
T
A
a

K
a

b

S
c

d

S

a

A

R

R

A

P

K

S

C

Z

A

A

N

P

P

T

0
d

e c o l o g i c a l m o d e l l i n g 2 1 0 ( 2 0 0 8 ) 431–445

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

he role of size inequality in self-thinning:
pattern-oriented simulation model for

rid savannas

erstin Wieganda,b,∗, David Saltzb,c, David Wardb,d,1, Simon A. Levina

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
Mitrani Department for Desert Ecology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev,
ede Boqer 84990, Israel
Israel Nature and Parks Authority, 3 Olam vaOlamo Street, 95463 Jerusalem, Israel
Ramon Science Center, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev,
ede Boqer 84990, Israel

r t i c l e i n f o

rticle history:

eceived 26 April 2006

eceived in revised form 5 June 2007

ccepted 15 August 2007

ublished on line 30 October 2007

eywords:

ize inequality

ompetitive asymmetry

one of influence model

rid savanna

cacia reficiens

amibia

arsimony

attern-oriented modeling

a b s t r a c t

The self-thinning line is a very robust pattern, which can be obtained in modeling studies

by a variety of different mechanistic assumptions. Our opinion is that we can only advance

in our understanding of mechanisms leading to the self-thinning relationship if we demand

that the model also reproduces several other characteristic features (patterns) of the self-

thinning process such as the degree of size inequality and the average size. We use a pattern-

oriented modeling approach to develop a model of self-thinning under size inequality in

overcrowded, even-aged stands, which reproduces these three patterns simultaneously. Our

approach is to first develop an initial model based on our current ecological knowledge and

then to refine the model by modifying the initial model to derive the model that reproduces

all patterns of interest.

The initial model is as simple as possible while avoiding incidental, ecologically unjus-

tified, assumptions. It is a further development of zone of influence-simulation models:

each plant is described by two circles, one describing a minimum-domain-area and one

describing the zone of influence. In the initial model, mortality is “death-by-contact” of

minimum-domain-areas and growth is a function of inter-tree competition, i.e. overlap-

ping zones of influence. Model parameterization is based on field data on Acacia reficiens

in southern Africa. Simulations follow patches of initially small trees through time for up

to 1000 years with five parameters, three describing growth and two describing inter-tree

competition. A sensitivity analysis shows that all parameters of the initial model contribute

significantly to the number and size of plants through time. The two competition parame-
ters, which describe competitive asymmetry and the size of the zone of influence relative

to canopy size, are both important for generating size inequality. Thus, both competitive

asymmetry and spatial pattern contribute to size inequality, and their relative importance

may vary greatly.

The sensitivity analysis suggests that all processes included in the initial model are essen-

tial to the evolution of size inequality. However, size inequality under the initial model is
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below field values, meaning that additional, as yet unconsidered processes, contribute to

size inequality. Our best-fit model additionally contains details on growth stochasticity.

This study establishes the often-proposed direct link between mortality driven by local

competition and self-thinning and highlights the importance of stochasticity in ecological
processes.

1. Introduction

Size inequality is a common phenomenon in plants, even
in monospecific, even-aged stands (e.g., Hara, 1988). There
is controversy regarding whether size inequality is increased
by local crowding (meaning that individuals obtain resources
depending on the size, proximity, and number of neighbors)
or by asymmetry in competition between individuals (mean-
ing that larger individuals obtain a disproportionate share
of the resources for their relative size). A series of models
(Huston, 1986; Weiner and Thomas, 1986; Miller and Weiner,
1989; Weiner, 1990; Bonan, 1991; Weiner et al., 2001) did not
resolve this issue. However, many of these models did not
allow for mortality. In this study we focus on size inequality
in self-thinning stands.

The well-known self-thinning line relates the (log) mean
density of plants to the (log) mean plant size with a slope of
−3/2, −4/3, or −2 depending on whether plant size is measured
in terms of plant volume, plant biomass, or canopy diameter
or diameter at breast height, respectively (Yoda et al., 1963;
Enquist et al., 1998; Enquist and Niklas, 2001; Wiegand et al.,
unpublished). There is some agreement that self-thinning is
a local process of resource competition and death of sup-
pressed plants (Hamilton et al., 1995). However, despite a
plethora of experimental and theoretical analyses (Westoby,
1984; Hamilton et al., 1995), there is still no agreement about
the mechanisms leading to the nearly constant slope of the
self-thinning relationship. We argue that this goes back to the
fact that the self-thinning line is only one characteristic fea-
ture of the self-thinning process (see also Reynolds and Ford,
2005). That different models produce the self-thinning line,
indicates that this is a very robust pattern which can eas-
ily be reproduced (e.g., Aikman and Watkinson, 1980; Slatkin
and Anderson, 1984; Hara, 1985; Adler, 1996; Wiegand et al.,
unpublished).

