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for Gaussian processes with constant but unknown mean
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SUMMARY

For prediction in a Gaussian random field, we give an explicit formulation of the conditional mean-squared pre-
diction error (cmspe). If the prediction method is ordinary kriging, we find that this error in most applications is
likely to be very close to the ordinary kriging variance. This is additionally demonstrated based on a case study.
Finally, we discuss the difference between these two errors compared to the error introduced by using estimated
instead of true covariance parameters. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Whenever we deal with the general problem of predicting the value of an unobserved random variable
Z0 from the realisation zn of an observed random vector Zn = [Z1, . . . , Zn]′, whether the special case
of the problem be a mixed linear model or spatial prediction (Harville and Jeske, 1992, p. 724), the
mean squared prediction error is the means to evaluate the goodness of the prediction. Spatial prediction
is widely used in environmental sciences, but whether the prediction itself is that of soil characteristics
(Webster and Oliver, 1985), of tree growth increment (Biondi et al., 1994) or of the percentage of
damaged leaves (Köhl and Gertner, 1992): its error can either depend on the realisation of the observed
random vector (the data, in practice) or not. For an arbitrary predictor Ẑ0, the mean squared prediction
error conditioned by the data is given by

E[{Ẑ0 − Z0}2 | Zn] = var[Z0 | Zn] + (Ẑ0 − E[Z0 | Zn])2 (1)

This conditional mean-squared prediction error (cmspe) is unavailable in most applications because
it requires the knowledge of the expectation E[Z0 | Zn] and variance var[Z0 | Zn] of the conditional
distribution of Z0 given Zn = zn. Therefore usually the unconditional mean squared prediction error
(umspe) is computed. Its independence of the data has often been criticised (for example Armstrong,
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1994; Chilès and Delfiner, 1999; Goovaerts, 1997, chap. 5.8.3; Lloyd and Atkinson, 1999; Deutsch and
Journel, 1998 and Yamamoto, 2000).

In the following, we will derive an explicit formulation of the cmspe of the best unbiased linear
predictor (blup) for a Gaussian joint distribution of Z0 and Zn with constant but unknown mean (i.e.
E[Zi] = µ ∀ Zi; i = 0, . . . , n). Since it depends on the unknown mean, we examine the distribution of
that difference between umspe and cmspe of the blup and—in case the blup is the ordinary kriging
predictor—the absolute value of this difference.

2. GAUSSIAN PROCESSES WITH CONSTANT BUT UNKNOWN MEAN AND SPATIAL
PREDICTION

2.1. Conditional mean-squared prediction error

As is well known, E[Z0 | Zn] is linear in Zn for a Gaussian joint distribution of Z0 and Zn (Cressie,
1991, p. 109) and if additionally E[Zi] = µ ∀ Zi; i = 0, . . . , n then

E[Z0 | Zn] = µ + c′�−1(Zn − 1nµ) (2)

(Stein, 1999, p. 3), where c = cov[Z0, Zn] and � = cov[Zn, Zn]. Furthermore, if the joint distribution
of Z0 and Zn is Gaussian then var[Z0 | Zn] does not depend on Zn (Johnson and Kotz, 1972, p. 41) and
if additionally var[Zi] = σ2 ∀ Zi; i = 0, . . . , n then

var[Z0 | Zn] = σ2 − c′�−1c (3)

holds (Stein, 1999, p. 3). Since the mean µ is unknown, we estimate it using µ̂ = (1′
n�

−11n)
−1

1′
n�

−1Zn.
Now we have the blup given by

Ẑ0 = µ̂ + c′�−1(Zn − 1nµ̂) (4)

which has umspe

E(Ẑ0 − Z0)2 = σ2 − c′�−1c + (1 − c′�−11n)2(1′
n�

−11n)
−1

= σ2 − c′�−1c + (1 − c′�−11n)2E(µ̂ − µ)2 (5)

By plugging Equations (2–4) into Equation (1), we derive the cmspe of the blup as

E[{Ẑ0 − Z0}2 | Zn] = σ2 − c′�−1c + (1 − c′�−11n)2(µ̂ − µ)2 (6)

The difference between the umspe and the cmspe of the blup equates to

Equation (5) − Equation (6) = (1 − c′�−11n)2[E(µ̂ − µ)2 − (µ̂ − µ)2] (7)
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This difference becomes negative if and only if (µ̂ − µ)2 > E(µ̂ − µ)2, and since in the special case
considered here µ̂ is a weighted sum of normally distributed Zn, then following Anderson (1958, p. 19)

µ̂ ∼ N
(
µ, (1′

n�
−11n)

−1
)

and

(
µ̂ − µ√

E(µ̂ − µ)2

)2

∼ χ2
1

Thus, P[(µ̂ − µ)2 > E(µ̂ − µ)2] = P[(µ̂ − µ)2/E(µ̂ − µ)2 > 1] = P[χ2
1 > 1] ≈ 0.32, that is in

about 32% of all cases, the umspe of the blup under the special case considered here is less than
the corresponding cmspe.

