategy always exhibits a positive mean excess return, most strategies have a negative out-of-sample mean excess
return when measured by S�

l
or NSC

l
(Figure 6). We do not have a formal statistical test to compare the strategies, but

the BH strategy has a (daily) mean excess return twice as big as the highest (out-of-sample) positive mean excess
return ( NSC

l
). This seems to indicate that none of the tested rules is able to beat this simple benchmark. It would be

almost certain if we had included transaction costs. Overall, these results indicate that selecting a priori a rule and its
optimal parametrization using the mean excess return criterion does not lead to a good out-of-sample profit. If some
investors can make large profits using this approach, it may be due mostly to luck. These conclusions are the same
as those obtained by Bajgrowicz and Scaillet (2012) (for the DJIA) and Kuang et al. (2014), who could not find any
trading rule with a good out-of-sample performance. However, as pointed out in Bajgrowicz and Scaillet (2012), our
results say little about the existence of profitable strategies in other markets, using different trading frequencies or
more sophisticated rules.
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Table VIII. Values of the mean excess return (MER) and the Sharpe ratio (SR), for the IBM daily time series, obtained using a
residuals-based resampling method

Trading rule MER SR

S0;�
l

S�
l

NSl NSC
l

S0;�
l

S�
l

NSl NSC
l

Filter rule simple 5:556e�4 1:539e�4 3:094e�4 1:539e�4 0:0406 0:011 0:022 0:011

Filter rule neutral 4:333e�4 �0:343e�4 1:276e�4 �0:343e�4 0:0394 �0:004 0:008 �0:004

Filter rule constant 7:059e�4 0:693e�4 2:510e�4 0:693e�4 0:0513 0:005 0:018 0:005

Filter rule modified 7:016e�4 0:555e�4 2:626e�4 0:555e�4 0:0513 0:005 0:019 0:005

MA filter band 5:733e�4 �0:722e�4 1:173e�4 �0:722e�4 0:0416 �0:005 0:009 �0:005

MA time delay 5:133e�4 �0:338e�4 1:390e�4 �0:338e�4 0:0373 �0:002 0:011 �0:002

S&R time delay 5:265e�4 �0:711e�4 0:362e�4 �0:711e�4 0:0385 �0:006 0:002 �0:006

S&R filter band 4:023e�4 �1:285e�4 0:937e�4 �1:285e�4 0:0331 �0:008 0:008 �0:008

S&R modified time delay 5:125e�4 �1:016e�4 0:287e�4 �1:016e�4 0:0375 �0:007 0:002 �0:007

S&R modified filter band 5:265e�4 �0:711e�4 1:362e�4 �0:711e�4 0:0385 �0:006 0:010 �0:006

Channel breakout 1:907e�4 �3:463e�4 �2:254e�4 �3:463e�4 0:0154 �0:027 �0:018 �0:027

Note: S0;�
l

stands for
PB
bD1

Pn
tDhC1Q.R

�
b;t
; N��
b;l
/=.B.n� h// and is the bootstrap in-sample performance. See above for the definition of

S�
l

, NSl and NSC
l

.

Table IX. Values of the mean excess return (MER) and the Sharpe ratio (SR), for the MSFT daily time series, obtained using a
residuals-based resampling method

Trading rule MER SR

MER S0;�
l

S�
l

NSl NSC
l

S0;�
l

S�
l

NSl NSC
l

Filter rule simple 4:689e�4 �0:710e�4 0:538e�4 0:538e�4 0:030 �0:004 0:003 0:003

Filter rule neutral 3:429e�4 �1:167e�4 �0:064e�4 �1:167e�4 0:030 �0:014 �0:005 �0:014

Filter rule constant 6:877e�4 �0:727e�4 1:912e�4 �0:727e�4 0:043 �0:004 0:011 �0:004

Filter rule modified 6:454e�4 �1:317e�4 0:992e�4 �1:317e�4 0:041 �0:002 0:010 �0:002

MA filter band 5:840e�4 �2:108e�4 0:322e�4 �2:108e�4 0:037 �0:013 0:002 �0:013

MA time delay 5:230e�4 �1:734e�4 0:635e�4 �1:734e�4 0:033 �0:010 0:004 �0:010

S&R time delay 4:586e�4 �0:907e�4 0:677e�4 �0:907e�4 0:032 �0:004 0:005 �0:004

S&R filter band 3:730e�4 �1:509e�4 �0:017e�4 �1:338e�4 0:027 �0:012 �0:001 �0:010

S&R modified time delay 4:308e�4 �1:431e�4 0:365e�4 �1:431e�4 0:030 �0:009 0:002 �0:009

S&R modified filter band 4:586e�4 �0:907e�4 0:567e�4 �0:358e�4 0:032 �0:014 �0:002 �0:010

Channel breakout 1:589e�4 �2:985e�4 �0:808e�4 �2:985e�4 0:011 �0:020 �0:006 �0:020

Table X. Values of the mean excess return (MER) and Sharpe ratio (SR), for the DJIA daily time series, obtained with a residuals-
based resampling method

Trading rule MER SR

S0;�
l

S�
l

NSl NSC
l

S0;�
l

S�
l

NSl NSC
l

Filter rule simple 1:101e�4 0:334e�4 0:755e�4 0:334e�4 0:028 0:008 0:015 0:008

Filter rule neutral 0:887e�4 �0:131e�4 0:482e�4 �0:131e�4 0:030 �0:007 0:007 �0:007

Filter rule constant 1:375e�4 0:120e�4 0:646e�4 0:120e�4 0:033 0:004 0:014 0:004

Filter rule modified 1:350e�4 �0:074e�4 0:595e�4 �0:074e�4 0:033 �0:001 0:012 �0:001