The demonstration that a specific mechanism can in the-
ory, generate an observed pattern, is not proof that the
mechanism is indeed responsible for that pattern. However,
while it may be quite easy to reproduce one characteristic fea-
ture of a system, it is not trivial to reproduce several of them
simultaneously (Levin, 1992; Kendall et al., 1999; Reynolds and
Ford, 1999; Wiegand et al., 2003). This is a basic premise of
pattern-oriented modeling (POM) (Wiegand et al., 2003; Grimm
et al., 2005). In POM, multiple, characteristic features (here-
after called patterns) are used to (1) optimize model structure,
(2) discriminate between alternative hypotheses, and (3) to
reduce parameter uncertainty via inverse modeling (Grimm

et al., 2005). The basic idea of POM is to compare patterns
observed in the field to those generated by several model
variants. Aims 1–3 are achieved by searching for the model
variant that reproduces the field patterns best. Following the
© 2007 Elsevier B.V. All rights reserved.

logic of POM, we can only advance in our understanding of
mechanisms leading to the self-thinning relationship if the
models reproduce several patterns of the system during the
self-thinning process simultaneously. For example, the devel-
opment of size hierarchies in the population can be used as
an additional pattern (Hara, 1988; Reynolds and Ford, 2005).

The overarching aim of this study is to improve our under-
standing of size inequality under self-thinning. We proceed in
three steps. First, we develop an individual-based and spatially
explicit simulation model (hereafter called “initial model”)
that summarizes our a priori knowledge and hypotheses on
self-thinning and size inequality (upper left box in Fig. 1).
This model contains, in the simplest way, the leading current
hypotheses on self-thinning and size inequality. In POM ter-
minology, the model contains those variables and processes
believed to be necessary so that the self-thinning line and
size inequality can emerge (Grimm et al., 2005). However, the
model is flexible in terms of growth form, the influence of local
crowding on resource division among plants, and the degree
of competitive asymmetry. As is the case with partially spec-
ified models, this flexibility is an attempt to avoid incidental
assumptions (Wood, 2001). Model development and parame-
terization is guided by the case study of Acacia reficiens trees in
an arid savanna in southern Africa. To gain a more thorough
understanding of this model, we explore its behavior via a sen-
sitivity analysis within the entire realistic parameter space. In
the second step, we contrast hypotheses on size inequality for
the special case of self-thinning populations and find that the
hypotheses are not mutually exclusive and interact to gener-
ate size inequality (“Basic understanding” in Fig. 1). In the last
step, we turn to the specific case of A. reficiens and try to quan-
titatively reproduce three patterns (i.e., the self-thinning line,
the degree of size inequality, and the average size of the pop-
ulation at which a certain degree of size inequality is reached)
as observed. To make the success of this goal more likely, we
use additional variants of the initial model that capture the
stochastic nature of plant growth in more detail (“Build refined
model variants” in Fig. 1).

2. Site description

Our model is based on a field study in the western edge of
the Khomas Hochland, central Namibia, on three adjacent
ranches that cover 32,000 ha in total (Wiegand et al., 2005).
These ranches are situated between two parallel mountain
ranges running north to south. The climate is hot (maximal
summer temperatures reach 42 ◦C) and arid with a distinct,

