
Chapter 3
Modeling Aboveground–Belowground
Interactions

Katrin M. Meyer

3.1 Introduction

Aboveground–belowground interactions are complex (Wardle 2002), because they
include nonlinear relationships, interconnected feedbacks, scale-dependent dyna-
mics, and an intermediate number of constituents. Large numbers of constituents
can be averaged, small numbers can be addressed individually, but the study of
intermediate numbers can be very challenging in practice (Schaffer 1981). Models
can help to capture the complexity of aboveground–belowground interactions (van
der Putten et al. 2009). They offer a systematic approach to explore consequences of
assumptions where data are scarce, they provide mechanistic, bottom-up system
information that might not be apparent from empirical top-down system samples,
and they can be used to identify knowledge gaps and generate testable hypotheses.
Nevertheless, models are purposeful simplifications of reality and thus always
simplify and always need a specific purpose or question to guide the simplification.
This means that models are not a universal remedy for aboveground–belowground
complexity and need to be applied wisely and where possible in conjunction with
empirical approaches to shed light on aboveground–belowground interactions.

Questions are thus at the heart of all modeling endeavors. Many of the questions
addressed by aboveground–belowground models are not exclusive to modeling, but
models can often include more factors, more interactions, more perspectives, and
more types of data (e.g., qualitative data) than many empirical approaches (Meyer
et al. 2009a). Hence, questions of aboveground–belowground models are typically
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derived from the more complex realms of aboveground–belowground community
ecology, for instance:

• How do all aboveground and belowground functional groups interact to influence
plant performance (Schröter et al. 2004)?

• What is the relative importance of the different relationships in an aboveground–
belowground community (Eisenhauer et al. 2012; Meyer et al. 2012)?

• Which aboveground–belowground effects are direct and which are indirect (Veen
et al. 2010)?

• What are important thresholds in community dynamics given certain
aboveground–belowground interactions (Fibich et al. 2010)?

• What are the underlying (physiological) mechanisms of aboveground–below-
ground interactions (Biondini 2001)?

• How does global change influence the interactions and feedbacks in aboveground–
belowground communities (Sistla et al. 2014)?

• How are trophic interactions related to competitive interactions (Körner et al.
2014)?

• How do spatial relationships influence aboveground–belowground interactions
(Levine et al. 2006)?

• How do individual properties of aboveground organisms affect plant and herbi-
vore performance belowground and vice versa (Meyer et al. 2009b)?

These questions are reflected in the aims of the models.
Aims of models can generally be description, explanation, or prediction (Grimm

and Railsback 2005, p. 36). Descriptive models identify and represent the character-
istic properties of the system at hand. They can be used to demonstrate principles for
the purposes of clarifying the corresponding relationships. In aboveground–below-
ground community ecology, descriptivemodels may, for instance, aim to identify and
visualize aboveground and belowground functional types and their interactions
(Schröter et al. 2004). Models that aim at explanation often implement hypotheses
about a system to test them by model analysis. This can involve several model
scenarios representing alternative hypotheses which are then compared by means of
the respective model outputs. For example, such a model could be used to implement
and test the hypothesis that aboveground trophic levels are more important than
belowground trophic levels for plant performance (Meyer et al. 2009b). Models
that aim to make predictions usually require the greatest level of detail and thus
large amounts of data. Validation of model results against independent data is very
important for predictive models, because only successfully validated models generate
credible predictions. Predictive aboveground–belowground models are, for instance,
common in crop sciences, where yields are predicted depending on pest species
dynamics (Tixier et al. 2013).

Many model types are available to pursue the different questions and aims of
community ecology studies (Fig. 3.1). Here, the typology of van der Putten et al.
(2009) is used as a starting point and extended by two model types: statistical
models and functional–structural models (Table 3.1). Conceptual models and graph-
ical models describe and visualize relevant components of a system and their
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relationships. Graphical models additionally rely on mathematical models and often
take the form of isocline graphs. Statistical models describe relationships and can be
used to test hypotheses and make predictions within the limits of the specific
statistical method. This chapter only considers statistical models that go beyond
simple tests such as structural equation models (Eisenhauer et al. 2015). Functional–
structural models are also called plant growth models and simulate plant architecture
arising from physical and/or physiological processes (Guo et al. 2011). They often
take an object-oriented approach to simulate plant modules. Process-based models
capture relevant processes in equations that can be solved analytically or numeri-
cally. Due to their mechanistic nature, they are often applied for explanation and
prediction. Spatially implicit models only address rough spatial differentiations,
such as local versus regional processes. Spatially explicit models consider spatial
relationships at much greater detail. For instance, in cellular automata, neighboring
cells influence the state of a cell. In other grid-based approaches, all cells can
influence any one cell depending on distance and location (Meyer et al. 2010).
Individual-based models or agent-based models simulate interactions between indi-
vidual organisms giving rise to population and community dynamics (Grimm and
Railsback 2005). This bottom-up approach is opposite to the top-down approach of
most process-based models that impose population and community dynamics and