MA time delay 1:168e�4 �0:414e�4 0:177e�4 �0:414e�4 0:028 �0:009 0:004 �0:009

MA filter band 1:145e�4 �0:393e�4 0:199e�4 �0:393e�4 0:027 �0:008 0:005 �0:008

S&R time delay 1:004e�4 �0:421e�4 0:162e�4 �0:421e�4 0:024 �0:010 0:003 �0:010

S&R filter band 0:544e�4 �0:423e�4 0:030e�4 �0:423e�4 0:016 �0:012 �0:002 �0:012

S&R modified time delay 0:962e�4 �0:430e�4 0:144e�4 �0:430e�4 0:023 �0:010 0:002 �0:010

S&R modified filter band 1:004e�4 �0:421e�4 �0:121e�4 �0:421e�4 0:024 �0:010 0:003 �0:010

Channel breakout 0:221e�4 �0:404e�4 �0:088e�4 �0:404e�4 0:014 �0:015 �0:005 �0:015
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Figure 5. Left: bootstrap training samples of prices, for IBM data (solid grey) and initial time series (solid black). Right: bootstrap
validation samples for the same time series

Table XI. Mean excess return (MER) and Sharpe ratio (SR) for a buy-and-hold strategy

Stat. MER SR

S0
l

S0;�
l

NS�
l

S0
l

S0;�
l

NS�
l

IBM (res) 4:2530e�4 4:1278e�4 5:1952e�4 0.0297 0.0270 0.0288
IBM (block) 4:2530e�4 4:3403e�4 4:0675e�4 0.0297 0.0305 0.0285
MSFT (res) 3:1733e�4 3:1990e�4 3:2073e�4 0.0184 0.0204 0.0197
MSFT (block) 3:1733e�4 3:4084e�4 3:0792e�4 0.0184 0.02 0.0182
DJIA (res) 7:7108e�5 7:8265e�5 8:2332e�5 0.0151 0.0191 0.0190
DJIA (block) 7:7108e�5 7:9296e�5 6:9151e�5 0.0151 0.0160 0.0146

Note: First column: performance obtained on the initial datasets. Second and third columns: average
mean excess return obtained on the bootstrap training sample and the bootstrap validation sets. These
quantities are computed for both a residuals-based procedure (res) and a block bootstrap procedure
(block).

Using a Sharpe ratio criterion instead of the mean excess return, results are similar: the out-of-sample performances
of all rules are lower than that of a BH strategy, and negative most of the time. For IBM and DJIA, the best rules stay
the same in-sample as well as out-of-sample, compared to the mean excess return criterion. For MSFT, the rule with
the best out-of-sample Sharpe ratio is the modified filter rule, even though the simple filter rule and filter rule with a
constant holding period have a very similar performance.

Regarding a possible difference between the residuals-based resampling and the block bootstrap procedure, results
are globally alike. For the IBM data, we only observe a large difference for the moving average rules (both with band
filter and with time delay), where the block bootstrap gives out-of-sample values much lower than those obtained with
the residuals-based method. For the MSFT data, a similar effect occurs for the simple filter rule. For the DJIA data,
the block bootstrap procedure gives us much lower out-of-sample values for the simple filter rule than the residuals-
based bootstrap procedure. Overall, these differences do not impact the final conclusions that all rules cannot beat the
BH strategy if we look at their out-of-sample performance, measured by S�

l
.

SIMULATIONS

Eventually, we perform a small Monte Carlo study. The goal here is to determine if our bootstrap procedure provides
an improvement compared to the sample splitting procedure, and to assess whether our bootstrap estimators of the
predictive ability are close the true predictive ability of the tested rules.

Simulation set-up
We simulate samples of prices where the log returns follow some ARMA-GARCH models. We assume that the
innovations follow a standardized Student’s t-distribution, to reflect the excess kurtosis found in empirical residuals
(see Bai et al., 2003, for a discussion of the subject). We generate the data using the same models and the same
parameters as those estimated for IBM, MSFT and DJIA data:

� DGP1: GARCH(1,1) with T .5/ innovations;
� DGP2: ARMA(2,2)-GARCH(1,1) with T .4/ innovations;
� DGP3: ARMA(3,3)-GARCH(2,1) with T .8/ innovations.
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Figure 6. Comparisons of the different measures of the predictive ability (obtained with a residuals-based bootstrap), for IBM
(top), MSFT (middle) and DJIA (bottom) data. Black, bootstrap in-sample performance; light grey, S�

l
; dark grey, NSl ; black

dotted, bootstrap in-sample performance of a BH strategy (i.e. mean excess return of the generated data)

For each DGP, we generate N D 250 samples of size n D 1500. The first 1000 observations are used as in-sample
data (nis D 1000) whereas the 500 last observations are used as out-of-sample data (noos D 500). For each sample,
we select the optimal parameters of each rule using the pseudo in-sample data and we compute an estimator of the
predictive ability for each rule with the pseudo out-of-sample data. By averaging over the N samples, we obtain a
Monte Carlo estimator of the true predictive ability:

SMC
l D

1

noos �N

NX
iD1

nX
tD1001

Q
�
Ri;t ; N�

MC
i;l

�
(21)

where Q.Ri;t ; N�MC
i;l
/ is the value of the score function associated with the t th trading day of the i th sample, with

the optimal parameters N�MC
i;l

of the l th rule estimated on the i th pseudo in-sample dataset. We use this quantity as
a benchmark: it is the best possible estimation of the predictive ability that we could obtain, if we were sure that
the data follow exactly the supposed model. In practice, the sample-splitting procedure is similar to using a single
run of the Monte Carlo simulation to estimate the predictive ability. The mean squared error (MSE) between the
Monte Carlo estimator and the estimations of the predictive ability based on single samples can be found in Table XII
(MSESS). This quantity measures how far we are (on average) from the true predictive ability when we use the
splitting procedure. It is given by

MSESS
l D

1

N

NX
iD1

 
nX

tD1001

Q.Ri;t ; N�
MC
i;l /=noos � S

MC
l

!2
(22)

For the score functionQ.�/, we use the mean excess return criterion with an annual risk-free rate of 0.7% (0.002%
on a daily basis), assumed constant for simplicity.

