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Addressing complex ecological research questions often requires complex empirical experiments. How-
ever, due to the logistic constraints of empirical studies there is a trade-off between the complexity of
experimental designs and sample size. Here, we explore if the simulation of complex ecological exper-
iments including stochasticity-induced variation can aid in alleviating the sample size limitation of
empirical studies. One area where sample size limitations constrain empirical approaches is in studies
of the above- and belowground controls of trophic structure. Based on a rule- and individual-based sim-

Is?r; V:;;;d:i:ze ulation model on the effect of above- and belowground herbivores and their enemies on plant biomass,
Replication we evaluate the reliability of biomass estimates, the probability of experimental failure in terms of miss-

ing values, and the statistical power of biomass comparisons for a range of sample sizes. As expected,
we observed superior performance of setups with sample sizes typical of simulations (n=1000) as com-
pared to empirical experiments (n=10). At low sample sizes, simulated standard errors were smaller than
expected from statistical theory, indicating that stochastic simulation models may be required in those
cases where it is not possible to perform pilot studies for determining sample sizes. To avoid experimen-
tal failure, a sample size of n=30 was required. In conclusion, we propose that the standard tool box of
any ecologist should comprise a combination of simulation and empirical approaches to benefit from the

Individual-based simulation model
Experimental design

Statistical power

Stochasticity

realism of empirical experiments as well as the statistical power of simulations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In order to test hypotheses and theories, ecology fundamen-
tally relies on manipulative experiments ranging from controlled
conditions, such as in the lab or in greenhouses, to conditions as
uncontrolled as in the field (Scheiner, 2001). However, the increas-
ing complexity of ecological questions over the past decades, e.g.
in the areas of multitrophic interactions and above-belowground
ecology, has challenged the logistic constraints of empirical exper-
iments (Peck, 2008). These constraints usually result in a trade-off
between experimental complexity in terms of number of treat-
ment combinations and sample size at the treatment level that
empiricists can deal with. Simulating experiments in the computer
could solve at least a part of this dilemma (Peck, 2004, 2008). Sim-
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ulations are also subject to constraints due to computing power
limitations, but these allow much greater complexity-sample size
combinations than the logistic constraints of empirical experi-
ments. The basis for simulated experiments is rule- or code-based
models that recreate the relevant features of an ecological sys-
tem (Peck, 2008), often considering individuals, time and/or space
explicitly (Grimm et al., 2005). In principle, the experimental design
of simulated experiments parallels that of empirical experiments,
e.g. ANOVA-type designs. Yet, assuming that all model parame-
ters can be estimated from empirical data or expert knowledge,
simulated experiments can deal with a greater number of facto-
rial treatment combinations while retaining greater numbers of
replicates.

The major aim of the present study was to explore whether the
effort of developing a simulation model is justified when at the
same time an empirical experiment of the same complexity could
be performed, albeit with smaller sample size. One derived aim
was to investigate the relationship between sample size and exper-
imental failure, referring to those cases where all plants had died
at the end of all experimental replicates generating only missing
values. The second derived aim was to determine how the relation-
ship between simulated standard errors and sample size deviates
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from statistical expectations. To reach these aims, we compared the
output reliability and the statistical power of simulated exper-
iments with numbers of replicates typical of computer sim-
ulations and empirical setups, respectively. This comparison
was entirely based on simulation results from the rule-based
ABove-BElowground interactions model ABBE (Meyer et al., 2009).
ABBE has been developed to assess the relative impacts of herbi-
vores and higher trophic levels on plant shoot and root biomass in
above- and belowground food webs. ABBE includes environmen-
tal, demographic, and individual stochasticity (Table 1). Therefore,
output values vary among replicates reflecting natural variation.
The magnitude of this stochasticity-induced variation of biomass
values in the model matched observed levels of variation (see for-
mal validation in Meyer et al., 2009). This variation gave us the
opportunity to compare the impact of different sample sizes on the
reliability of plant biomass estimates derived from the model out-
put. By focusing on measures of variability in model output, our
approach goes beyond many model analyses that consider only
averages.

2. Methods
2.1. Simulating experiments with ABBE

ABBE considers aboveground trophic levels at the individual
level and belowground trophic levels at the population level, using
empirical data from Soler et al. (2005) for parameterization and
successful validation (Meyer et al., 2009). The greenhouse exper-
iment of Soler et al. (2005) consisted of potted plants with and
without root and shoot herbivores as well as parasitoids and
hyperparasitoids aboveground in a crossed design. The level of
replication was ten plants per treatment combination. In our
simulation model, we also designed a factorial experiment with
presence and absence of all trophic levels as treatments and
shoot biomass as the response. Understanding the determinants
of aboveground plant biomass is of great importance in both
fundamental ecology (e.g. diversity-function relationships) and
more applied agro-ecology (e.g. biological control). All ecologically
relevant treatment combinations were considered, excluding com-
binations where higher trophic levels were present without the
underlying trophic level(s) present, yielding 24 combinations in
total. We used non-parametric Mann-Whitney U-tests for the anal-
ysis of treatment effects since the assumptions of ANOVA were
violated.