latitude-driven rainfall gradient across the three ranches from
80 mm per annum in the south to 170 mm per annum in the
north (Wiegand et al., 2005). Virtually all rain falls in summer
(January–April, Ward et al., 2004).
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Fig. 1 – Overview of pattern-oriented modeling procedure employed in this paper including a general flowchart (left half)
and details specific to this paper (right hand side). The flowchart shows all steps carried out (solid border lines) and some
alternative steps (broken border lines). If the sensitivity analysis would have resulted in non-sensitive parameters, a model
simplification would have been necessary. In this paper, all parameters were sensitive and “Basic understanding” refers to
the analysis of the two competing hypotheses on the generation on size inequality. If the model would have reproduced the
specific patterns, we would have accepted the initial model both as a general representation of the generation of size
inequality in plants and a specific model for A. reficiens in our Namibian study site. As this was not the case, we built
refined model variants. Note that the decision on whether to put rules into the initial model or to reserve them for refined
model variants depends on whether these rules may lead to qualitative differences in model behavior (put in initial model)
or lead only to quantitative differences in model output (refinements). The last step is to select the refined model version or
versions that reproduce all patterns best because this constitutes a summary of the new knowledge on the questions
addressed by the model. If patterns are not sufficiently reproduced, appropriate field data should be collected and thereafter
a new modeling round attempted. The right hand side of the figure shows the Patterns used in each modeling step, the
Scenarios investigated, the Section in which the results are presented and Tab./Fig. indicates the tables and figures
containing the results. The horizontal line indicates whether model parameters were varied globally within the limits given
in Table 1 (above the line) or if the standard values given in Table 1 were used (below the line). Note that the patterns used
in the modeling procedure proceed from general (here e.g. average tree size) to specific (here e.g. average tree size at which
maximum size inequality is reached). General patterns are useful during sensitivity analysis to check if the initial model is
in principle able to change these variables. Once this is established, one may proceed to more specific analyses,
culminating in quantitative fits of specific patterns. size, average minimum-domain-area (in this study equivalent to the
plant canopy); Gini, size inequality in minimum-domain-areas; Gm, maximum size inequality over the course of an entire
simulation; P1, realistic level of maximum size inequality Gm; P2, realistic average minimum-domain-area at which the
maximum size inequality is exhibited (dGm). Note that patterns P1 and P2 are investigated in addition to the self-thinning
line (P0). The scenarios differ in initial tree size–frequency distribution and growth. I1, equal sizes; I2, normally distributed
sizes; I3, field sizes; G1, initial model; G2, growth rate different among plants but constant through time; G3, stochastic
growth rate following a normal distribution with mean g; G4, double stochastic growth process accounting for the
possibility of both increase (95% probability) and decrease (5%) in plant size as explained in Table 2.
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There is a shallow layer of sandy soil overlying Swakop
schist from the Damara sequence (Van der Merwe, 1983).
Thus, roots of both woody and grassy plants are confined
to a thin soil layer (<5–15 cm deep). The vegetation is dry
open savanna dominated by A. reficiens (“Red thorn” or “False
umbrella thorn”) with a mixture of Stipagrostis, Eragrostis and
Entoplocamia spp. grasses (Ward et al., 2004; Wiegand et al.,
2005). A. reficiens is a small thorny tree that grows up to 5 m in
height in southern Africa, although it seldom reaches above
3 m in our study area (Carr, 1976; Palgrave, 1977; Ross, 1979).
As indices of tree size, we use both height (H [m]) and canopy
diameter (CD [m]). This is possible because of a strong pos-
itive correlation between these two properties in our study
site (log H = −0.09 + 0.70log CD, r2 = 0.93, N = 48 for trees <1.5 m;
log = log10). Strong correlations between these traits have also
been recorded in other studies (e.g., Coughenour et al., 1990;
Ward and Rohner, 1997).

The spatial distribution of A. reficiens in the study area
is very patchy. The tree size–frequency distribution within
these patches are unimodal or bimodal (presumably repre-
senting one or two age-classes, respectively) and are about
50–600 m in extent (Wiegand et al., 2005). Mean tree height is
inversely related to tree density with small mean tree heights
(�0.5 m) at high tree densities (�0.5 trees/m) and large mean
tree heights (>1.2 m) at low densities (<0.2 trees/m). This pat-
tern can be explained by localized mass germination and
subsequent inter-tree competition leading to lower tree den-
sities when trees grow in size (Wiegand et al., 2006).

3. Model description

3.1. General model description

Our initial model simulates the temporal development
(growth, mortality) of an even-aged monospecific population
of trees distributed in a continuous, square plot, with a basic
time step of 5 years. We do not consider reproduction or death
due to old age, as we are interested in the dynamics of dense,
even-aged, monospecific stands during self-thinning, exclud-
ing dynamics outside this frame of interest. Our initial model
is a further development of zone of influence (ZOI) models
(Bella, 1971; Hara, 1988). In ZOI models, each individual is char-
acterized by its spatial position and a ZOI, representing the
area within which the plant has access to resources. ZOI over-
lap with other plants reduces the growth rate proportional to
the overlapped area of ZOIs. In our study area this is probably
manifested by competition for water and nutrients. Indeed, an
estimate of the size of the ZOI of A. reficiens via a fitting pro-
cedure based on plant growth with and without competition
gave a posteriori good agreement between the estimated ZOI of
the Acacia trees and the maximum extent of the plant’s root
system (Appendix A in supplementary material). Therefore,
we see the ZOI as representing root extent.

As we are interested in self-thinning, our initial model
includes – in contrast to most other ZOI models – mortality.

