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Correcting the nondetection bias of angle count sampling
Tim Ritter, Arne Nothdurft, and Joachim Saborowski

Abstract: The well-known angle count sampling (ACS) has proved to be an efficient sampling technique and has been applied in
forest inventories for many decades. However, ACS assumes total visibility of objects; any violation of this assumption leads to
a nondetection bias. We present a novel approach, in which the theory of distance sampling is adapted to traditional ACS to
correct for the nondetection bias. Two new estimators were developed based on expanding design-based inclusion probabilities
by model-based estimates of the detection probabilities. The new estimators were evaluated in a simulation study as well as in
a real forest inventory. It is shown that the nondetection bias of the traditional estimator is up to −52.5%, whereas the new
estimators are approximately unbiased.

Résumé : L'échantillonnage par balayage sous angle constant (EAC) est une technique d'échantillonnage bien connue qui s'est
avérée efficace et qui a été appliquée dans les inventaires forestiers pendant de nombreuses décennies. Toutefois, l'EAC assume
que tous les objets sont visibles et toute violation de cette hypothèse entraîne un biais de non-détection. Nous présentons une
nouvelle approche qui consiste à adapter la théorie de l'échantillonnage selon la distance à l'EAC traditionnel pour corriger le
biais de non-détection. Deux nouveaux estimateurs ont été créés en complétant les probabilités d'inclusion basées sur le plan
de sondage par les probabilités de détection basées sur un modèle. Les nouveaux estimateurs ont été évalués par une étude de
simulation ainsi que par un inventaire forestier réel. Les résultatsmontrent que le biais de non-détection de l'estimateur traditionnel
peut atteindre −52,5 %, alors que les nouveaux estimateurs sont presque exempts de biais. [Traduit par la Rédaction]

Introduction
The well-known angle count sampling (ACS) (Bitterlich 1984,

1952) has proved to be an efficient sampling technique for forest
inventories. It is used in several national forest inventories, for
example, in Germany (Polley 2005; Kändler 2009), Finland (Tomppo
2009), and Austria (Gabler and Schadauer 2006; Schadauer et al.
2007).

However, ACS assumes total visibility of objects; any violation
of this assumption leads to a nondetection bias. Especially when
sampling rare objects such as admixed tree species or deadwood,
this bias is relatively more important.

Since rare objects are often of high ecological value, their fre-
quency is considered as an important indicator for assessing en-
vironmental sustainability of forest management. Therefore, the
development of efficient sampling techniques for surveying rare
objects gains more andmore importance nowadays. For example,
deadwood assessments are increasingly included in national-scale
forest inventories (Woodall et al. 2009a). As the “Volume of stand-
ing deadwood and of lying deadwood on forest and other wooded
land classified by forest type” is one of the “Pan-European criteria
and indicators for sustainable forest management” defined by the
4th Ministerial Conference on the Protection of Forests in Europe
(MCPFE 2002, 2003), 21 European countries have included dead-
wood sampling in their national forest inventories (Rondeux and
Sanchez 2010). In 30 countries around the globe, and on more
than a third of the world's forestland, deadwood is surveyed. Al-
most all of these countries use fixed area sampling (FAS) for sur-
veying standing deadwood. For sampling downed deadwood, FAS
and line intersect sampling (LIS) are the most popular methods
(Woodall et al. 2009a, 2009b). However, as the occurrence of dead-
wood in managed forests can be regarded as a stochastically rare
event with strong clumping and high local variability (Meyer

1999), FAS is a very inefficient sampling technique for deadwood
(Ritter and Saborowski 2012), as well as for other objects having
similar characteristics.

ACS may be a more efficient alternative, but suffers from the
nondetection bias. Gove et al. (2001), for example, reported about
severe problems with the nondetection bias when sampling
coarse woody debris with an adapted version of ACS. They consid-
ered a three-person sampling team to be optimal, because two of
three persons can traverse the plot in search of coarse woody
debris to overcome the problem of nondetection bias. However,
for large inventories this approach seems to be a rather inefficient
and cost intensive.

In this paper we present a new approach for correcting the
nondetection bias often occurring when sampling rare objects
with traditional ACS under limited sight conditions. For the pro-
posed estimators, the well-established theory on distance sam-
pling (Buckland et al. 2001, 2004) is combined with the estimator
for traditional ACS to account for the nondetection bias. Perfor-
mance of the estimators is examined in a field study in compari-
son with FAS as reference and in an exhaustive simulation study,
where the new estimators are applied to simulated tree patterns.

Sampling methods and estimators

Angle count sampling (ACS)
At each sample plot in an arbitrary forest, each tree has to be

targeted with the relascope. A tree is counted if its diameter at
1.3 m in height (DBH) appears to be wider then the marks of the
relascope.