Table 1
Sources of stochasticity in the simulation model ABBE.

Model parameters

Environmental stochasticity?
Extractable proportion of nutrients

Demographic stochasticity®
Mortalities of shoot herbivores, parasitoids, hyperparasitoids, root herbivores
and antagonists
Parasitism and hyperparasitism success probabilities
Reproduction probabilities of shoot herbivores and root herbivore antagonists
Proportion of female shoot herbivores
Egg viability of root herbivores

Individual stochasticity?
Initial body mass of shoot herbivores
Initial body mass of parasitoids
Initial body mass of hyperparasitoids

2 Implemented by drawing a random number from a Gaussian distribution with
mean and standard deviation given by the parameter values.

b Implemented by comparing a random number drawn from a uniform distribu-
tion with the corresponding parameter value; for parameter values see Meyer et al.
(2009).

2.2. Replication analysis

We first determined the standard error of biomass values and
the proportion of successful experiments at different levels of repli-
cation. Then, the statistical power of our biomass comparisons at
different levels of replication was analysed. We focused on num-
bers of replicates typical of greenhouse experiments as compared
to simulated experiments (about 10 and 1000, respectively). To
determine the standard error of biomass values, we recorded shoot
biomass at the end of each of a target number of replicate runs, rang-
ing from 2 to 50,000 runs. Then, we calculated the average shoot
biomass over the respective number of target replicate runs. We
repeated this procedure 100 times for each target number of repli-
cate runs and determined the standard deviation of the averages
over these 100 iterations. We dealt with missing values caused by
plant death in all target replicate runs by excluding the respective
iteration(s). The standard deviation of averages defines the standard
error of the mean SE=s*n—95, where s is the standard deviation of
one set of replicates and n is the number of replicates (Sokal and
Rohlf, 1995). We fitted this relationship to our data to identify what
our stochastic model can add to a statistical calculation of standard
errors thatis solely based on the envisaged number of replicates and
standard deviation of a study. This also enabled us to determine the
approximate minimum number of replicates that keeps the stan-
dard error as low as possible. To evaluate experimental failure, we
determined its inverse, the proportion of successful experiments,
where the plant survived until the end of the experiment in at least
one of the replicates, for different numbers of replicates ranging
from 2 to 50,000.

Then, we used the treatments with and without aboveground
parasitoids as an example to analyze the statistical power of the
Mann-Whitney U-test of biomass differences at different levels of
replication. We used the parasitoid comparison to obtain a bal-
anced design with equal numbers of treatment combinations in
both groups. The power calculation included the number of repli-
cate runs, the corresponding standard deviation of shoot biomass,
the significance level of 0.05, and the desired effect size § to be
detected. The effect size represented the difference in average
shoot biomass with and without parasitoids. We evaluated num-
bers of replicate runs ranging from 2 to 10,000, where a power of 1
was reached. We tested effect sizes between 0.5 and 4.0, includ-
ing the effect size of 2.43 g (shoot biomass) emerging from the
1000 replicate runs in Meyer et al. (2009). We also determined
those combinations of effect size and numbers of replicates that
are required for a power of more than 0.8, which is the gener-
ally promoted threshold for sufficient power (Crawley, 2007). Due
to different plant mortality with and without parasitoids, there
were different numbers of replicates for presence and absence of
parasitoids. We always used the smaller number of replicates to
obtain a conservative power estimate. We applied the power analy-
sis procedure for t-tests and adapted it to the Mann-Whitney U-test
used here by dividing the number of replicates by 0.955 (Lehmann,
1975).

3. Results

The modelled relationship between standard error and the
number of replicates followed the statistically expected negatively
asymptotic relationship with an R? of 0.996 when the first nine
data points were excluded (solid points and dashed line in Fig. 1).
The first nine data points were lower than expected from statis-
tical theory. For 10 replicates, the standard error was about 1.5g,
which is close to 10% of the average shoot biomass, and 10% of the
experiments failed (Fig. 1). Up to 100 replicates, a small increase
in number of replicates yielded a great reduction in standard error,
asymptotically approaching 0g at about 1000 replicates (Fig. 1).
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Fig. 1. The relationship between the standard error of shoot biomass (SE, calculated
as the standard deviation over 100 iterations of the averages over different numbers
of replicate simulation runs) and the number of replicates n and relationship for the
respective proportion of successful experiments (open circles). Experimental suc-
cess was defined as survival of the plant until the end of the experiment in at least one
of the replicates. Shoot biomass averages did not include zeros. Note the logarithmic
scale of the x-axis. Regression equations: SD=4.5098 * n=%5, R =0.996 (excluding
the first nine n values; dashed line); Success probability = 1.0056 * (1 — e~0-2241"n),
R?=0.96 (solid line).