To this end, we add a concentric circular minimum-domain-
area to our ZOI model. The minimum-domain-area grows
proportional to plant size and any overlap with the minimum-
domain-areas of neighboring plants leads to the death of
2 1 0 ( 2 0 0 8 ) 431–445

the smaller plant. In the case of the canopy-intolerant genus
Acacia (cf. Smith and Goodman, 1986; Milton, 1995), we see
this minimum-domain-area as representing the tree canopy
because tree canopies in our study area do virtually not over-
lap.

3.2. Model scales, instance variables, and output
variables

Model scales are characterized by both grain and extent (sensu
Wiens, 1989). The spatial grain of our initial model is 1 cm,
which enables us to adequately describe the location of small
individuals. As spatial extent we chose an area of 20 m × 20 m,
which balances the disadvantages of many small plants (com-
putational effort) in the early, and few large plants (statistics)
in the late, stage of growth and self-thinning. To avoid edge
effects, the modeled area is wrapped into a torus (the left and
right edges and the top and bottom of the lattice are joined
together). In accordance with the slow dynamics of plants
in arid environments (e.g., Cody, 2000; Miller and Huenneke,
2000) our model has a temporal grain of 5 years. The temporal
extent of 200 simulation steps (1000 years) allows us to fol-
low the development of size inequality under all parameter
combinations investigated.

In our initial model, plants are characterized by the follow-
ing four instance variables:

x: the two-dimensional location of the plant center;
d: a circle of diameter d [cm] centered about x and represent-
ing the minimum-domain-area;
ZOI: a circle of diameter d × ZOI scale centered about x.
Assuming isometry, we keep the ratio between the ZOI
diameter and the minimum-domain-diameter constant at
ZOI scale (ZOI scale > 1). The choice of ZOI scale determines
the influence of local crowding on resource division. The
greater the ZOI scale, the more plants may compete with each
other; and
ZOIp: the proportion of resources captured from within the
ZOI. In the absence of competition, ZOIp = 1.0.

In this study, we represent plants by their two-dimensional
minimum-domain-area and ZOI and do not consider biomass.
(We can estimate biomass (AB) from canopy diameter (CD)
using log AB = 2.56log CD + 2.82; Wiegand et al., unpublished.)
Our comparisons to field data are also on the basis of a
horizontal measure of tree size—namely canopy diameter.
This approach better clarifies the mechanisms underlying
plant competition by simplifying plant competition into a
two-dimensional process, namely gaining as much horizon-
tal spread of roots and shoots as possible. This simplification
is reasonable for monospecific even-aged stands where the
vertical spread of plants is closely related to horizontal mea-
sures of plant size via allometric relationships (Niklas, 1994).
While allometry may change due to morphological plasticity
in response to competition in several species (Reynolds and
Ford, 2005), in absence of evidence for morphological plastic-

ity in A. reficiens, we keep our model simple and do not include
this possibility.

Model output includes the number of trees in a simula-
tion, their average size, and their size–frequency distribution
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t each of the 201 time steps. Inequality in tree size is mea-
ured using the Gini coefficient, a non-parametric measure
f variation (Glasser, 1962; Weiner and Solbrig, 1984). The Gini
oefficient is the average of the absolute differences of all pairs
f values in a population divided by twice the average. The
oefficient equals 0 when all trees are in the same size class
nd is 1 when all but one individual is in the smallest size
lass.

.3. Competition

he competition routine is the heart of the initial model with
espect to size inequality. It combines the two leading current
ypotheses on the generation of size inequality. One hypoth-
sis is that due to local variation in the size, proximity, and
umber of neighbors, different plants have access to different
uantities of resources and thus size inequality is augmented
ia differences in their growth rate (Huston, 1986; Miller and
einer, 1989; Bonan, 1991). This hypothesis is incorporated

y means of the ZOI. Specifically, the level of overlap between
eighboring plants determines the sharing of resources. Over-

ap between ZOIs was determined based on Virtual Adaptive
rids (VAGs) approximating the ZOIs (Fig. 2). Each VAG con-
isted of 20 × 20 cells and the centers of these cells were the
ampling points at which the overlapping neighbors are deter-
ined. Details are given in Appendix B.
We divided the overlapping areas among the competitors

ased on the size asymmetry of competition, i.e. the degree
f dominance of big individuals over smaller ones. This is
losely related to the second hypothesis, claiming that size
ariability increases because larger individuals obtain a dis-
roportionate share of the resources for their relative size

Weiner and Thomas, 1986; Weiner, 1990). By this mechanism,

nitially small difference in plant size will be augmented over
ime.