Fig. 3.1 (continued) isoclines that show combinations of x- and y-values for which the model
produces zero net growth of root biomass R, shoot biomass S, or herbivore densities H. (c)
Statistical structural equation model inspired by Veen et al. (2010). Bold arrows correspond to
significant effects, dashed arrows to hypothesized but non-significant effects, and arrow width
reflects effect size. (d) Functional–structural model inspired by Groot and Lantinga (2004). Boxes
represent objects in the model, solid arrows indicate effects, dashed arrows indicate transforma-
tions. Each object can perform actions. (e) Process-based models formalize processes with process
equations (grey boxes) corresponding to the arrows in conceptual models (see a). Process-based
models can be nonspatial (left grey box), spatially implicit (centre grey boxes), and spatially explicit
(right grey boxes). The nonspatial model consists of a possible set of equations for the processes in
the conceptual model in panel (a); S: shoot biomass, R: root biomass, HA: density of herbivore A,
HB: density of herbivore B, t: time, g: conversion rate of root growth into shoot growth, r: root
growth rate, a: proportion of shoot biomass eaten by herbivore A, b: proportion of root biomass
eaten by herbivore B, f: conversion efficiency of shoot or root biomass eaten into herbivore
individuals, m: mortality rate of herbivore A and B. Spatially implicit process-based models couple
a set of process-based equations for local dynamics with a set of equations for regional dynamics.
Spatially explicit process-based models (including reaction–diffusion models) are usually based on
a grid whose cells contain local process equations and equations on interactions with neighboring
cells. The grid represents the regional dynamics. (f) Cellular automata are based on grids whose
cells have states such as presence/absence of species or amounts of biomass. The cells interact with
their direct neighbors according to predefined transition rules. These rules can (but do not have to)
be formalized as equations. Thus, cellular automata include spatially explicit process-based models
if these are based on a grid (see e). (g) Individual-based models or agent-based models simulate
individual organisms as objects (Herbivores 1 and 2). Objects have properties whose values change
from individual to individual. Individuals interact with each other and with their environment. The
environment is often implemented as spatial grid cells that can have different properties, e.g.,
amount of vegetation (grey shades). In contrast to cellular automata, interactions can stretch beyond
the direct neighbors and organisms are not only represented as states, but as objects with properties
in individual-based models
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Table 3.1 Overview of model types, basic model aims (description, explanation or prediction),
selected examples from aboveground–belowground community ecology, and the modeled interac-
tions in these examplesa

Model typesb Model aimsc Examples
Modeled
interactionsd

Conceptual models Description
(explanation)

Cahill (1999) PC

Schröter et al. (2004) PT2
2M

Graphical models Description
(explanation)

Fibich et al. (2010) PT1C

Statistical models Description
(explanation)
(prediction)

Lamb (2008), Lamb and Cahill
Jr. (2008), Lamb et al. (2009)

PC
PCF

Eisenhauer et al. (2012) PT1CF

Veen et al. (2010) PT1
1

Functional–struc-
tural models

Description
(explanation)
(prediction)

Drouet and Pagès (2003, 2007), Postma
and Lynch (2011)

P

Groot and Lantinga (2004) PT1

Process-based
models

(Description)
explanation
prediction

Cheeseman (1993), van Wijk (2011),
Feller et al. (2015), Eid et al. (2016)

P

Asaeda et al. (2000, 2001), Lazzarotto
et al. (2009)

PC

Sistla et al. (2014), Biondini (2001),
Ruget et al. (2002), Brisson et al. (2003),
Scheiter and Higgins (2013)

PT1

Van Noordwijk and Lusiana (1998) PT1CF

Bever (2003) PT1C

Tixier et al. (2013) PT2C

Goudard and Loreau (2008) PT2

Jia et al. (2009) PT1
1

Willocquet et al. (2008) PT1
1C

Spatially implicit
process-based
models

(Description)
explanation
prediction

Huston and DeAngelis (1994) P

Spatially explicit
reaction–diffusion
models

(Description)
explanation
prediction

Barbier et al. (2008) PCF

Spatially explicit
cellular automaton
models

(Description)
explanation
(prediction)

Levine et al. (2006) PT1

Individual-based
models

Description
explanation
(prediction)

Zhang et al. (2013) PCF

Bonanomi et al. (2005) PT1

May et al. (2009) PT1C

Körner et al. (2014), Pfestorf et al. (2016) PT1
1C

Meyer et al. (2009b, 2012) PT2
2M

aOnly those examples are included that explicitly consider root–shoot interactions (and not only
plant–resource interactions)
bBased on van der Putten et al. (2009) except for statistical models and functional–structural models
cParentheses indicate less importance
dP—pure root–shoot interactions inside the plant, T y

x —trophic interactions between plant and
x belowground trophic levels and y aboveground trophic levels, C—competitive interactions
among plants, F—facilitative interactions among plants, M—mutualistic interactions between
plants and mutualists such as earthworms
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simulate matter or energy fluxes instead of individual organisms (Schröter et al.
2004). Individual-based models are most often used for explanation, i.e., to demon-
strate principles and analyze scenarios.