What is the gain obtained with our bootstrap procedure, in terms of MSE? For each sample, we use a residuals-
based resampling procedure with B D 100 (we keep the number of bootstrap samples low to limit the computing
time). We use the true models but the parameters are estimated on the pseudo in-sample data (i.e. on the first 1000
observations). Note that, by doing so, we use less data than the splitting procedure (i.e. we use nis observations
instead of n observations). In practice, both the sample splitting and our procedure would rely on the same number of
observations. Therefore, we can expect our procedure to be more efficient. We use both S�

l
(given by equation (11))

and NSl (given by equation (12)) as bootstrap estimators of the predictive ability. We compute
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Table XII. Mean squared error between the Monte Carlo estimator of the predictive
ability SMC and the estimators obtained either with the sample splitting procedure
(MSESS) or the residuals-based bootstrap approach (MSES

�

and MSE NS ), for the 11
trading strategies

SMC MSESS MSES
�

MSE NS RMSES
�

RMSE NS

DGP 1
FRS 1:31e�4 3:57e�7 1:16e�7 1:57e�7 0:324 0:441

FRN �1:77e�5 2:86e�7 4:58e�8 1:28e�7 0:160 0:446

FRC 1:59e�6 4:43e�7 8:30e�8 2:77e�7 0:187 0:626

FRM 7:78e�5 4:28e�7 5:69e�8 1:77e�7 0:133 0:414

MAB �1:54e�4 5:28e�7 5:56e�8 2:87e�7 0:105 0:543

MATD �9:83e�6 5:36e�7 4:54e�8 1:70e�7 0:085 0:317

SRTD 2:89e�5 4:20e�7 3:75e�8 1:30e�7 0:089 0:310

SRB 1:06e�5 3:69e�7 2:72e�8 7:09e�8 0:074 0:192

SRMTD �2:30e�5 3:93e�7 3:30e�8 1:54e�7 0:084 0:391

SRMB �1:20e�4 4:30e�7 4:33e�8 1:84e�7 0:101 0:428

CB �2:19e�4 2:94e�7 5:02e�8 1:21e�7 0:171 0:413

DGP 2
FRS 1:17e�4 6:20e�8 3:52e�8 3:20e�8 0:568 0:516

FRN 3:81e�5 6:07e�8 1:19e�8 1:99e�8 0:195 0:328

FRC 9:04e�5 7:74e�8 2:46e�8 3:27e�8 0:318 0:422

FRM 7:17e�5 6:37e�8 2:21e�8 3:00e�8 0:346 0:470

MAB 1:93e�5 1:05e�7 1:70e�8 3:52e�8 0:162 0:335

MATD 4:84e�5 9:73e�8 1:83e�8 3:34e�8 0:188 0:344

SRTD 2:73e�5 6:93e�8 1:26e�8 2:45e�8 0:181 0:353

SRB �3:09e�5 6:39e�8 6:97e�9 1:67e�8 0:109 0:261

SRMTD 1:16e�5 7:84e�8 1:09e�8 2:68e�8 0:139 0:342

SRMB �2:13e�5 8:90e�8 1:42e�8 2:93e�8 0:160 0:329

CB �1:22e�4 4:08e�8 2:95e�9 1:11e�8 0:072 0:273

DGP 3
FRS 8:52e�5 3:06e�8 1:54e�8 1:09e�8 0:503 0:356

FRN 1:07e�5 2:31e�8 5:38e�9 7:06e�9 0:233 0:306

FRC 6:37e�5 3:42e�8 1:08e�8 1:06e�8 0:316 0:311

FRM 5:23e�5 2:99e�8 8:60e�9 8:79e�9 0:288 0:294

MAB 1:09e�5 4:17e�8 7:54e�9 1:22e�8 0:181 0:292

MATD 1:61e�5 4:05e�8 8:41e�9 1:46e�8 0:208 0:361

SRTD �1:44e�5 3:37e�8 5:48e�9 1:26e�8 0:163 0:374

SRB �2:92e�5 2:63e�8 3:33e�9 5:60e�9 0:127 0:213

SRMTD �1:63e�5 3:27e�8 5:24e�9 1:27e�8 0:161 0:389

SRMB �2:08e�5 3:92e�8 6:96e�9 1:08e�8 0:178 0:275

CB �8:75e�5 1:93e�8 1:17e�9 4:99e�9 0:061 0:259

MSES
�

l D
1

N

NX
iD1

�
S�i;l � S

MC
l

�2
(23)

MSE
NS
l D

1

N

NX
iD1

�
NSi;l � S

MC
l

�2
(24)

Simulation results
Table XII shows the MSE obtained with both procedures and the sample-splitting approach (see Table A.I.
in Appendix A for more details on the rules’ abbreviations). The RMSE columns give the ratio of the mean
squared errors computed with the bootstrap approach and the sample-splitting approach. They are computed in the
following way:

RMSES
�

l D MSES
�

l =MSESS
l

(25)
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Figure 7. Out-of-sample mean excess return for the various strategies, obtained by Monte Carlo simulation for DGP1. On the x-
axis, time horizon (in days) used to compute the performance. On the y-axis, daily mean excess returns. Top: filter rules (solid,
FRS; dashed, FRM; dotted, FRC; dashed-dotted, FRN). Middle: moving average and CB rules (solid, MAB; dashed, MATD;
dotted, CB). Bottom: S&R rules (solid, SRTD; dotted, SRMTD; dashed, SRB, dashed-dotted, SRMB)