According to Bitterlich (1984), the mean basal area of trees per
area unit in a forest (G) can be estimated from the number of
trees (zi) counted at a randomly selected point i and the basal
area factor (k).
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[1] Gi � zik

The basal area factor in m2·ha−1 per counted tree

[2] k � 10 000 sin2(�2) �
d2

4R2
�

�
4
d2

�R2

is given by the basal area density of a single tree in its marginal
circle, where d is the DBH of the tree (measured in cm), R is the
radius of the marginal circle (measured in m) and � is the corre-
sponding critical angle of the relascope. For a survey with n sam-
ple plots, G can be estimated as the sample mean of all Gi.

[3] ĜACS �
1
n�

i�1

n

Gi �
k
n�

i�1

n

zi

ĜACS is unbiased as long as the trees are completely recorded.
However, owing to limited sighting conditions some trees are not
detected and ĜACS is therefore biased in practice.

Point transect sampling (PTS)
The necessary sampling effort for PTS (Buckland et al. 2001) is

very small, because only the distances rij from the center of every
sample plot i to any object j sighted from that point have to be
measured (e.g., by laser rangefinder) and recorded. Please note
that, to keep in line with the notation of Bitterlich (1984), we use
a slightly different notation than Buckland et al. (2001); in partic-
ular, n is used instead of k for the number of sample plots andm is
used instead of n for the number of objects encountered. PTS is
usually applied for the estimation of the object density D (i.e., the
number of trees per area unit) based on the number of sighted
objects m, the number of point transects n, and the probability

[4] Pa �
2

�2 �0
�

rg(r)dr

that a randomly chosen object is detected within a circle of radius
� and area a = ��2. The crucial point at the concept of PTS is to
estimate the so-called detection function g(r), which gives the
probability that an object is detected given that its location has a
distance r from the sample point. The basic assumption is that an
object located directly at the sample point (r = 0) is detected with
certainty (g(0) = 1), and that the detection probability decreases
with increasing r. The parameters of g(r) can be estimated by
fitting a model to the distribution of observed r using a maxi-
mum likelihood approach. g(r) can be normalized to the prob-
ability density function f(r) � rg(r)/�0

�rg(r)dr. The PTS estimator
according to Buckland et al. (2001) is

[5] D̂ �
m

n��2P̂a

or equivalently

[6] D̂ �
mĥ(0)
2�n

where ĥ(0) � 1/�0
�rĝ(r)dr is actually the slope of the probability

density function f̂(r) evaluated at r = 0 (Buckland et al. 2001).
The best model for estimating g(r) is selected based on the min-

imum Akaike information criterion (AIC) (Buckland et al. 2001).

As shown in Buckland et al. (2001) and under the assumption
that the two variance components are uncorrelated, the variance
estimator

[7] var̂ (D̂) � D̂2�var̂ (m)

m2
�

var̂ [ĥ(0)]
[ĥ(0)]2 �

can be derived using the delta method (Seber 1982).
For the estimation of var(m), we applied amodel-based variance

estimator (Fewster et al. 2009) that simply becomes

[8] var̂ (m) �
1

n � 1�
i�1

n

(mi � m̄)2

because of the fact that, during a sampling campaign, every sam-
ple plot was visited exactly once. Please note that also in contrast
with Fewster et al. (2009) we use n instead of k for the number of
point transects and m instead of n for the number of observed
objects.

Using a half-normal detection function having a single param-
eter �2, the maximum likelihood estimator of var [ĥ(0)] becomes

[9] var̂ [ĥ(0)] �
1

m�̂4
�

[ĥ(0)]
2

m

(Buckland et al. 2001). For more details please refer to chapter 3.3
in Buckland et al. (2001).

Bias-corrected angle count sampling (BcACS) — Heuristic
approach

Estimator 1 (BcACS1)
If the distance rij from the center of plot i to every sighted tree j

that is supposed to be counted by ACS is measured, one may use
the first bias-corrected ACS estimator. Assuming g(r) as a model
for the distance-dependent detection probability and substituting

zi by �
j�1

zi 1
ĝ(rij)

in the ACS formula (eq. [3]), gives a bias-corrected

estimation of the basal area of trees per area unit G.

[10] ĜBcACS1 �
k
n�

i�1

n

�
j�1

zi
1

ĝ(rij)

Thus, each tree count is individually expanded by the tree's
inverse estimated detection probability to correct for the negative
bias introduced by overlooking trees.

Estimator 2 (BcACS2)
If the diameter of each counted tree is additionally measured,

one may use an alternative bias-corrected estimator that involves
the overall distance-independent probability (Paij) for themarginal
circle of each tree. Diameter and height of every counted tree
were measured for example in the repeated German national for-
est inventories to estimate volume increment (Polley 2005). In
that case, measuring all rij is not necessary as long as enough
measurements are taken to estimate g(r) or an estimate ĝ(r) is
known from an earlier inventory.

From the ACS theory it is known that the radius of themarginal
circle in which a tree with DBH dij is counted is given by
Rij � dij/(2�k) (see eq. [2]). Substituting � by Rij in eq. [4] yields

[11] Paij �
2

Rij
2 �0

Rij
rg(r)dr
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the probability to detect a tree with DBH dij from a random
point within its marginal circle. In other words, Paij

is the
mean detection probability of all trees that have DBH dij and
that are supposed to be counted. “Supposed to be counted”
means that the distance of that tree from the sample plot cen-
ter is smaller than or equal to the radius of its individual mar-
ginal circle Rij.