The origins of aboveground–belowground models are very diverse. Whereas
many empirical aboveground–belowground studies have arisen from pure above-
ground studies (Chap. 2), aboveground–belowground models are not necessarily
extensions of aboveground approaches. Rather, it is the model type that influences
the genesis of an aboveground–belowground model. For instance, functional–struc-
tural aboveground–belowground models have more commonly arisen from pure root
architecture models than from pure aboveground models (Guo et al. 2011; e.g.,
Postma and Lynch 2011). Process-based aboveground–belowground models often
originate from classical physiological models that early on have considered interac-
tions between roots and shoots (e.g., Cheeseman 1993). In cases where
aboveground–belowground process-based models arose from food-web models, it
is more common that these food-web models capture only belowground interactions
and no aboveground interactions (e.g., de Ruiter et al. 1995). Some process-based
models (e.g., Bever 2003) and all graphical aboveground–belowground models
(e.g., Fibich et al. 2010) are based on classic models from ecological theory such
as the Lotka–Volterra model or the Rosenzweig–MacArthur model. These models
are not specific to aboveground or belowground communities and neither are
conceptual or statistical models. Individual-based aboveground–belowground
models are an exception to this rule, because they more commonly originate from
models that focus on aboveground interactions (e.g., May et al. 2009; as basis of
Körner et al. 2014).

In the following, first, a review of model applications that link aboveground and
belowground interactions will show that there are only relatively few approaches
thus far. Then, promising avenues for future application of models in aboveground–
belowground community ecology will be delineated. A practical guide on how to
model aboveground–belowground interactions will conclude this chapter.

3.2 Models of Aboveground–Belowground Interactions

Application examples of models of aboveground–belowground interactions are not
as manifold as the diversity of available model types might suggest. The examples
compiled here (Table 3.1) are representative of all the available models, with a bias
towards studies that involve trophic rather than non-trophic interactions with many
rather than few trophic levels. This focus on trophic interactions reflects the
aboveground–belowground perspective adopted in this book. In the following,
first, simple shoot–root interaction models will be explained, because they are the
core of all models compiled in this chapter. Then, models involving trophic inter-
actions aboveground or belowground will be introduced. Finally, it will be explained
how non-trophic interactions such as plant–plant and plant–mutualist interactions
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are integrated into aboveground–belowground models, either alone or in combina-
tion with trophic interactions.

3.2.1 Shoot–Root Interactions

Shoot–root interactions are the simplest form of aboveground–belowground inter-
actions and are thus the target of most aboveground–belowground models (“P” in
Table 3.1). These models simulate allocation of plant biomass to shoot and root at
various levels of resolution. Most functional–structural models are restricted to pure
shoot–root interactions. Accurate simulation of plant structure already requires great
levels of detail, so computational capacities for additional trophic or non-trophic
interactions are limited. Functional–structural models are often more highly resolved
belowground than aboveground (e.g., Postma and Lynch 2011). However, most
shoot–root allocation models are mechanistic process-based models. One of the
classic shoot–root allocation models is SIMPLE (Cheeseman 1993), which simu-
lates carbon and nitrogen fluxes between shoot and root compartments and can be
used to test physiological hypotheses. Eid et al. (2016) modeled shoot and root
growth as a function of photosynthesis, respiration, mortality, and translocation from
shoots to roots. With his ecohydrological shoot–root-allocation model, van Wijk
(2011) explains plant rooting strategies in dry ecosystems with the maximization of
transpiration. Taking a systems biology approach, Feller et al. (2015) simulate
aboveground–belowground interactions as exchange of sugars and phosphate
between shoot and root compartments to explain the dynamic adaptation of shoot–
root ratios in response to environmental conditions.

3.2.2 Trophic Interactions

Trophic interactions have been considered as implicit effects and as explicit inter-
actions belowground and aboveground (“T y

x” in Table 3.1). Trophic interactions are
much more commonly addressed in the form of implicit effects than as explicit
dynamic interactions in aboveground–belowground models. Implicit effects are
given when, for instance, grazing or cutting aboveground biomass is simulated as
biomass reduction without feedbacks to the herbivore organisms. Taking an object-
oriented functional–structural modeling approach, Groot and Lantinga (2004)
explored the effect of cutting on plant growth and digestibility. They simulated
plant morphology as aggregation of objects such as leaf blade, leaf sheath, stem
internode, and root and found good agreement between field experimental data and
model outputs. Implicit belowground effects have been modeled in the form of
plant–soil feedback effects (Bonanomi et al. 2005; Levine et al. 2006). Implicit
aboveground and belowground effects have been taken into account in a process-
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based model of mowing and root fragmentation effects on an invasive weed species
that aimed at identifying the management interval that maintains shoot biomass at a
constant level (Jia et al. 2009). Explicit belowground interactions are part of the
biogeochemical ecosystem model SCAMPS that simulates interactions between
plant and microbial pools via soil organic matter (Sistla et al. 2014). When the
study systems become more complex, direct and indirect trophic effects can be
revealed with statistical structural equation models. For instance, Veen et al.
(2010) differentiate between alternative hypotheses on direct and indirect effects
of aboveground vertebrate herbivory on belowground nematode herbivores. This
study also exemplifies how effects (here of aboveground herbivores) and responses
(here of belowground herbivores) can be studied, linking aboveground and below-
ground interactions.