Figure 8. For DGP1, comparison between the true distribution of the out-of-sample predictive ability (in grey—obtained via
MC simulation with 250 samples) and the bootstrap estimation of this distribution (transparent—i.e. the empirical distribution of
.1=Vb/ �

PVb
tD1

Q.R�
b;t
; N��
b;l
/), based on 100 resamples from a single sample of the MC simulation. On the horizontal axis: mean

excess returns. The rules are displayed in the following order, from top left to bottom right: FRS, FRN, FRC, FRM, MAB, MATD,
SRTD, SRB, SRMTD, SRMB and CB

RMSE
NS
l D MSE

NS
l =MSESS

l
(26)

A ratio below 1 indicates that our bootstrap approach has an MSE lower than that obtained with the sample-splitting
procedure. We see that, for all trading rules and all DGP, our procedure decreases the MSE sharply compared to a
sample-splitting procedure, for all three DGPs and the 11 trading strategies. MSES

�

l decreases in the range between
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43.2% (for the simple filter rule in DGP2) to 93.9% (for the channel breakout rule in DGP3). Similarly, MSE
NS
l

decreases in the range between 37.4% (for the filter rule with constant holding period in the first DGP) and 80.8% (for
the S&R rule with modified time delay). Overall, the decrease is stronger with the S�

l
estimator (the average decrease

over all rules and all DGP is 80.7% for MSES
�

l , whereas it is 63.9% for MSE
NS
l ). Therefore, it seems more interesting

to use S�
l

instead of NSl , to estimate the predictive ability. These results illustrate the superiority of our procedure over
the sample-splitting procedure. In particular, our bootstrap estimators of the predictive ability are much more efficient
than that obtained by splitting the samples into two parts.

Figure 7 shows the out-of-sample mean excess returns of the rules for time horizons of varying lengths (from 1
day to 500 days), for DGP1. We see that the mean excess returns vary a lot for small time horizons, before converging
to some values for horizons longer than 100 days. A similar effect is observed for the two other DGPs (they have
been omitted for space considerations but are available upon request to the authors). It illustrates that, for ARMA-
GARCH-type models, the predictive abilities of the tested rules appear independent of the time horizon considered.
Indeed, because the log returns are driven by a stationary process, the only thing that matters is the sample size, of
both the training set and the validation set: the larger the training set, the more accurately we can capture the time
dependencies in our estimation of the parameters; the larger the validation set, the more precisely we are able to
estimate the expected value of the score function, for a given training sample size. Hence, using a rolling window
with shorter subsamples of the training and validation sets should not improve the assessment of the true predictive
ability. It would only increase the volatility of the estimator of the predictive ability. Hence, if the data follow exactly
the specified GARCH process, none of the tested rules can beat the BH strategy, similar to the conclusions of our
empirical study.

Finally, we pick at random one of the 250 samples. Then, we compare the Monte Carlo distribution of the predictive
ability (obtained on the 250 samples) with that obtained with the bootstrap procedure on this particular sample.
Figure 8 shows this comparison for the 11 trading rules considered. We see that both distributions are quite close
to one another. This illustrates the fact that our bootstrap procedure can be a good substitute for the Monte Carlo
simulation, impossible to perform in practice without supposing a distribution for the stochastic shocks.

CONCLUSION

In this paper, we introduce a robust method to compute an estimator of the out-of-sample predictive ability of a
trading rule. This measure is useful to compare different trading rules between each other, taking into account the
parameter selection. More precisely, we adapt a .632 bootstrap resampling procedure to the time series context. This
enables us to draw non-overlapping training sets and validation sets of data. We propose two ways to resample the
data: either with a residuals-based resampling when some models can correctly fit the data, or with a block resampling
when the modeling task is too difficult. With these resampling techniques, we are able to keep intact the intrinsic
time dependencies of the original data. Moreover, we provide a way to create bootstrap in- and out-of-sample time
series of interest rate data, if a mean excess return criterion or a Sharpe ratio criterion is used as a measure of the
rules’ performance.

Our method is an alternative that has several advantages over the simple sample-splitting technique (with or with-
out rolling window) traditionally used by researchers (see, for example, Sullivan et al., 1999; Lukac et al., 1988;
Allen and Karjalainen, 1999; Bajgrowicz and Scaillet, 2012; Kuang et al., 2014). First, the obtained results are not
dependent on some subjective cut-off points, because we use the whole dataset in the resampling procedure. Second,
our bootstrap estimation is more robust because it does not rely on a single realization of a stochastic process. Instead,
it offers a convenient way to generalize the splitting of the dataset into multiple subsamples exhibiting the same time
dependencies and the same length. Moreover, thanks to the random resampling procedure, it incorporates new ‘sce-
narios’ in our measure of performance. These scenarios are useful to assess a trading rule on artificial but totally new
data. Throughout a residuals-based resampling, we create new patterns of (stochastic) shocks and simultaneously
keep the time dependencies intact. In this configuration, we can combine a large number of different pasts (our boot-
strap training sets) with a large set of different futures (the bootstrap validation sets), although these sequences of
events do not exist in our original time series.