Similar to the derivation of eq. [10], we substitute zi by

�
j�1

zi 1
P̂aij

in the ACS formula (eq. [3]), which is equivalent with replac-

ing ĝ(rij) by P̂aij in eq. [10]. These arguments lead to the second
bias-corrected estimator.

[12]

ĜBcACS2 �
k
n�

i�1

n

�
j�1

zi
1
P̂aij

�
1
n�

i�1

n

�
j�1

zi dij
2

4Rij
2P̂aij

The second equality follows from k � dij
2/(4Rij

2) (see eq. [2]). Thus,
each counted tree contributes with its basal area per area unit
expanded by the inverse estimated mean detection probability of
all trees that have the same DBH dij and are supposed to be
counted at any sample point.

Fig. 1. Number of sampled objects per plot for the different sampling techniques.

Fig. 2. Empirical diameter distributions of standing deadwood sampled with the different sampling techniques. Please note the different
scaling of the y axes.
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Theoretical justification of suggested bias corrections
For simplicity, we focus on one sample point i at location x,

which allows the removal of subscript i in the formulas. Further-
more, we assume that ACS is carried out according to the so-called
buffer method (Gregoire and Valentine 2008) to account for the
well-known boundary problems. Thus, the population total of
response variable Y over N trees

[13] Y � �
j�1

N

Yj

can be estimated using the unbiased Horvitz–Thompson estimator

[14] Ŷ(x) � �
j�1

z Yj

pj
with pj �

�Rj
2

A∗

where A* is the area of the forest to be inventoried (A) extended by
the area of the peripheral zone (Gregoire and Valentine 2008;
Mandallaz 2008) and Rj � dj/(2�k). Please note the different sym-
bols p and � for the inclusion probability and for the circle con-
stant, respectively.

If one takes into account that the trees that are supposed to be
counted (i.e., x lies in their marginal circle Kj of radius Rj) may be
overlooked, the inclusion probability p of tree j is no longer valid
andmust be corrected. Assuming that the detection probability of
tree j, located at distance rj from sample point x, can be described
by a detection function g(rj), the new inclusion probability is

[15]
pj

� � P(�x � Kj � � �j is detected�)
�P(x � Kj)P(j is detected|x � Kj) � pjPaj

This leads to the unbiased estimator

[16]

Ŷ(x) �
1

A∗ �
j�1

z Yj

pj
�

� �
j�1

z Yj

�Rj
2Paj

� k�
j�1

z Yj

(�/4)dj
2Paj

of the Y total per area unit, which simplifies to

Fig. 3. Estimated half-normal detection function (ĝ(r)) and normalized density of observed objects in different distances. The original density
is normalized by dividing the density of detected objects in every distance interval by the estimated density of all objects (D̂) as shown in
Buckland et al. (2001). Please note that normalized densities are not detection probabilities and, therefore, can be greater than 1.

Table 1. Comparison of estimated basal area of standing
deadwood per area unit (Ĝ, m2·ha−1) for the different sam-
pling methods and corresponding SÊs (m2·ha−1).

Estimator k Ĝ SÊ(Ĝ)

ACS 1 0.421 0.059
BcACS1 1 0.609 0.095
BcACS2 1 0.686 0.107
ACS 2 0.511 0.090
BcACS1 2 0.689 0.134
BcACS2 2 0.701 0.128
ACS 4 0.614 0.137
BcACS1 4 0.714 0.162
BcACS2 4 0.732 0.164
FAS — 0.654 0.117

Note: k, basal area factor; SÊ, estimated standard error; ACS,
angle count sampling; FAS, fixed area sampling; BcACS, bias-
corrected angle count sampling stimator.
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[17] Ĝ(x) � k�
j�1

z
1
Paj

if Y is the tree basal area. This reveals why ĜBcACS2 can be expected
to be approximately unbiased; it is not strictly unbiased because
g(r) in Paj

has to be estimated for eq. [12] and because even an
unbiased estimator P̂aj of Paj would lead to a biased estimator 1/P̂aj
of 1/Paj.

However, why should ĜBcACS1 with the expansion factor Paj re-
placed by g(rij) also be, at least approximately, unbiased? If x � Kj
for a tree with DBH dj, its distance rj to the plot center x is in the
interval 0 ≤ rj ≤ Rj. Under the assumption that tree positions are
fixed and that sample points are randomly distributed, it holds

[18]
E[g(rj)|Paj] � E[g(rj)	dj]

�
1

�Rj
2 �0

Rj
g(r)2�rdr � Paj

This is true because in that case the probability of trees of DBH
dj standing in an annulus of radius r and width dr centered at x is
2�rdr/(�Rj

2). Thus, ĜBcACS1 can also approximately correct for the
nondetection bias in ACS because the conditional expectation of
g(rj) given dj equals Paj. However, the random variation of g(rj)
around Paj introduces an additional source of variation into ĜBcACS1
(compared with ĜBcACS2), which must lead to a lower precision of
that point estimator. On the other hand, this correction has the
advantage that measurement of DBH is not required.