2.2. Spatial prediction

Let us suppose that Z0, . . . , Zn are marginal distributions of a spatial random process and c and �

are matrices consisting of values of a spatial autocovariance which is a function, cov[d], of the spatial
distance vectors between Z0, . . . , Zn only. Then Equation (4) is known as the ordinary kriging predictor
refer to Cressie (1991, p. 123). From Equation (4)

Ẑ0 = µ̂ + c′�−1(Zn − 1nµ̂) = c′�−1Zn + µ̂(1 − c′�−11n) (8)

we see that the first factor in Equation (7), (1 − c′�−11n)2, is the squared weight of the (estimated)
mean for ordinary kriging.

Rivoirard (1984, p. 67), shows that the weight of the mean is close to zero if some of the spatial
locations of Z1, . . . , Zn are close to the spatial location of Z0, close with respect to the range of the
spatial autocovariance function.

We can illustrate this by calculating (1 − c′�−11n)2 for an exponential spatial autocovariance func-
tion

cove(d) = cp exp

(
− d

a0

)
(9)

where d, cp and a0 denote the vector of spatial distance, the sill and the range, respectively. Note that
for 3 a0 (which Deutsch and Journel (1998, p. 25), call effective range), cove(d) reaches approximately
0.95 cp.

Figure 1 shows the squared weight of the mean for Ẑ0 when n observed random variables, Z1, . . . , Zn,
are arranged equally spaced on a circle around Z0. With the range increasing from 0 to the radius of
the circle (where at a0/radius = 1/3 the observed random variables ‘come into reach’ of the spatial
autocovariance function), the squared weight of the mean diminishes rapidly, whereas n, the number
of observed random variables, does not have much influence when there is more than just a couple of
observed random variables.

Let us now consider the more realistic assumption of systematic sampling. If the observed ran-
dom variables are located on a square grid and Z0 lies in the middle of the central square, then
Figure 2(a) shows the squared weights of the mean using Equation (9) again. In Figure 2(a), the
squared weights of the mean are shown over the range relative to the size of a quadratic grid with
100 grid points. Not surprisingly, the weights decrease with increasing relative range, which is due
to more observed random variables coming into reach of the spatial autocovariance function. From
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Figure 1. (1 − c′�−11n)2 for radial data using Equation (9). Graphics were produced using the code available from
http://www.uni-forst.gwdg.de/˜acullma/cmspe/cmspe.r under R version 2.6.2 (2008-02-08), ISBN 3-900051-07-0, with the ad-

ditional packages ‘fields’ version 4.1 and ‘spatial’ version 7.2-41

Figure 2. Squared weights of the mean using observed random variables on a quadratic 10 × 10 grid, over range relative to
gridsize (a) and number of observed random variables within a spatial distance of 3 a0 from the location of Z0 (b). Graphics were
produced using the code available from http://www.uni-forst.gwdg.de/˜acullma/cmspe/cmspe.r under R version 2.6.2 (2008-02-

08), ISBN 3-900051-07-0, with the additional packages ‘fields’ version 4.1 and ‘spatial’ version 7.2-41

Figure 2(b) we see that the number of observed random variables, not more than the effective range
apart from Z0 in space, is a good indicator for the amount of (1 − c′�−11n)2. Both figures show
that the squared weight of the mean for ordinary kriging ought to be very close to zero in most
applications.
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Figure 3. Magnesium content of spruce needles, Baden-Württemberg 1994, Gauß–Krüger coordinates in kilometers (a);
Empirical (dots) and fitted semivariogram (line) (b). Graphics were produced using the code available from http://www.uni-
forst.gwdg.de/˜acullma/cmspe/cmspe.r under R version 2.6.2 (2008-02-08), ISBN 3-900051-07-0, with the additional packages
‘fields’ version 4.1 and ‘spatial’ version 7.2-41. This figure is available in colour online at www.interscience.wiley.com/journal/env

3. A CASE STUDY

Magnesium deficiency causes disadvantageous nitrogen–magnesium ratios and can lead to increment
loss in conifer stands (refer to Evers and Hüttl, 1992; Liu and Hüttl, 1991), Danneberg (2001) gives
magnesium deficiency thresholds of about 70–80 cg/kg for spruce needles.