We illustrate our methodology on three datasets (IBM, Microsoft and Dow Jones Industrial Average index daily
stock returns), by comparing 11 trading rule specifications (which encompass 11,668 different parametrizations). We
identify the best in-sample parametrizations and show that none of these parametrized rules seems able to beat a
simple buy-and-hold strategy on out-of-sample data. Our results are in line with studies (Bajgrowicz and Scaillet,
2012; Sullivan et al., 1999; Brock et al., 1992; Kuang et al., 2014) that detected an in-sample superior performance
of some trading rules but could not reproduce these results on out-of-sample data (Allen and Karjalainen, 1999;
Bajgrowicz and Scaillet, 2012; Kuang et al., 2014). These results appear to be robust to the resampling method used
(block or residuals-based). However, these results say nothing about trading rule profitability in other markets, using
other trading frequencies or more sophisticated rules.
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One could argue, as in Bajgrowicz and Scaillet (2012), that shorter time horizons should be considered (e.g. a
monthly basis) to better stick to practitioners’ practices, instead of the very long time intervals that are used (i.e. 12
years of training sets and on average 6 years of validation sets). This is clearly one limitation of the empirical part of
our study. Nevertheless, our procedure could be easily adapted to these requirements by using a smaller initial dataset.
However, as pointed out above (and illustrated by Figure 7), if the returns are driven by some stationary processes
this exercise is pointless: reducing the sample size will only increase the variability of the results and will decrease
the precision of the estimated parameters.

Eventually, a simulation study suggests that, under the assumption of a correctly specified model, our estimator
of the out-of-sample performance is fairly good. On one side, our simulations show that our bootstrap measure of
the performance is much better than the sample-splitting measure, in terms of MSE. On the other side, we observe
that the bootstrap distribution of the out-of-sample performance is very close to the true distribution. These results
illustrate that our bootstrap procedure is quite accurate and can be useful in ranking trading strategies, as well as in
measuring their predictive ability.

Last, note that we do not provide a valid statistical test to compare our bootstrap estimator of the prediction error
across all rules. We believe that developing an extension of the reality check test might be a solution to this problem.
However, it raises statistical questions that are beyond the scope of this paper. Nevertheless, such an interesting topic
might be investigated in further research.

APPENDIX A: TRADING RULE DESCRIPTIONS AND PARAMETERS

Filter rules

A filter rule generates buy and sell signals when it detects a sufficient large price reversal, compared to an upper
(respectively lower) threshold. The filter rule is supposed to smooth the price shift detection to ignore too small
price variations, considered as noise. When we record a sufficient decrease, compared to the upper threshold, we sell
the asset because it indicates a downward trend. Similarly, when we register a sufficient increase compared to the
lower threshold, we buy the asset to benefit from the upward trend. We use two different methods to compute these
threshold along time. The first method consists in taking the most recent price that is higher (respectively lower) than
its e preceding closing prices. The second one consists in taking the highest (respectively lowest) price registered
while holding a long (respectively short) position in the asset. Every time the position is changed, upper and lower
thresholds are updated. Other features are also included: a minimal holding period (i.e. when entering a position, we
are obliged to keep it at least c time periods) or the possibility of a neutral position (i.e. the possibility of not having
any position in the asset).

x D change in security price (percentage) required to initiate a long position,
y D change in security price (percentage) required to initiate a short position,
e D parameter entering the second definition of extrema (number of previous days that should be higher (lower) than
the subsequent high (low) used to initiate a position),
c D minimum holding period,
x D ¹0:005; 0:01; 0:015; 0:02; 0:025;
0:03; 0:035; 0:04; 0:045; 0:05; 0:06; 0:07; 0:08; 0:09; 0:1; 0:12; 0:14; 0:16; 0:18; 0:2;

0:25; 0:3; 0:4; 0:5º;
y D ¹0:005; 0:01; 0:015; 0:02; 0:025; 0:03; 0:04; 0:05; 0:075; 0:1; 0:15; 0:2º;

Table A.I. Correspondence table between rules abbreviations and their full descriptions

Abbreviation 1 Abbreviation 2 Full name of the rule

FRS Filter rule simple Filter rule, simple extrema
FRN Filter rule neutral Filter rule, simple extrema, neutral position
FRC Filter rule constant Filter rule, simple extrema, constant holding
FRM Filter rule modified Filter rule, modified extrema
MATD MA time delay moving average, time delay
MAB MA filter band moving average, filter band, constant holding period
SRTD S&R time delay S&R, simple extrema, time delay, constant holding period
SRB S&R filter band S&R, simple extrema, filter band, constant holding period
SRMTD S&R modified time delay S&R, modified extrema, time delay, constant holding period
SRMB S&R modified filter band S&R, modified extrema, filter band, constant holding period
CB Channel breakout Channel breakout, constant holding period, filter band, simple extrema
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e D ¹1; 2; 3; 4; 5; 10; 15; 20º;
c D ¹5; 10; 20; 25; 50º

Moving averages rules

There are numerous specifications of trading rules based on moving averages, but the most well known are the mov-
ing average crossover rules. We focus on that type of rule, where buy and sell signals are generated by crossovers
of a slow moving average by a fast moving average. A fast moving average is based on fewer days than a slow
moving average. The moving average with a window size n for a particular time t is simply the arithmetic mean of
the closing prices over the previous n days, including the current day. We include two refinements of this rule: a band
filter, which imposes to the slow moving average to be b% higher (lower) than the fast moving average, to generate a
signal; and a time delay, which imposes to the signal to persist d days before effectively entering a new position (in
the case of a buy signal, the slow moving average must be above the slow one d days before effectively buying).

n Dnumber of days in a moving average,
b D band filter size (%),
d D number of days for the time delay filter,
c D minimum holding period,
n D ¹2; 5; 10; 15; 20; 25; 30; 40; 50; 75; 100; 125; 150; 200; 250º;
b D ¹0:001; 0:005; 0:01; 0:015; 0:02; 0:03; 0:04; 0:05º;
d D ¹2; 3; 4; 5º;
c D ¹5; 10; 20; 25; 50º