3.2.3 Plant–Plant Interactions

Non-trophic interactions between neighboring plants can have negative (competi-
tion) or positive (facilitation) effects on the interacting plants. In their simplest form,
plant–plant interactions have been combined with shoot–root interactions without
considering any trophic interactions (“C” for competitive interactions, “F” for facil-
itative interactions, and “CF” for both in Table 3.1). Conceptual models on compet-
itive asymmetry (Cahill 1999) have inspired a statistical structural equation model
that shows that root competition—even when it is very intense—is unimportant for
plant community structure (Lamb and Cahill 2008). Rather, aboveground competi-
tion affects plant diversity (Lamb et al. 2009). Amore mechanistic approach has been
adopted in the process-based model PROGRASS (Lazzarotto et al. 2009). It simu-
lates belowground competition of grass and clover for nitrogen and can be used to
study effects of management such as fertilization and harvesting schemes. One of the
rare aquatic examples in aboveground–belowground modeling captures the compe-
tition between macrophytes and different functional types of phytoplankton (Asaeda
et al. 2001). The spatial nature of competitive and facilitative interactions is reflected
in the zone-of-influence approach adopted to simulate facilitation and size-symmetric
and size-asymmetric competition aboveground and belowground (e.g., Zhang et al.
2013). Another spatially explicit aboveground–belowground model (Barbier et al.
2008) uses kernels to reflect the variation in the decrease in competition strength
around plant individuals of different plant species. Where zones-of-influence or
kernels of different individuals overlap, the resources in the overlapping areas or
volumes must be shared between individuals. The large number of available models
involving plant–plant interactions may be due to three reasons. First, there might be
more questions that require the consideration of plant–plant interactions than ques-
tions requiring trophic interactions. Second, trophic interactions may only recently
have come into the focus of research. Finally, it might simply be easier to incorporate
interactions among plants than interactions between plants and other trophic levels.
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3.2.4 Plant–Plant and Trophic Interactions

Non-trophic interactions between plants have in some cases been combined with
trophic interactions in aboveground–belowground models (“T y

x” in combination with
“C” or “F” or both in Table 3.1). Interactions between plants are usually competitive
or facilitative, but can also be trophic when (hemi-) parasitic plants are involved.
Along these lines, Fibich et al. (2010) implemented a classic Rosenzweig–
MacArthur predator–prey model for the relationship between a plant and its root
hemiparasite. The model was extended by including aboveground competition for
light between the plant and its hemiparasite. This model was the first to successfully
reproduce the reduction in hemiparasite numbers seen empirically at high environ-
mental productivity. The statistical structural equation model by Eisenhauer et al.
(2012) connects plant communities and decomposer communities, which can be
thought of as implicit competitive, facilitative, and trophic interactions. Based on
their model analysis, Eisenhauer et al. (2012) claim that the role of decomposers in
the relationship between plant diversity and ecosystem functioning has been under-
appreciated. The WaNuLCAS model on tree–soil–crop interactions in agroforests
treats aboveground trophic interactions implicitly (as harvest), but considers com-
petition between plants explicitly. This model allows the inclusion and analysis of
complex management scenarios such as alley cropping, contour hedgerows, park-
land systems, and fallow–crop mosaics. Similarly, a series of individual-based
models (May et al. 2009; Körner et al. 2014; Pfestorf et al. 2016) simulates herbivory
implicitly, but competition explicitly via aboveground and belowground zones-of-
influence. Whether or not an individual plant is affected by grazing depends on a
weighted lottery based on the overall grazing probability, whereas belowground
herbivory is modeled as percentage effect on the total available belowground
biomass.

Competitive and trophic interactions have been considered more explicitly in the
soil feedback model by Bever (2003). This model links two plants by competition
and includes the effects of their soil communities on themselves and on each other as
well as the effects of the plants on the soil communities. The difference between
explicit and implicit inclusion lies in these two-way trophic interactions. By linking a
crop model and a food web model, the banana growth model (Tixier et al. 2013)
benefits from both (usually separate) worlds: explicit population dynamics of three
trophic levels beyond the plant and explicit output of harvestable biomass of the
banana crop and of a cover crop, including explicit competition for nitrogen between
the two crops. Another example of an agrophysiological model that explicitly
includes competitive and trophic interactions is the WHEATPEST model
(Willocquet et al. 2008). Moreover, this model is very flexible in that it has been
parameterized for an exceptionally broad range of aboveground and belowground
pest species.
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3.2.5 Mutualistic and Trophic Interactions

Non-trophic mutualistic interactions between plants and mutualists (often earth-
worms) have been combined with trophic interactions in a few aboveground–
belowground models (“T y

xM” in Table 3.1). Mutualistic interactions are difficult to
include in classic equation-based models without generating positive feedback
loops. However, mutualistic interactions and also other non-trophic interactions
can be modeled as modifiers of trophic interactions in process-based food web
models (Goudard and Loreau 2008). This means that trophic interactions would
have a less detrimental effect on a plant when a mutualist is present. Mutualistic
interactions have also been considered in the conceptual model for enhancing the
biological realism of dynamic global vegetation models by Schröter et al. (2004).
This conceptual model asks for several trophic levels aboveground and belowground
on top of the mutualistic interactions. However, it might be difficult to implement all
these demands in dynamic global vegetation models due to their already complex
nature and large-scale applications.