Figure 3(a) shows the magnesium content of spruce needles collected for the Immissionsökologische
Waldzustandserfassung in the state of Baden-Württemberg, South West Germany, in 1994, Figure 3(b)
the empirical and fitted semivariograms. The latter is the isotropic spherical autocovariance function

covs|d| =




400 ·
{

1 −
[

3
2 · |d|

42 − 1
2 · |d|3

423

]}
for 0 < |d| ≤ 42

550 + 400 for |d| = 0

0 for |d| ≥ 42

(10)

Let us assume that the data are a realisation of n = 578 jointly distributed Gaussian random variables
Zn = [Z1, . . . , Z587]′ with constant first moments and second moments given by Equation (10), then
the weight of the mean in Equation (8), 1 − c′�−11n, for predicting the magnesium content in spruce
needles over the area of the state of Baden-Württemberg (assuming that for each prediction location the
unobserved Z0 joins the distribution of Zn) is shown in Figure 4(a).

We clearly see that this weight is close to zero whenever there are some data within a reasonable
range of the prediction location. With this weight squared, the difference between umspe and cmspe,
Equation (7), is likely to be negligible for most parts of the area of interest.
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Figure 4. Weight of the mean (WOM) for ordinary kriging (a); relative width change (RWC) of confidence intervals
(b) for (µ̂ − µ)2 = 2 · E(µ̂ − µ)2. Gauß–Krüger coordinates in kilometres. This figure is available in colour online at

www.interscience.wiley.com/journal/env

If we wanted to estimate the relative change in width

RCW = width
(
p ± √

umspe · u1−(α/2)
) − width

(
p ± √

cmspe · u1−(α/2)
)

width
(
p ± √

cmspe · u1−(α/2)
)

=
√

umspe − √
cmspe√

cmspe

of Gaussian confidence intervals of type [p ± √
mspe · u1−(α/2)] that origins from substituting cmspe

by umspe, we need not only to know the weight of the mean, but E(µ̂ − µ)2 − (µ̂ − µ)2, the second
factor in Equation (7), too. Since the mean is unknown, we shall make the following assumptions which
are ordered by the goodness of the estimation of the constant mean:

(a) E(µ̂ − µ)2 − (µ̂ − µ)2 = E(µ̂ − µ)2

the estimation of the mean is perfect, there is no error (µ̂ − µ = 0), thus (µ̂ − µ)2/E(µ̂ − µ)2 = 0
and the probability of observing a realisation with (µ̂ − µ)2/E(µ̂ − µ)2 ≥ 0 is P[χ2

1 > 0] = 1.
(b) E(µ̂ − µ)2 − (µ̂ − µ)2 = 0

the squared error of the estimation of the mean is as big as expected to be ((µ̂ − µ)2 =
E(µ̂ − µ)2), this implies (µ̂ − µ)2/E(µ̂ − µ)2 = 1, the probability of observing a realisation with
(µ̂ − µ)2/E(µ̂ − µ)2 ≥ 1 is P[χ2

1 > 1] ≈ 0.3173105.
(c) E(µ̂ − µ)2 − (µ̂ − µ)2 = −E(µ̂ − µ)2

the squared error of the estimation of the mean is twice as big as expected ((µ̂ − µ)2 =
2 · E(µ̂ − µ)2). (µ̂ − µ)2/E(µ̂ − µ)2 = 2, the probability of observing a realisation with
(µ̂ − µ)2/E(µ̂ − µ)2 ≥ 2 is P[χ2

1 > 2] ≈ 0.1572992.