Variance estimation
Under the assumption that the basal area density at each sam-

ple plot is measured without error, the variance of Ĝ can be esti-
mated using the well-known formula

[19] var̂ (Ĝ) �
1

n(n � 1)�
i�1

n

(Gi � Ĝ)2

for the variance of the sample mean. Here, Gi represents the

terms kzi, k �
j�1

zi

[1/ĝ(rij)], and k �
j�1

zi

(1/P̂aij
) from eqs. [3], [10], and [12],

respectively. The standard error of Ĝ can be estimated by

Table 2. Parameters of the simulated
point processes.

Parameter Poisson LGCP


2 — 1.40
� — 16.35
� — −7.02
� 18.01 e−4 18.01 e−4

Note: LGCP, log-Gaussian Cox process.

Fig. 4. Exemplary realizations of simulated point processes and boundaries of outer and inner simulation windows.

Fig. 5. Pair correlation functions (PCF) of the empirical point
pattern and the fitted model.
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[20] SÊ(Ĝ) � �var̂ (Ĝ)

As the assumption of error-free measurements will not hold in
reality, eqs. [19] and [20] will underestimate variance and standard
error (SE), respectively.

Case study A (based on fieldwork)

Data set
Standing deadwood was sampled on 235 plots. We considered

every snag or stump having a DBH of at least 7 cm as standing
deadwood. We performed PTS as described in the PTS section and
used a laser rangefinder to measure the distance from the sample
plot to every sighted piece of standing deadwood. Additionally,
the DBH of every sighted piece of standing deadwood was ob-
tained by cross calipering, so that the ACS estimator as well as the
two BcACS estimators can be applied for different basal area fac-
tors (k = 1, k = 2, and k = 4), simply by comparing the radius of the
marginal circle Rij � dij/(2�k) and the actual distance rij of the
object to the center of the plot. A piece of standing deadwood was
counted if rij ≤ Rij. After these measurements, we performed FAS
within circular sample plots of a 13 m radius.

The survey area (2416 ha in total) is located in central Germany
and covers the forest subdistricts Reinhausen and Sattenhausen
of the Lower Saxony State Forest district Reinhausen (51°30=N,
10°00=E).

Sample plots were randomly selected from the phase two plots
of the Lower Saxony State Forest inventory, which is carried out as

two-phase sampling for stratification (Böckmann et al. 1998;
Saborowski et al. 2010). However, in this study we simply treat the
sample plots as a completely random sample from a virtual pop-
ulation, because our goal is to compare the different sampling
methods rather than producing volume estimates for the study
area.

For data analysis we used the software package R (Version
2.14.0; R Development Core Team 2011) and for the analysis of PTS
data we used the software Distance (Version 6.0 R2; Thomas et al.
2010).

The best model (ĝ(r)  key(r)[series(r)]) for estimating g(r) was
selected from all possible combinations of three key functions
and two optional series expansions of up to fifth order, based on
the minimum AIC (Buckland et al. 2001).

Key functions:

1. Uniform: ĝ(r) � 1/�

2. Half normal: ĝ(r) � e
�r2

2�2

3. Hazard rate: ĝ(r) � 1 � e
�� r

���b

Series expansions:

1. Cosine: � k�2

q
ak cos (k�r

� )
2. Simple polynominal: � k�2

q
ak( r� )2k

3. No series expansion

Fig. 6. Point estimators for simple random sampling and Poisson-distributed trees (k = 1 for all angle count sampling (ACS) estimators).
Density represents the Gaussian kernel density estimation of the probability density function of Ĝ.
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Results
As standing deadwood is known to be a rare event, it conse-

quently was only observed at some sample plots. The distribution
of the observations per plot zi can be therefore regarded as zero-
inflated (Fig. 1). Using PTS, deadwood was observed at 64.7% of all
plots, which is the highest fraction of all methods. In contrast,
using ACS with k = 4, deadwood was only observed at 10.6% of
all plots, which is the lowest fraction. The highest maximum
number of observations per plot (22) was obtained by PTS,
whereas a maximum of only 4 objects per plot was observed
using ACS with k = 4.

The empirical diameter distributions of standing deadwood
sampled with the different techniques is given in Fig. 2. As the
diameter has a strong influence on the inclusion probability of
objectswhen using ACS, only the empirical distributions obtained
by PTS and FAS can be used to estimate the diameter distribution
in the sampling area. These distributions show the classical re-
verse J-shaped form (Meyer 1952; Nyland 1998).

A half-normal detection function (ĝ(r) � e

�r2

2�2
) without series

expansion was chosen from the AIC-basedmodel selection (Fig. 3).
The parameter estimate of themodel is �̂ = 12.95 with SÊ(�̂) = 0.43.
The estimated object density (i.e., the number of trees per area
unit) is D̂ = 18.63 ha−1 with an estimated standard error
SÊ(D̂) = 2.08 ha−1.