If aboveground–belowground interactions of several trophic and non-trophic
levels are to be implemented at a smaller scale such as food chains linked to one
plant individual, individual-based models are very suitable for the task. An
aboveground–belowground interactions model (Meyer et al. 2009b, 2012) involved
three trophic levels aboveground, two trophic levels belowground, a plant with shoot
and root compartments, and a mutualist. This model showed that belowground
interactions can be more important for plant performance than aboveground inter-
actions. Mutualistic interactions between earthworms and the plant had especially
substantial effects on plant biomass (Meyer et al. 2009b). This model was also used
to demonstrate that the paradox of enrichment can also apply in communities with
multiple aboveground and belowground trophic and non-trophic levels. At high
levels of enrichment at one end of a land-use gradient, there were abrupt destabili-
zations of the multitrophic aboveground–belowground system in the form of high
plant mortalities (Meyer et al. 2012). Moreover, the effects of aboveground trophic
levels on plant performance were more important under enriched conditions,
whereas belowground effects were more important under more natural conditions.

3.2.6 Community Complexity

The complexity of a community is a real challenge for aboveground–belowground
models (as it is for empirical approaches). Only very few of the existing aboveground–
belowground models are community models in the sense that they incorporate more
than three species and more than one type of interaction (e.g., Willocquet et al. 2008;
Meyer et al. 2009b; Tixier et al. 2013; Körner et al. 2014; Pfestorf et al. 2016). Of
course, complexity should not be pursued for complexity’s sake. But modelers should
take advantage of the added value that modeling approaches offer, especially in
complex cases such as aboveground–belowground interactions in communities. For
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instance, where empirical data are scarce and the true value of a parameter is unknown,
models can be used to explore the consequences of many different parameter values
for community dynamics. Moreover, the relative importance of different interactions
for community dynamics can be evaluated with a sensitivity analysis.

Different aspects of complexity pose different kinds of challenges to modeling.
None of the models with more than one trophic level aboveground and belowground
explicitly includes the spatial dimension of the community. Hence, addressing
spatial relationships in aboveground–belowground interaction models seems to be
a greater challenge than including more species or more interactions. However,
spatial relationships are important for population and community dynamics (Durrett
and Levin 1994). They determine whether a theoretically possible interaction really
takes place or is absent or restricted due to spatial vegetation patterns, limited home
ranges, differential movement speeds aboveground versus belowground, or the
existence of refuges. However, explicitly including space (and time) in a model
also raises questions of scaling.

Scaling in space and time poses a serious challenge to complex aboveground–
belowground models. Sooner or later in the model development process, the ques-
tion arises at which scale or scales the aboveground–belowground model should
operate. For instance, accounting for different spatio-temporal scales has been
pointed out as a problem of models that aim at optimizing ecosystem services (Tixier
et al. 2013). Models that cover multiple spatial or temporal scales have been
developed (e.g., Fig. 3.2), but they are rare. This is because the transfer of informa-
tion between scales is technically challenging and virtually always involves loss of
information. The technical challenge of scaling is due to the heterogeneities, non-
linearities, and feedbacks of the interactions to be modeled and scaled. More
commonly, the modeled processes are integrated at one specific scale. This may
also involve loss of information, but is technically easier once the specific scale has
been identified. Mismatches in the spatial and temporal scales of the real processes
underlying the model (Sayre and Vittorio 2009) aggravate the scaling problems in
aboveground–belowground models, because spatial and temporal scales then have to
be treated separately.

Another dimension of complexity is the fact that models always must be linked to
empirical data for validation. This has been considered a serious bottleneck for crop
models (Meine van Noordwijk 1996). Coupling a model to empirical data does not
necessarily increase the complexity of the modeled system, but it does enhance the
complexity of model analysis. This is especially true when empirical data are scarce
and inverse modeling techniques (Grimm et al. 2005) have to be applied to deter-
mine parameter values. Inverse parameterization compares available empirical data
to the outputs of several model versions that differ in the value of the parameter to be
determined. The parameter value that produces the best match is then chosen. In
spite of these difficulties, aboveground–belowground models and empirical data
from greenhouse experiments or field studies have successfully been coupled in
some cases (e.g., Cheeseman 1993; Meyer et al. 2009b; van der Putten et al. 2009;
Jeltsch et al. 2013; Hol et al. 2016; Pfestorf et al. 2016).
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3.3 The Future of Aboveground–Belowground Models

Future modeling endeavors can advance aboveground–belowground community
ecology threefold: first by providing more complete analyses, second by filling
gaps in knowledge, and third by inspiring new perspectives. Examples of gaps in
knowledge that models can help filling are:

• How do competitive, facilitative, trophic, and mutualistic interactions influence
and modify each other in their effect on the involved organisms?