Support and resistance rules

Similarly, the support and resistance (S&R) rule generates buy and sell signals when the closing price is higher
(lower) than the highest (lowest) price over the previous n days. An alternative definition of high and low, as in the
filter rule, can be used. Similar to the moving average rules, we impose a band filter or a time delay.

n D number of days in the support and resistance range,
e D parameter entering the second definition of extrema (number of previous days that should be higher (lower) than
the subsequent high (low) used to initiate a position),
b D band filter size (%),
d D number of days for the time delay filter,
c D minimum holding period,
n D ¹2; 5; 10; 15; 20; 25; 50; 100; 150; 200; 250º;
e D ¹2; 3; 4; 5; 10; 20; 25; 50; 100; 200º;
b D ¹0:001; 0:005; 0:01; 0:015; 0:02; 0:03; 0:04; 0:05º;
d D ¹2; 3; 4; 5º;
c D ¹5; 10; 25; 50º

Channel breakouts rule

A channel breakouts rule is based on the difference between local minimum and local maximum prices. A channel
is said to occur when the highest price over the previous n days (excluding the price at time t) is within x% of the
lowest price over the same n previous days. A breakout occurs when the price at time t is higher or lower than these
high or low prices, generating buy or sell signals.

n D number of days of the channel,
x D difference between high and low prices (%),
b D band filter size (%),
c D minimum holding period,
n D ¹5; 10; 15; 20; 25; 50; 100; 150; 200; 250º;
x D ¹0:005; 0:01; 0:02; 0:03; 0:05; 0:075; 0:1; 0:15º;
b D ¹0:001; 0:005; 0:01; 0:015; 0:02; 0:03; 0:04; 0:05º;
c D ¹5; 10; 25; 50º
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APPENDIX B: COMPLEMENTARY DATA ANALYSIS

For the IBM time series, a graphical analysis revealed that no sample autocorrelation function (SACF) seems signif-
icantly different from zero. LM tests up to lag 20 could not reject the null hypothesis of no serial autocorrelation.
For the MSFT and DJIA time series, we tried different ARMA models with various combinations of p and q, for
p D 0; : : : ; 3 and q D 0; : : : ; 3. We used the Akaike information criterion, as well as p-values of LM tests, to select
the combination that best removed the time dependencies. We performed the LM tests with 8 and 11 lags. Also, we
check for a possible unit-root in the mean process by using augmented Dickey–Fuller tests. We conclude that the
best model for MSFT is an ARMA(2,2)-GARCH(1,1) model, whereas the best model for DJIA is an ARMA(3,3)-
GARCH(2,1) model. For the DJIA, even if a small time dependency in the mean remains, we prefer a parsimonious
model rather than a more complicated one. Further details regarding the performed tests are available on request from
the authors.

APPENDIX C: INTEREST RATE MODEL

In our application, we use Diebold and Li’s 2006 dynamic Nelson–Siegel model. We describe in short the estimation
method and the hypotheses of this model.

The Nelson–Siegel model gives us, at a given time, the entire yield curve, i.e. yield values as a function of the
maturity. Diebold and Li (2006) suppose that this relationship evolves over time and can be described by the following
equation:

r
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r
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r�r
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where � r is the maturity, and œr , ˇr1, ˇr2 and ˇr3 are parameters. œr is fixed over time and chosen equal to the value that

maximizes
�
1�e�œ

r�r

œr �r
� e�œ

r�r
�

for � r equal to 30 months. They also argue that the parameters ˇri;t , i D 1; : : : ; 3

can be interpreted as factors corresponding to the level, slope and curvature of the yield curve. They propose to model
these factors using AR(1) models. More formally, they suppose that

ˇri;t D ˛
r
i ˇ

r
i;t�1 C �i;t ; i D 1; : : : ; 3 (C2)

where ˛ri is the AR parameter of factor i and �i;t are i.i.d. mean-zero stochastic innovations of the i th factor at time
t . Diebold and Li (2006) propose the following procedure to obtain estimators of ˇri;t and ˛ri , i D 1; : : : ; 3 and
t D 1; : : : ; n:

1. for t D 1; : : : ; n, get OLS estimators of ˇri;t , i D 1; : : : ; 3;

2. fit AR(1) models on the obtained series of Ǒri;t , i D 1; : : : ; 3.

In our application, we are interested in the yield for a single maturity. However, we need several yields (at least
three) at each time t , to obtain an OLS estimator of ˇri;t , i D 1; 2; 3. Therefore, we add 10 other daily time series with
different maturities (1, 3, 6, 12, 24, 36, 60,84, 120 and 240 months), which are Treasury rates time series extracted
from the web site of the US Federal reserve (http://www.federalreserve.gov). Figure C.1 shows these interest rates.
Figure C.2 shows the estimated latent factors using this method and these datasets. Figure C.3 shows the residuals of
this model. We observe that, for the daily maturity, the data during the last financial crisis (2008–2010) seem not well
filtered. This is a limitation of this approach.

Using augmented Dickey–Fuller tests at various lags, we cannot reject the hypothesis of a unit root in the
processes driving the latent factors. A random walk could be a suitable model, but we prefer to use an AR(1)
model, with its parameters estimated using classical maximum likelihood techniques. Table C.I shows the estimated
parameters. Despite the presence of heteroskedasticity, we prefer to use a parsimonious model to stay in line with

Table C.I. Estimated parameters of AR(1) models for the
various latent factors

Factor Constant AR(1) Parameter ADF p-value

ˇr
1;t

0.0136 0.9969 0.3177
ˇr
2;t

�0.0036 0.9988 0.6650
ˇr
3;t

�0.0143 0.9961 0.2981

Note: The last column gives the p-values of the augmented Dickey–
Fuller (ADF) tests with 8 lags (approximately the logarithm of the size
of our time series).
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Figure C.1. Treasury rates for various maturities (1 day, 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years,
10 years and 20 years) for the period 20 September 2002 to 16 May 2014