The estimated basal area of standing deadwood per area unit (Ĝ)
and the corresponding estimated standard errors (SÊ(Ĝ)) are given
in Table 1. The smallest SÊ(Ĝ) (0.059 m2·ha−1) was obtained by the
ACS estimator with k = 1, whereas it was largest (0.164 m2·ha−1) for
BcACS2 using k = 4. However, at the same time it is obvious that
the estimates of G noticeably differ from each other; especially,
the estimation obtained by the ACS estimator with k = 1 is much
smaller than all other estimates.

Discussion
As FAS is known to be theoretically unbiased, we used its esti-

mates of G as a reference for the other methods. However, it must
be clearly pointed out that the true value of G is unknown.

Apparently, despite the overlapping approximated 95% confi-
dence intervals constructed by Ĝ ± 1.96SÊ(Ĝ), the estimates of G
obtained by ACS using k = 1 and k = 2 are noticeably smaller than
the reference obtained by FAS. We interpret this as a strong hint
that ACS suffers from a nondetection bias in this study.

With decreasing k, the difference between the ACS estimates
and the FAS reference increases. This is exactly what we expected
to occur because, with smaller k, trees at larger distances have to
be counted and, from PTS theory, we expected the detection prob-
ability to be smaller at larger distances. Thus, with smaller k the
proportion of trees that are supposed to be counted by ACS, but
are overlooked, increases.

The BcACS estimators generally produce estimates of G showing
smaller differences from the FAS reference. Therefore, we anticipate
our proposed bias correction to be functional.

Again, the problem of this study based on fieldwork is that the
true value of G is unknown and, therefore, we cannot literally
assess the nondetection bias, even though there are strong hints
that it exists. The same is true for SE(Ĝ), for which the true value is
likewise unknown, and, therefore, we cannot make a clear state-
ment about the quality of its estimates.

To overcome these problems, we performed a simulation study
as described in the following section.

Case study B (Simulation study)

Point processes
For the simulation study, we simulated positions of standing

deadwood as point patterns based upon two different types of
underlying point processes.

1. A homogeneous Poisson process, to model the case of com-
plete spatial randomness (CSR), widely used as a simple model
of spatial distribution. The intensity of the simulated process
(Table 2) was derived from the density of standing deadwood in
the Hainich data set, a fullymapped 28.2 ha stand in the German
National Park Hainich, which was also used in Bäuerle and
Nothdurft (2011) to analyze habitat tree locations.

2. A log-Gaussian Cox process (LGCP) to model a heterogeneous
population (Fig. 4). Bäuerle and Nothdurft (2011) showed the
adequacy of the LGCP model for the reconstruction of habitat
tree patterns. Parameters of the simulated process were de-
rived from the Hainich data set by fitting a LGCP model to the
empirical point pattern using a minimum contrast approach
provided by the R-package spatstat (Baddeley and Turner
2005). The pair correlation functions of the empirical point

Table 3. Comparison of themean estimated basal area of standing dead
trees per area unit [E(Ĝ), m2·ha−1], standard error of the basal area of
standing deadwood per area unit [SE(Ĝ), m2·ha−1], Bias(Ĝ) (m2·ha−1), and
root mean square error [RMSE(Ĝ), m2·ha−1] for the different point pro-
cesses, sampling schemes, and estimators.

Point
process

Sampling
scheme Estimator k E(Ĝ) SE(Ĝ) Bias(Ĝ) RMSE(Ĝ)

Poisson Random ACS 1 0.449 0.044 −0.497 0.499
BcACS1 1 0.945 0.293 −0.001 0.293
BcACS2 1 0.950 0.121 0.004 0.121
ACS 2 0.590 0.071 −0.356 0.363
BcACS1 2 0.948 0.158 0.002 0.158
BcACS2 2 0.951 0.130 0.005 0.130
ACS 4 0.717 0.113 −0.229 0.255
BcACS1 4 0.948 0.167 0.002 0.167
BcACS2 4 0.949 0.158 0.003 0.158
FAS — 0.945 0.148 −0.001 0.148

Systematic ACS 1 0.449 0.045 −0.497 0.499
BcACS1 1 0.932 0.267 −0.014 0.267
BcACS2 1 0.945 0.121 −0.001 0.121
ACS 2 0.590 0.072 −0.356 0.363
BcACS1 2 0.944 0.159 −0.002 0.159
BcACS2 2 0.947 0.131 0.001 0.131
ACS 4 0.720 0.110 −0.226 0.252
BcACS1 4 0.949 0.159 0.003 0.159
BcACS2 4 0.949 0.151 0.003 0.151
FAS — 0.946 0.141 0.000 0.141