The relative change in width under assumption (c) is depicted in Figure 4(b): it is distinguishable
from zero only close to the western border of Baden-Württemberg, where the weight of the mean
1 − c′�−11n is close to 1 (Figure 4(a)). Table 1 sums up results for the three assumptions. We see
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Table 1. Extrema and median for some statitics, RCW for assumptions (a) through (c)

Statistic Assumption Minimum Maximum Median

E(Ẑ0 − Z0)2 0 950.0342 562.5342
E(µ̂ − µ)2 16.1207 16.1207 16.1207
1 − c′�−11n −0.0105 0.8936 0.0638
RCW (a) 0 0.0067 0.000059
RCW (b) 0 0 0
RCW (c) −0.0068 0 −0.000059

that the width of the confidence intervals does not change remarkably even for relatively extreme
realisations (having (µ̂ − µ)2/E(µ̂ − µ)2 = 0 and (µ̂ − µ)2/E(µ̂ − µ)2 = 2). This is probably partly
due to the fact that E(µ̂ − µ)2 is small compared to the median of E(Ẑ0 − Z0)2, so that for most locations
the value of E(µ̂ − µ)2 − (µ̂ − µ)2 in E(Ẑ0 − Z0)2 − E[{Ẑ0 − Z0}2 | Zn] will be small compared to
E[{Ẑ0 − Z0}2 | Zn], especially when −E(µ̂ − µ)2 ≤ E(µ̂ − µ)2 − (µ̂ − µ)2 ≤ E(µ̂ − µ)2]—which
is the case with P[0 ≤ χ2

1 ≤ 2] ≈ 0.843.
The same will be true for the RCW which is the relative difference of the square roots of E(Ẑ0 − Z0)2

and E[{p − Z0}2 | Zn].

4. DISCUSSION

As we have seen in Section 2, the unconditional mspe of the blup—under the assumption of a Gaussian
joint distribution of Z0 and Zn with constant mean—is likely (with probability 1 − P[χ2

1 > 1] ≈ 0.68)
to be higher than the conditional mean squared prediction error, resulting in approximate confidence
intervals of type Ẑ0 ± 1.96E(Ẑ0 − Z0)2 that are wider, i.e. more conservative, than confidence in-
tervals of type Ẑ0 ± 1.96E[{Ẑ0 − Z0}2 | Zn]. For ordinary kriging, from Section 2.2, the difference
between conditional and umspe, E(Ẑ0 − Z0)2 − E[{Ẑ0 − Z0}2 | Zn], is likely to be close to zero for
most applications, because (µ̂ − µ)2 will also be small compared to its expectation for moderate
and larger sample sizes (see Equation (7)). Even if this difference, due to an increasing weight of
the mean, increases, so does E[{Ẑ0 − Z0}2 | Zn] (according to Equation (6)), and the relative error
E(Ẑ0 − Z0)2 − E[{Ẑ0 − Z0}2 | Zn]/E[{Ẑ0 − Z0}2 | Zn] ought to stay reasonably small. This states
our opinion that in the special case considered here E(Ẑ0 − Z0)2 is an appropriate approximation of
E[{Ẑ0 − Z0}2 | Zn].

Furthermore, in practice the parameters θ of the spatial autocovariance function giving the second
moments of the joint distribution of Z0 and Zn are usually estimated from the realisation of Zn (refer to
Stein, 1999, p. vii); this estimation is denoted by θ̂ in the following. It results in using the ‘empirical’ or
‘estimated’ best linear unbiased estimator, p2(Zn, θ̂), with actual umspe m2(θ) = E(Z0 − p2(Zn, θ̂))2

instead of the blup p1(Zn, θ) with umspe m1(θ) = E(Z0 − p1(Zn, θ))2 (refer to Stein, 1999, p. 200).
m2(θ) is, ‘aside from relatively simple special cases’ (Harville and Jeske, 1992, p. 725), unavailable,

hence in practice it is estimated by the presumed error of p2(Zn, θ̂), m1(θ̂) = E(Z0 − p1(Zn, θ̂))2, which
is obtained by substituting θ with θ̂ in m1(θ).

Zimmerman (2006) shows that regularly spaced sampling designs for Zn enhance prediction but
clustered designs result in improved estimation of θ, so there seems to be a trade-off between estimating
m2(θ) through m1(θ̂) and keeping m2(θ) small at the same time.
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Zimmerman and Cressie (1992), example 2, show that for a Gaussian joint distribution of Z0 and
Zn with a spherical spatial autocovariance the bias

E
[
m1(θ̂)

] − m2(θ)

m2(θ)

can mount up to over 0.33 if the spatial correlation is weak, i.e. if the weight of the mean in kriging is
high. Similar problems can be expected to occur with the cmspe of the estimated blup for Z0.
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