• Which roles do positive and negative feedbacks play for aboveground–below-
ground interactions?

• How important are interactions between plants and microorganisms relative to
other aboveground–belowground interactions in a community?

• How do different types of aboveground–belowground interactions affect the
invasibility of a community?

• What is the role of intraspecific interactions and intraspecific variability in the
context of aboveground–belowground interactions?

Fig. 3.2 Multi-scale concept of a model simulating northwards range expansion of Mediterranean
plants that captures abiotic and biotic interactions with aboveground and belowground enemies.
One plot accommodates one plant individual. Biotic interactions occur at the plot and field scale.
The population-level output of the individual-based field-scale simulations is used as input to the
regional-scale model. Based on the probability of a population to reach the northern end of a field,
populations of plants and their aboveground and belowground enemies move northwards in the
region-scale model. The field-scale submodel is run for several scenarios differing, for instance, in
enemy identity or in temperature to provide the required input to the regional-scale model. Such a
multi-scale model can be used to assess intracontinental range expansion speed or the enemy release
hypothesis (Figure design by M. van Oorschot)
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• How do interactions of plants with the environment influence community dynam-
ics relative to interactions with other organisms?

Technically, these advancements correspond to three main avenues for future
aboveground–belowground modeling: first to improve and simplify current models,
second to develop more complex models, and third to adopt entirely new modeling
approaches. The following sections explore how these avenues look like and how we
can advance aboveground–belowground community ecology when going along
these avenues.

3.3.1 The First Avenue: Model Simplification

The first avenue is to improve current models by updating their data basis,
implementing more efficient algorithms, and simplifying model structure where
possible. This may involve reformulating the original research question and adapting
model structure accordingly. Such continuous model updating is also known as the
modeling cycle (Grimm and Railsback 2005) (Fig. 3.3), but is not very often put into
practice because it requires extra investment in an apparently completed model
project. However, the investment is worthwhile because newly available data may
open up new topics for investigation with the model and more efficient model
structure may make more complete analyses or other types of analyses possible. In
the most extreme case, the original model and its outputs turn out to be wrong, which
makes updates mandatory. This first avenue of improving current models also
encourages further data collection targeted at filling gaps in the input parameters
and reference data for the validation of aboveground–belowground models.

3.3.2 The Second Avenue: Model Expansion

The second avenue for future aboveground–belowground modeling is to take
advantage of increasing computing power to expand research questions and models
to include more factors. Model expansion can help to fill current gaps in knowledge.
However, caution should be taken to not make a model unnecessarily complex with
respect to the research question and the available empirical data for parameterization
and validation. Unnecessary model complexity can be avoided by starting with the
simplest possible model with the fewest variables, parameters, and processes,
iterating through the modeling cycle (Fig. 3.3) and always considering to further
simplify rather than adding model structure. Where question and data allow for
model expansion, there are several factors that can be included in future
aboveground–belowground models to fill knowledge gaps. These factors can be
grouped into three directions of interaction: interactions between species,
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intraspecific interactions and variability, and interactions between species and the
environment.

In the first interaction direction, more different types of interactions such as
trophic, competitive, facilitative, mutualistic, or other interspecific interactions
could be combined to provide a more complete picture of a community. To this
end, Tixier et al. (2013) suggested linking soil–plant models that stress plant–plant
interactions with food web models that focus on trophic interactions. Moreover,
negative and positive feedbacks should be considered explicitly (van der Putten
et al. 2009), because they can enhance mechanistic understanding of aboveground–
belowground interactions. It should also be explored under which conditions nega-
tive feedbacks become positive feedbacks and positive feedbacks become negative
ones. Where applicable, special roles of selected functional groups in an interaction
network should be implemented, as in the case of ecosystem engineers (Schröter et al.
2004). Some groups of organisms are underrepresented in aboveground–below-
ground models, among them microorganisms that colonize plant leaf and root
surfaces (Meyer and Leveau 2012; Esser et al. 2015). Considering interactions with

Fig. 3.3 The modeling cycle detailing the steps from question to model and back (modified based
on Grimm and Railsback 2005)
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microorganisms may fill gaps in the understanding of the mechanisms of
aboveground–belowground interactions. When these interactions are more fully
reflected in future aboveground–belowground models, these models can also be
used to investigate the invasibility of communities and to test interaction-related
hypotheses such as the enemy release hypothesis (see also Fig. 3.2). Here, models
have the great advantage over experimental approaches that they allow for countless
manipulations and scenarios that can be run with very high replication (Meyer et al.
2009a).

In the second interaction direction, intraspecific interactions and variability may
also be benefits of future aboveground–belowground models (Pfestorf et al. 2016).
Intraspecific interactions mainly refer to intraspecific competition, i.e., density-
dependent reproduction or mortality that give rise to positively or negatively
density-dependent population growth. This is particularly important where coexis-
tence of species is investigated, because classical ecological theory in the form of the
Lotka–Volterra model predicts that intraspecific competition needs to be stronger
than interspecific competition to promote stable coexistence of two species (see also
Gause 1934). In terms of intraspecific variability, it is especially important that
greater resolution of root traits is included in future approaches (May et al. 2009).
Along similar lines, physiological and ecological aspects should be linked more
tightly and different pathways of information flow should be considered, for instance
in the form of volatiles (Meyer et al. 2012).