LGCP Random ACS 1 0.449 0.059 −0.497 0.501
BcACS1 1 0.952 0.318 0.006 0.318
BcACS2 1 0.950 0.149 0.004 0.149
ACS 2 0.589 0.088 −0.357 0.367
BcACS1 2 0.945 0.184 −0.001 0.184
BcACS2 2 0.951 0.158 0.005 0.158
ACS 4 0.719 0.127 −0.227 0.260
BcACS1 4 0.949 0.183 −0.003 0.183
BcACS2 4 0.952 0.176 0.006 0.176
FAS — 0.952 0.167 0.006 0.167

Systematic ACS 1 0.449 0.045 −0.497 0.499
BcACS1 1 0.932 0.267 −0.014 0.267
BcACS2 1 0.945 0.121 −0.001 0.121
ACS 2 0.590 0.072 −0.356 0.363
BcACS1 2 0.944 0.159 –0.002 0.159
BcACS2 2 0.947 0.131 0.001 0.131
ACS 4 0.720 0.110 −0.226 0.252
BcACS1 4 0.949 0.159 0.003 0.159
BcACS2 4 0.949 0.151 0.003 0.151
FAS — 0.946 0.141 0.000 0.141

Note: For any combination of point process and sampling scheme, the values
of the best performing estimator in the respective column are highlighted in
bold type. k, basal area factor; ACS, angle count sampling; FAS, fixed area sam-
pling; BcACS, bias-corrected angle count sampling estimator; LGCP, log-
Gaussian Cox process.
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pattern and the fitted model are shown in Fig. 5 and the pa-
rameter estimates in Table 2.

Formal definitions of the homogeneous Poisson process and of
the LGCP are given in the Appendix.

The spatial distribution of standing deadwood was chosen as an
example of a situation where ACS with low basal area factor (e.g.,
k = 1) could be appropriate and nondetection bias is expected to be
large as suspected in case study A. We did not model a regular
population, because it is very unlikely that rare objects like stand-
ing deadwood occur in such patterns.

Diameter distribution
Both point patterns weremarkedwith DBH values from a three-

parameter Weibull distribution

[21] f(x;c,b,
) �
c
b(x � 


b )c�1
e��x�


b �c

which was fitted to the empirical diameter distribution of stand-
ing deadwood from the Hainich data set. The estimate of the
shape parameter is c = 0.56, the estimate of the scale parameter is
b = 9.71, and the estimate of the location parameter is 
 = 7.00.

Simulation program
The simulation study was performed using the software pack-

age R (Version 2.14.0; R Development Core Team 2011). Both point
processes were simulated in a square window of 3500 m edge

length (outer window). To avoid edge effects, 225 sample plots
were laid out in a square window of 3000 m edge length (inner
window) placed in the center of the outer window. The sample
plots were laid out (i) on completely randomized positions and
(ii) on a systematic 200 m × 200 m sampling grid with a random
starting point.

The following provides a step-by-step outline of the simulation
program:

• Loop (999 runs).

• Simulate a realization of the point process in the outer
window.

• Mark simulated tree positions randomly with diameter val-
ues from the Weibull distribution.

• Lay out sample plots in the inner window (i) at completely
random locations (ii) on a 200 m × 200 m grid with a random
starting point.

• Calculate the Euclidean distance from every sample plot to
every tree.

• Simulate fixed area samplingwith 13m radius and save results.
• Simulate ACS and save results; the probability that an object

is detected is given by g(r) � e

�r2

2�2 , with � = 12.95 (the detection
function and the parameter estimated in case study A). Fur-
ther geometrical considerations are not regarded.

• Estimate the detection function by fitting ĝ(r) to the empiri-
cal distribution of Euclidean distances from every sample
plot to every detected tree.

Fig. 7. Variance estimates for the different point estimators under the condition of simple random sampling and Poisson-distributed trees
(k = 1 for all angle count sampling (ACS) estimators). Density represents the Gaussian kernel density estimation of the probability density function
of var̂(Ĝ). Please note that, for BcACS1, the density is right-truncated at 0.2 for better perceptibility, although it actually ends at 10.76.
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• Estimate BcACS1 and BcACS2 and save results.

• Calculate the mean of the estimates from the 999 runs.

Results

Point estimates
The performances of the different angle count based es-

timators (k = 1) and the FAS estimator under the conditions of
simple random sampling and Poisson distributed trees is exem-
plarily depicted in Fig. 6. For detailed statistics see Table 3. It
can be seen that the conventional ACS estimator is strongly
biased (−0.497 m2·ha−1 (≙−52.5%)), whereas the simulated bias of
the theoretically unbiased FAS estimator is extremely small
−0.001 m2·ha−1 (≙−0.09%)). The simulated biases of the new estima-
tors BcACS1 (−0.001 m2·ha−1 (≙−0.06%)) and BcACS2 (0.004 m2·ha−1

(≙0.42%)) are also negligibly small.
The root mean square error (RMSE) of the conventional ACS

estimator is 0.499 m2·ha−1 (≙52.7%) and, therefore, much larger
than that of BcACS1 (0.293 m2·ha−1 (≙31.0%)) and that of BcACS2
(0.121 m2·ha−1 (≙12.8%)), even though the new estimators have
higher SEs than the conventional one. The RMSE of the FAS esti-
mator is 0.148 m2·ha−1 (≙15.7%).