Figure C.2. Time series of estimated latent factors for level ( Ǒr
1;t

, dotted), slope ( Ǒr
2;t

, solid) and curvature ( Ǒr
3;t

, dash-dotted)
parameters, t D 1; : : : ; n

Figure C.3. Response surface of the residuals for the interest rates model: in abscissa, the maturity; in ordinate, time

Diebold and Li’s approach. In our simulation framework, we resample the empirical residuals to create new series of
stochastic innovations. To prevent the yields becoming negative, we also apply the following constraint on the slope
coefficients:

ˇr2;t �
�ˇr1;t � v2 � ˇ

r
3;t

v1
(C3)

where v1 D 1�e�œ
r�r

œr�r
and v2 D 1�e�œ

r�r

œr�r
� e�œ

r�r . When ˇr2;t does not fulfill this condition, we simply put its value

equal to
�ˇr
1;t
�v2�ˇ

r
3;t

v1
.
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œr is chosen equal to 0.0598 throughout our application and is simply obtained by solving

� re�œ
r�r

œr� r
� � r

.1 � e�œ
r�r /

.œr/2.� r/2
C � re�œ

r�r D 0

for � r D 30 (in months).

APPENDIX D: ADDITIONAL RESULTS

First, some words regarding the .632 weights. As explained earlier (‘Resampling procedure’), the factors .632 and
.368 arise because S�

l
is too pessimistic (for a prediction error, S�

l
�S0

l
will be too large, by a factor of approximately

1/.632). Indeed, in practice, it is likely that in-sample and future data are very ‘close’ (i.e. similar) to each other. If
we use S�

l
as an estimator of the predictive ability, we consider only the situations where the predicted points are

far from their training set. Conversely, if we use only S0
l

, we consider only the situation where the predicted points
are also in the training set. Multiplying by .632 corrects roughly for this bias (see Efron and Tibshirani, 1997, for
a more theoretical discussion on the subject). Nevertheless, when the considered rule overfits much of the data, S0

l

is artificially too low (still for a prediction error), driving NSl to be too low as well. To offset this effect, Efron and
Tibshirani (1997) proposed the use of w.�/ instead of .368.

As explained in the ‘Methodology’ section, � must be viewed as the expected error rate when predictors and
predicted variables are independent, i.e. as if we were predicting using an independent random process. In the case of
a binary classification problem, Efron and Tibshirani (1997) give us the following expression for �:

� D p1.1 � q1/C .1 � p1/q1 (D1)

Table D.I. Intermediate parameters for the computation of NSC
l

, for the three considered time series

Trading rule IBM MSFT DJIA

� wres wblock � wres wblock � wres wblock

Filter rule simple 4:61e�4 1 1 3:55e�4 0.632 0.632 6:706e�5 1 1

Filter rule neutral 4:04e�4 1 1 2:13e�4 1 1 6:59e�5 1 1

Filter rule constant 4:63e�4 1 1 4:76e�5 1 1 5:336e�5 1 1

Filter rule modified 9:9e�5 1 1 3:1e�4 1 1 5:852e�5 1 1

MA time delay 8:71e�5 1 1 5:28e�5 1 1 2:275e�5 1 1

MA filter band 9:5e�5 1 1 2:59e�5 1 1 3:058e�5 1 1

S&R time delay 2:7e�6 1 1 1:47e�5 1 1 2:279e�5 1 1

S&R filter band 1:54e�5 1 1 �1:51e�4 1 1 6:5e�6 1 1

S&R modified time delay 3:6e�6 0.97 1 �7:9e�6 1 1 2:214e�5 1 1

S&R modified filter band 2:11e�5 1 1 �2:03e�4 1 1 4:288e�5 1 1
Channel breakout �2:1e�4 1 1 �1:74e�4 1 1 �6:88e�6 1 1

Table D.II. Values of the mean excess return (MER) and the Sharpe ratio (SR), for the IBM daily time series, obtained using a
block bootstrap method. Resampled interest rates are correlated with the bootstrap returns. The average block length is 10

Trading rule MER SR

S0;�
l

S�
l

NSl NSC
l

S0;�
l

S�
l

NSl NSC
l

Filter rule simple 5:610e�4 1:649e�4 3:164e�4 1:649e�4 0:0395 0:012 0:022 0:012

Filter rule neutral 4:253e�4 �0:399e�4 1:240e�4 �0:399e�4 0:037 �0:008 0:006 �0:008

Filter rule constant 7:129e�4 0:670e�4 2:495e�4 0:670e�4 0:050 0:005 0:018 0:005

Filter rule modified 7:123e�4 0:446e�4 2:557e�4 0:446e�4 0:050 0:003 0:018 0:003

MA filter band 5:734e�4 �1:380e�4 0:757e�4 �1:380e�4 0:040 �0:010 0:006 �0:010

MA time delay 5:089e�4 �1:141e�4 0:883e�4 �1:141e�4 0:036 �0:008 0:007 �0:008

S&R time delay 4:637e�4 �0:554e�4 0:461e�4 �0:554e�4 0:037 �0:004 0:003 �0:004

S&R filter band 3:632e�4 �1:299e�4 0:928e�4 �1:299e�4 0:030 �0:012 0:006 �0:012

S&R modified time delay 4:436e�4 �0:253e�4 0:769e�4 �0:253e�4 0:035 �0:003 0:005 �0:003

S&R modified filter band 4:637e�4 �0:554e�4 1:461e�4 �0:554e�4 0:037 �0:007 0:009 �0:007

Channel breakout 0:889e�4 �3:119e�4 �2:037e�4 �3:119e�4 0:007 �0:025 �0:016 �0:025