In the third interaction direction, interactions with the environment could be
included more explicitly in future aboveground–belowground models. Such models
with more detailed representations of the relevant environmental conditions such as
temperature, pH, soil moisture, or nutrient availability could be used to study how
context-dependent the outcomes of aboveground–belowground interactions are
(Meyer et al. 2009b). These models will also allow agronomists to address the full
complexity of agricultural questions, which requires models with great environ-
mental detail (Tixier et al. 2013). One of these questions is, for instance, how large
are the trade-offs between pesticide use and environmental risks (Tixier et al. 2006).
Fortunately, there are also some types of models that require only a coarse spatial
resolution and thus less detail, such as decision models in agricultural applications
(Tixier et al. 2013). When environmental conditions are more explicitly covered,
their changes can also be explicitly simulated to investigate the responses of
aboveground–belowground interactions to, for instance, global climate change or
to the abiotic components of land-use change. Of course, biotic components of land-
use change should also be considered when land-use change is modeled. This
involves replacing plant species identities by those of the species planted in the
new land use and adapting the whole network of associated species aboveground and
belowground. This will provide a more complete perspective on the relative impor-
tance of abiotic and biotic interactions for the implications of land-use change.
Changes in environmental conditions also have consequences for ecosystem ser-
vices. Hence, more aboveground–belowground model applications that produce
output on ecosystem services are called for (Schröter et al. 2004; Tixier et al. 2013).
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3.3.3 The Third Avenue: New Modeling Techniques

The third avenue towards future aboveground–belowground models is to explore
entirely new technical approaches as bases for the modeling endeavors. These
approaches also encompass empirical approaches that help to provide more complete
or more finely resolved data on which to base parameterization or validation of the
models. For example, molecular tools such as stable isotope analysis should be used
more frequently in order to obtain full food web data for complex aboveground–
belowground models (Tixier et al. 2013). For aboveground–belowground models
that focus on plant morphogenesis and the genetic regulation of plant development,
cell-based simulation approaches have been advocated to capture different types of
plant cells (Dupuy et al. 2007). Game theory offers new techniques that have not yet
been applied in aboveground–belowground modeling. These techniques can be used
to model plant defense strategies or plant allocation responses to global change
(McNickle and Dybzinski 2013). Similarly, static or dynamic Bayesian network
models have not yet been frequently applied in aboveground–belowground model-
ing. However, they can be very useful where food web modelers want to include
stochasticity (Tixier et al. 2013). Adopting new modeling techniques can thus also
open up new ecological perspectives on aboveground–belowground community
ecology.

3.4 Practical Guide to Modeling
Aboveground–Belowground Interactions

How can you now make your own model of aboveground–belowground inter-
actions? Whether you are an experienced modeler or a modeling novice, all your
modeling endeavors (not only the ones related to aboveground–belowground inter-
actions) will usually follow the same general principles that make up the modeling
cycle (Fig. 3.3) (Grimm and Railsback 2005). These principles are derived from the
definition of a model as a purposeful simplification of reality. Thus, the first step of
the modeling cycle is to define the purpose of a model in form of the model question.
This question needs to be as specific as possible to be useful as a decision tool for
simplification (see the examples of model questions in the introduction to this
chapter). Often, model questions arise either explicitly or implicitly from the explo-
ration of empirical data. This is an explicit process when data give rise to questions
on the underlying mechanisms, and these mechanisms are more amenable to model-
ing than empirical approaches. This can for instance be due to logistic constraints.
Implicitly, the data that we process influence our preconceptions about the
mechanisms that shape and drive community dynamics and thus also influence the
questions that we ask about them.

The second step is to develop a conceptual model based on data assembly. The
conceptual model is a collection of hypotheses about the factors, influences, and
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interactions that may be relevant for answering the model question. These hypoth-
eses might only be mental hypotheses, but they are in fact often expressed in the
form of graphics with factors in boxes and arrows representing influences or
interactions. A conceptual model is a crucial milestone for a successful model of a
system, because it makes explicit the knowledge, assumptions, and intuition about
the system. Note that conceptual models can be a step in the modeling cycle or a self-
contained model type (Fig. 3.1). The quality of the conceptual model strongly
depends on the available data. Data are explicitly required for parameterization
and validation of a model, but also more implicitly as a guideline during the
definition of model structure. Data quality obviously varies, but any type and quality
of data related to the model question is welcome at the conceptual modeling stage.
This includes quantitative data obtained from literature sources or from experiments
and observations carried out by the modelers themselves, as well as qualitative data
in the form of expert knowledge or “guesstimates.” If the model concept is trans-
parent about the nature of the data and the estimated uncertainty in the data, even the
most uncertain data can be useful in the modeling process if it is related to the model
question. It is good practice go back and forth between question formation and data
assembly/model conceptualization in several iterations to sharpen and synchronize
question and concept until the next step can be taken.