For the sake of brevity, the performance of the different estima-
tors under varying conditions is not outlined in detail, but given
in Table 3. For all simulated cases, the conventional ACS estimator
is strongly biased, especially for k = 1. Both new BcACS estimators
as well as the FAS estimator are (approximately) unbiased in all
simulated cases.

The trend found in case study A is also observed in case study B.
With decreasing k the advantage of the corrected estimators in-
creases. For all k, BcACS2 achieved a lower RMSE than the other
two angle count methods. For k = 1 and k = 2, BcACS2 is also more
precise than FAS. The absolutely smallest RMSE can be achieved
using the BcACS2 estimator with k = 1.

Variance estimates
The performance of the variance estimator (eq. [19]) for the

different point estimates under the conditions of simple random
sampling and Poisson-distributed trees is exemplarily depicted in
Fig. 7.

The variance estimates for ACS and FAS are approximately
unbiased, whereas there is a small negative bias for BcACS1
(−0.0014 m4·ha−2) and BcACS2 (0.0017 m4·ha−2).

The RMSE of the variance estimation is smallest for ACS
(0.0004 m4·ha−2), whereas it is by far largest for BcACS1
(0.2208 m4·ha−2 (≙257.53%)) due to the extremely high SE of this
estimator. The RMSE of the variance estimation is 0.0017 m4·ha–2

for BcACS2 and 0.0004 m4·ha–2 for FAS.
For the sake of brevity, the performance of the variance estima-

tor for the different point estimators under varying conditions is
given in Table 4. It can be seen that, under all conditions, the
RMSE of the variance estimator is smallest for the conventional
ACS estimator. However, it increases with increasing k. In almost
all cases the RMSE of the variance estimator is smaller for BcACS2
than for BcACS1. Especially with small k, the difference becomes
very pronounced.

Discussion
We simulated two different point processes, the Poisson pro-

cess as a null model for the case of CSR, and the LGCP as a model
for a clustered population. The simulated point processes were
randomly marked with diameter values from a Weibull distribu-
tion, i.e., the marks are independent. According to Illian et al.
(2008), the independentmarkingmodel may be regarded as a null
model for marked point processes. Undoubtedly, other possible
populations exist that differ in their point process, their diameter
distribution, and their dependency of the marks. However, be-

cause of the sound theoretical reasoning for the corrected estima-
tors, we are confident that the observed trends are also valid for
other populations.

To simulate the detection probability, we used the detection
function derived from case study A. The function is quite steep
around r = 10m (Fig. 3). This is not surprising, because in the beech
(Fagus sylvatica L.) dominated sampling area, sight is often limited
by a dense understory. However, in forests with less dense under-
story the sight is less limited, so that the detection probability is
certainly higher there. A higher detection probability obviously
comes along with a lower nondetection bias of ACS, so that the
advantages of the new estimators may be less prominent under
these conditions.

The variance estimations for BcACS1 and BcACS2 show a small
negative bias. This may be due to the assumption of error-free
measurement of Gi, when eq. [19] is applied for variance estima-
tion. However, this assumption is violated for BcACS1 and
BcACS2, as the variation introduced by modeling g(r) and Pa,

Table 4. Comparison of themean estimated variance of the basal area
of standing dead trees per area unit [E[var̂ (Ĝ)], m2·ha−1], standard error
of the estimated variance [SE[var̂ (Ĝ)], m2·ha−1], Bias[var̂ (Ĝ)] (m2·ha−1), and
rootmean square error of the estimated variance [RMSE[var̂ (Ĝ)], m2·ha−1]
for the different point processes, sampling schemes, and estimators.

Point
process

Sampling
scheme Estimator k

E
[var̂(Ĝ)]

SE
[var̂(Ĝ)]

Bias
[var̂(Ĝ)]

RMSE
[var̂(Ĝ)]

Poisson Random ACS 1 0.0020 0.0000 0.0000 0.0000
BcACS1 1 0.0844 0.2208 −0.0014 0.2208
BcACS2 1 0.0129 0.0000 −0.0017 0.0017
ACS 2 0.0052 0.0000 0.0004 0.0004
BcACS1 2 0.0237 0.0004 −0.0011 0.0011
BcACS2 2 0.0161 0.0000 −0.0009 0.0009
ACS 4 0.0127 0.0000 −0.0004 0.0004
BcACS1 4 0.0256 0.0004 −0.0024 0.0024
BcACS2 4 0.0236 0.0000 −0.0015 0.0015
FAS — 0.0223 0.0000 0.0003 0.0003

Systematic ACS 1 0.0020 0.0000 0.0000 0.0000
BcACS1 1 0.0711 0.1044 −0.0002 0.1044
BcACS2 1 0.0128 0.0000 −0.0018 0.0018
ACS 2 0.0052 0.0000 0.0000 0.0000
BcACS1 2 0.0238 0.0004 −0.0015 0.0015
BcACS2 2 0.0159 0.0000 −0.0012 0.0012
ACS 4 0.0128 0.0000 0.0006 0.0006
BcACS1 4 0.0255 0.0000 0.0001 0.0001
BcACS2 4 0.0235 0.0000 0.0007 0.0007
FAS — 0.0222 0.0000 0.0025 0.0025