When using 30 or more replicates, 100% of the experiments were
successful (Fig. 1).

The relationship between the statistical power of the compari-
son of shoot mass with and without aboveground parasitoids and
effect size and number of replicate runs was positive, as expected
(Fig. 2). To exceed the threshold of 0.8 for statistical power at any
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Fig. 2. Relationship between the statistical power of a Mann-Whitney U-test (con-
tour labels), the difference in mean shoot biomass with and without aboveground
parasitoids (effect size §), and the number of simulation runs of the model ABBE
per treatment combination (number of replicates). The power was calculated for
the significance level o =0.05 and the standard deviation of shoot biomass over all
replicates within every simulated level of replication (1, 10, 50, 100, 250, 500, 1000,
10,000). There were different number of replicates for presence and absence of par-
asitoids because only simulation runs with surviving plants were included in the
biomass record. We used the respective smaller number of replicates at a level of
replication in the power calculation. We present here the original number of simula-
tion runs on the x-axis because selecting the appropriate number of replicates must
also take plant mortality in the course of the experiment into account. At a level of
replication of 1000, the power is always greater than 0.8, while with 10 replicates,
only an effect size greater than 3.79 can be detected with a power of at least 0.8.
Note the logarithmic scale of the x-axis.

tested effect size, 1000 replicates were sufficient. With 10 repli-
cates, only an effect size greater than 3.79 g (or about 27% of the
average shoot biomass) can be detected with a power of at least 0.8.
The effect size in Meyer et al. (2009) of 2.43 g (about 18%) would
have been detected with a power of 1 with 1000 replicates and with
a power of 0.43 with 10 replicates.

4. Discussion

We show that simulation of experiments presents a powerful
research approach. It offers the opportunity to raise the sample size
beyond the logistic limits of greenhouse experiments while main-
taining natural levels of stochasticity. The complexity (24 treatment
combinations) and replication (1000 runs) of a typical simula-
tion experiment correspond to an experiment with 24,000 pots in
the greenhouse. Replication at the level of n=10 is typical (if not
overestimated) for greenhouse experiments, but 10% of the cases
failed and the power was far from the generally accepted mini-
mum threshold of 0.8 (Crawley, 2007). With 30 replicates or more,
there were no experimental failures anymore, with 100 replicates
or more, the standard error was asymptotically approaching 0, and
with more than 1000 replicates, experimental power was always
greater than 0.8. While 30 replicates may be feasible in practical
experiments by reducing the number of treatments, 1000 replicates
will not be realistic.

Part of our conclusion could have been reached from applying
statistical theory alone as the almost perfect fit of the standard
error relationship for sample sizes greater than ten exemplified
(Fig. 1). However, the standard error of simulated data was much
lower than expected from statistics for small replicate numbers,
highlighting the crucial role of model-inherent stochasticity (cf.
Table 1). Hence, at small sample sizes, it may not be sufficient
to estimate standard deviation from expert knowledge and apply
statistics to derive the minimum sample size. Rather, empirical pilot
studies or stochastic simulation models should be used in these
cases to obtain realistic estimates of required sample sizes. Espe-
cially for complex experimental designs, simulated experiments
have much to offer to ecologists. These allow exploration of the
complete design and can identify crucial treatment combinations
on which less complex empirical experiments can focus subse-
quently.

Simulated experiments will always depend on empirical works
for conceptualization, parameterization, and validation (Peck,
2004). This is particularly true for the realistic estimation of the
variance of parameter values, which ultimately determines sta-
tistical power and reliability. Therefore, we do not advocate the
replacement of the established practice of empirical experimenta-
tion in ecology by a less constrained simulation approach. Rather,
in line with Peck (2008) and van der Putten et al. (2009), our results
encourage a close coupling between empirical and simulated exper-
iments as an integral part of the standard tool box of teams of
ecologists. Probably the most promising way to efficiently couple
models and empirical work is pattern-oriented modeling (Grimm et
al., 2005), where model output is validated against multiple empir-
ically observed patterns simultaneously.

We see major implications for the generality of conclusions
drawn from simulations. Simulated systems will produce results
of at least the same generality as attributed to the greenhouse
experiment they are derived from. This can only be exceeded when
the parameter space of the model is explored beyond the standard
parameterization, for instance during a sensitivity analysis or when
applying the model to a new system. We conclude that simulated
and empirical experiments should more routinely be combined in
ecological studies to benefit from the best of both worlds: the inher-
ent realism of working with natural organisms and the statistical
power of simulations.
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