In the third step, the model structure is fixed, i.e., concrete model equations, rules,
and algorithms are devised, the set of parameters and variables is defined, and the
temporal and spatial scales are determined. Parameters are the input values of a model
that stay constant in any one model run, whereas variables express different states of
the modeled system and vary accordingly. Scale is composed of grain and extent, i.e.,
the smallest and the largest spatial or temporal unit to be distinguished in the model. A
careful definition of the model scales is especially important in aboveground–below-
ground interaction models, because the dynamics of aboveground–belowground
interactions is often scale-dependent. Deciding to choose a particular model structure
may have as a consequence that the conceptual model and sometimes even the model
question have to be modified.

The fourth step is to implement and parameterize the model. This means that the
model structure is turned into a set of spelled-out equations in the case of equation-
based models such as process-based and reaction–diffusion models and into pro-
gramming code in the case of rule-based models such as most cellular automata and
individual-based models (Table 3.1). Additionally, standard parameter values and
the initial values of the variables need to be defined based on data from the second
step. This requires a certain degree of technical knowledge in mathematics or
software design, which can of course also be outsourced to mathematicians or
software experts. Literature on equation-based modeling in biology abounds; classic
references are Adler (2005) and Edelstein-Keshet (2005). For rule-based models, the
free software NetLogo (Wilensky 1999) is highly suitable for programming novices,
because it offers ample self-learning material and an extensive library with ready-
made models as starting points. This software is specialized on agent- or individual-
based models, but can also be applied to implement any other rule-based model
structure. Grimm and Railsback (2005) line out the theoretical basis of agent- and
individual-based modeling in ecology, and Railsback and Grimm (2012) provide a
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practical introduction to agent-based modeling for beginners. Once all obvious
mistakes have been eliminated from the set of equations or from the code and the
model is running smoothly, the next step can be taken.

The fifth step involves model analysis, testing, and revision. For model analysis,
scenarios need to be defined in the form of sets of parameter values that reflect
different aspects of the model question. Parameter values can also be defined beyond
the scope of the model question to test how the model responds to more extreme
parameterizations. Testing should also include checking the plausibility of all model
results and explicit model validation against reference data that were not used during
parameterization. Once the model is successfully validated, model analysis can also
include a sensitivity analysis to determine the relative importance of the input
parameters with respect to model output (Cariboni et al. 2007). A sound model
analysis usually takes ten times as much time as all previous steps taken together
(Grimm and Railsback 2005). A particularly efficient and systematic way to test a
rule-based model is pattern-oriented modeling (Grimm et al. 2005), which can also
be used for inverse parametrization. Patterns for which reference data exist need to
be discerned in the model output. These patterns can be spatial patterns, but can also
be nonspatial patterns, e.g., size-frequency distributions or number and identity of
species in an aboveground–belowground food web. The model is then run with
several different model structures and sets of parameter values, and the resulting
patterns are compared with the reference patterns from reality. The model version
that produces the best fit between modeled and real patterns can then be considered
as most realistic model structure and parameterization. Thereby, pattern-oriented
modeling can also be used to identify unknown parameter values in an inverse
parameterization where data for the unknown parameters are scarce, but data for
reference patterns abound. During the process of model analysis, there is often cause
for model revision, sometimes back to the modification of the original model
question. This can either be because errors or uncertainty in important model parts
have emerged and force the discarding of the current model and starting anew or
because the results of the model analysis have inspired entirely new questions.

As the last step after successful model analysis, the model can be communicated
in presentations and publications. This requires precise documentation of the model
(e.g., Grimm et al. 2010, 2014). Ideally, documentation accompanies the whole
model building process right from the start at the model question. Finally, spin-offs
of the model can be considered, so that the modeling cycle starts again.

3.5 Conclusions

Models can capture parts of the complexity of aboveground–belowground interac-
tions with the aim to describe, explain, and predict aboveground–belowground
community patterns. Models come with the advantage of broad independence of
logistic constraints, except, of course, for computing power limitations. Many of the
existing aboveground–belowground models have been developed in applied fields
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such as the agricultural sciences, but classic community ecology and theory is
underrepresented. Similarly, community models that address the full range of pos-
sible interactions are rare in aboveground–belowground ecology. One reason for this
might be that in aboveground–belowground community ecology expertise from
many different disciplines is required. Another reason is that models must simplify,
by definition, so that at least initially not all factors or interactions should be included
in a model. Once the simple initial models are understood, more factors and
interactions can be added by iterating the modeling cycle. A broad range of model
types is available to implement these models, but their full potential is yet to be
exploited. This is particularly true for game theoretical approaches and Bayesian
network models. One of the challenges that future modeling endeavors face is the
appropriate representation of spatial and temporal scales including methods for
scaling up and down between different scales. All these challenges require concerted
efforts of modelers and empiricists in the future. Ideally, modelers and empiricists
should work closely together right from the start of a project, defining question, data
requirements, and methods together (Jeltsch et al. 2013). Along the same lines,
greater emphasis should be put on targeted data collections to fill gaps in para-
meterization and validation of models. With these efforts, more facets of the com-
plexity of aboveground–belowground interactions will be elucidated in future
aboveground–belowground models.
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