LGCP Random ACS 1 0.0034 0.0000 −0.0004 0.0004
BcACS1 1 0.0924 0.1576 −0.0085 0.1578
BcACS2 1 0.0183 0.0004 −0.0038 0.0038
ACS 2 0.0078 0.0000 0.0000 0.0000
BcACS1 2 0.0286 0.0003 −0.0051 0.0051
BcACS2 2 0.0221 0.0004 −0.0028 0.0028
ACS 4 0.0171 0.0001 0.0009 0.0009
BcACS1 4 0.0324 0.0002 −0.0009 0.0010
BcACS2 4 0.0309 0.0002 −0.0000 0.0002
FAS — 0.0294 0.0001 0.0014 0.0014

Systematic ACS 1 0.0034 0.0000 −0.0001 0.0001
BcACS1 1 0.1304 0.7916 −0.0052 0.7917
BcACS2 1 0.0181 0.0004 −0.0044 0.0044
ACS 2 0.0078 0.0000 −0.0004 0.0004
BcACS1 2 0.0301 0.0005 −0.0040 0.0041
BcACS2 2 0.0219 0.0001 −0.0035 0.0035
ACS 4 0.0170 0.0000 −0.0012 0.0012
BcACS1 4 0.0321 0.0002 −0.0042 0.0043
BcACS2 4 0.0305 0.0001 −0.0038 0.0038
FAS — 0.0292 0.0002 0.0017 0.0017

Note: k, basal area factor; ACS, angle count sampling; FAS, fixed area sam-
pling; BcACS, bias-corrected angle count sampling estimator; LGCP, log-
Gaussian Cox process.
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respectively, is not considered. Thus, further research is required
to develop unbiased variance estimators for BcACS1 and BcACS2.

Conclusion
Both new estimators (BcACS1 and BcACS2) proved to be practi-

cable during the field work and provide approximately unbiased
point estimates. In contrast, the ACS estimator is strongly biased
in our study. The size of the bias depends on the detection prob-
ability and on the counting angle. Especially if a small counting
angle is used and in cases of limited sight conditions (e.g., owing
to a dense understory), the new estimators should therefore be
preferred to the conventional ACS estimator.

The RMSE of BcACS2 is smaller than that of BcACS1, which was
expected because g(r) is only an estimate for the correct bias cor-
rection by Paij. Moreover, the variance estimation works much
better for BcACS2 than for BcACS1. However, additional sampling
effort for BcACS2 is much higher than for BcACS1, unless diame-
ters are measured for other reasons anyway. If this is the case,
BcACS2 should be preferred to BcACS1, otherwise time studies are
needed to evaluate if the smaller RMSE and better variance esti-
mation of BcACS2 compensates for the extra sampling effort.

A limitation of the new estimators is given by the necessary
sample size. As the detection function g(r) has to be fitted to the
empirical data, a certain number of sighted objects m is needed.
As a rule of thumb,m generally should be at least 60–80 (Buckland
et al. 2001). The number of necessary sample plots therefore de-
pends on the number of sighted objects per plot.
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Appendix

Definition of a homogeneous Poisson process
A homogeneous Poisson process N is characterized by two fun-

damental properties (Illian et al. 2008).

1. The number of points of N in any bounded set B follows a
Poisson distribution with mean ��(B), where � is the intensity
of the point process and �(B) is the area of B.
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2. The number of points of N in k disjoint sets form k indepen-
dent random variables.

Definition of a log-Gaussian Cox process (LGCP)
Cox processes are a class of spatial point process models de-

scribing clustering resulting from environmental variability
(Illian et al. 2008). They are a generalization of inhomogeneous
Poisson processes, where the intensity function �(x) is random. A
Cox process can be regarded as the result of a two-stage random
mechanism and is therefore sometimes called the doubly stochas-
tic Poisson process (Illian et al. 2008). A Cox point processmodel is
defined in two steps: First consider a stationary non-negative val-
ued randomfield {�(x)}. Second, given a realization {�(x)} of {�(x)},
the points of the corresponding realization of the Cox process

form an inhomogenous Poisson process with intensity function
�(x) (Illian et al. 2008).

If {Z(x)} is a stationary and isotropic Gaussian random field, its
distribution is specified by the mean � = EZ(x), the variance 
2 =
var[Z(x)], and the spatial correlation function �(x1, x2) = Cov[Z(x1),
Z(x2)]/
2. An LGCP is an inhomogeneous Poisson process with a
random intensity process

[A1] �(x) � exp[Z(x)]

(Illian et al. 2008). The intensity of the process according to Møller
and Waagepetersen (2003) is then

[A2] � � E�(x) � exp�� �

2

2 �
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