Copyright © 2015 John Wiley & Sons, Ltd J. Forecast. 35, 347–372 (2016)



370 J. Hambuckers and C. Heuchenne

Table D.III. Values of the mean excess return (MER) and Sharpe ratio (SR), for the MSFT daily time series, obtained using a
block bootstrap method. Resampled interest rates are correlated with the bootstrap returns. The average block length is 10

Trading rule MER SR

S0;�
l

S�
l

NSl NSC
l

S0;�
l

S�
l

NSl NSC
l

Filter rule simple 4:078e�4 �1:600e�4 �0:024e�4 �0:024e�4 0:024 �0:009 0:000 0:000

Filter rule neutral 2:891e�4 �1:510e�4 �0:281e�4 �1:510e�4 0:025 �0:011 �0:003 �0:011

Filter rule constant 6:961e�4 �0:655e�4 1:958e�4 �0:655e�4 0:041 �0:004 0:012 �0:004

Filter rule modified 6:466e�4 �1:456e�4 0:903e�4 �1:456e�4 0:038 �0:008 0:005 �0:008

MA filter band 5:976e�4 �2:181e�4 0:276e�4 �2:181e�4 0:035 �0:013 0:001 �0:013

MA time delay 5:241e�4 �1:645e�4 0:691e�4 �1:645e�4 0:031 �0:010 0:004 �0:010

S&R time delay 4:600e�4 �1:028e�4 0:601e�4 �1:028e�4 0:030 �0:006 0:004 �0:006

S&R filter band 3:782e�4 �2:074e�4 �0:374e�4 �2:074e�4 0:024 �0:013 �0:002 �0:013

S&R modified time delay 4:252e�4 �0:982e�4 0:648e�4 �0:982e�4 0:027 �0:007 0:003 �0:007

S&R modified filter band 4:600e�4 �1:028e�4 0:490e�4 �0:502e�4 0:030 �0:013 �0:001 �0:009

Channel breakout 1:589e�4 �2:826e�4 �0:707e�4 �2:826e�4 0:010 �0:018 �0:005 �0:018

Table D.IV. Values of the mean excess return (MER) and Sharpe ratio (SR), for the DJIA daily time series, obtained using a block
bootstrap method. Resampled interest rates are correlated with the bootstrap returns. The average block length is 10

Trading rule MER SR

Trading rule S0;�
l

S�
l

NSl NSC
l

S0;�
l

S�
l

NSl NSC
l

Filter rule simple 1:197e�4 �0:119e�4 0:468e�4 �0:119e�4 0:0252 �0:002 0:010 �0:002

Filter rule neutral 0:953e�4 �0:235e�4 0:416e�4 �0:235e�4 0:028 �0:010 0:005 �0:010

Filter rule constant 1:594e�4 �0:158e�4 0:470e�4 �0:158e�4 0:032 �0:003 0:009 �0:003

Filter rule modified 1:578e�4 �0:252e�4 0:482e�4 �0:252e�4 0:032 �0:004 0:012 �0:004

MA filter band 1:432e�4 �0:602e�4 0:058e�4 �0:602e�4 0:028 �0:012 0:001 �0:012

MA time delay 1:331e�4 �0:571e�4 0:086e�4 �0:571e�4 0:026 �0:011 0:002 �0:011

S&R time delay 1:260e�4 �0:645e�4 0:021e�4 �0:645e�4 0:025 �0:014 0:000 �0:014

S&R filter band 0:712e�4 �0:577e�4 �0:067e�4 �0:577e�4 0:017 �0:013 �0:002 �0:013

S&R modified time delay 1:211e�4 �0:640e�4 0:011e�4 �0:640e�4 0:024 �0:013 0:000 �0:013

S&R modified filter band 1:260e�4 �0:645e�4 �0:263e�4 �0:645e�4 0:025 �0:014 �0:006 �0:014

Channel breakout 0:323e�4 �0:611e�4 �0:219e�4 �0:611e�4 0:010 �0:015 �0:004 �0:015

where p1 is the observed proportion of the predicted variable taking value 1 and q1 is the proportion of the predic-
tions taking value 1. This is similar to computing the expected value of the score function (here, a misclassification
rate) when we predict with a Bernoulli process of parameter q1, the particular realization of another binomial
process of parameter p1. Transposing this idea to our problem, � is an estimator of the expected mean excess
return when the predictions (of future ups, downs or neutral market variations) are made with a three-dimensional
categorical random process with parameters q1, q2 and 1 � q1 � q2 (n is the number of predictions on the initial
data, q1 is the proportion of predicted up and q1 is the prediction of predicted down, both in the initial sample).
To compute this quantity, we generate randomly 5000 series of n D 2933 trading positions (1 if we are long, �1
if we are short, 0 if we are out of the market) that follow this categorical process. With these positions in hand,
we can compute a mean excess return for each scenario and take the average. The obtained results can be found in
Table D.I (Appendix D).

Values of Jres (for residuals-based bootstrap) and Jblock (for block bootstrap) are obtained with equation (17).
When the computed value is above 1, we simply take J equal to 1: J 0 D min¹J; 1º. Indeed, this indicates that
the difference between in-sample and out-of-sample performance is higher than the performance based on a random
strategy, suggesting that the overfitting is quite high. Conversely, if J is lower than 0, we take J 0 D 0. This is also
what is proposed in Efron and Tibshirani (1997) to ensure that J is between 0 and 1. The values of wres and wblock for
the Sharpe ratio are identical. They can be obtained upon request from the authors (they have been omitted for space
considerations).

In Tables D.II–D.IV we present the results obtained with the block bootstrap procedure. These results are similar to
those obtained with the mean excess return criterion. These results suggest that the supposed models in the residuals-
based resampling procedure are correct.
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