Common (restrictive) choices of competitive asymmetry
re: (1) complete size asymmetry, i.e. the larger individual

ig. 2 – Three trees represented by their
inimum-domain-area and zone of influence (ZOI). The

iameter of the ZOI is ZOI scale (>1) times larger than the
iameter of the minimum-domain-area. The Virtual
daptive Grid (VAG) is used to estimate the degree of
verlap among ZOIs of several plants. The scale of this
gure is arbitrary as both the ZOI and the VAG scale with
he minimum-domain-area.
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obtains all the resources in the area of overlap, and (2) size
symmetry, i.e. equal division of the resources within the area
of overlap independent of the relative sizes of the competing
plants (Hara, 1988; Weiner et al., 2001). We chose not to set the
degree of size asymmetry a priori and instead use a parameter
(b, see Eq. (1)) describing the degree of competitive size asym-
metry. If b = 0, resources in the VAG cell are divided equally
among all competitors and competitive asymmetry increases
with increasing b.

Both hypotheses influence the proportion of resources
captured by each plant, ZOIp. Technically, ZOIp is calculated
consecutively, plant by plant. For each cell of the VAG cov-
ered by the focal plant, all neighbors are identified whose ZOIs
cover that cell as well (Fig. 2). The information on the size of
these neighbors is used to determine the fraction Ci (Ci ∈ [0,
1]) of resources (area) the focal tree extracts from cell i using
a formula based on models by Bella (1971) and Wyszomirski
(1992). If the focal tree with ZOI = ZOIfocal competes in cell i
with j neighbors with ZOIs indexed ZOI1, . . ., ZOIj, then the
proportion Ci of resources going to the focal tree is given by:

Ci = ZOIbfocal

ZOIbfocal +
∑j

k=1ZOIbnk

(1)

Finally, the ZOIp is calculated by adding up the resources con-
quered from all cells of the VAG of the focal plant (Appendix
C).

3.4. Mortality

Mortality in the models stems from two sources that act con-
currently:

Death-by-contact—As a simple, yet biologically realistic way of
modeling mortality in dense stands, we choose “death-by-
contact”: if the canopies of two plants overlap, the smaller
plant dies. This approach is based on the field observations
that the smallest individuals have the lowest rate of survivor-
ship (e.g., Ford, 1975; Cannell et al., 1984; Kenkel et al., 1997),
the canopies of neighboring A. reficiens’ rarely overlap, and
mortality in encroached A. reficiens 10 m × 10 m plots moni-
tored for 5 years was high (Wiegand et al., 2005) while growth
was extremely slow (cf. Section 3.8). The latter observation
indicates mortality is the dominant space-creating process
in this species and, if present, growth plasticity leading to
mutual avoidance (Reynolds and Ford, 2005) seems unable
to prevent mortality in the long run (5 years and more) and
can, therefore, be ignored in a model using basic time steps
of 5 years. The death-by-contact rule is key to generating the
slope of the self-thinning line (Wiegand et al., unpublished).
Death-by-suppression—To avoid artificial constellations in
which small plants are severely suppressed by large plants
yet escape death-by-contact because the small plants hide in
small gaps among large plants, trees die if they have access
to less than a very small proportion, say 1%, of the resources

within their ZOI (ZOIp < 0.01). This “death-by-suppression”
condition reflects the fact that plants die if they have virtually
no access to resources over a long time (note that low ZOIp
values develop slowly through faster growth of neighboring



i n g
436 e c o l o g i c a l m o d e l l

plants). Although effectively similar, this is different from
the rule that plants die when they do not grow, commonly
used in simulation models of plants in temperate climates.
The absence of growth for several years is common in desert
perennials (cf. Goldberg and Turner, 1986; Cody, 2000; Miller
and Huenneke, 2000). Our initial model simulates average
growth behavior and does not take into account stochastic
deviations from average growth. In other words, intermit-
tence of growth for several years and sudden growth boosts
are ignored in the initial model (but see rules G2–G4 in Sec-
tion 3.5).

3.5. Growth

Little is known about height or diameter growth of savanna
trees. According to K. Maze and W.J. Bond (cited in Higgins
et al., 2000), savanna stems initially grow rapidly in height
but growth subsequently slows. For other species, a common
choice to model tree growth is the use of logistic-like functions
(e.g., Aikman and Watkinson, 1980; Leps and Kindlman, 1987;
Bonan, 1988; Davie, 1999). In the initial model, we used a deter-
ministic function of plant size d and competition ZOIp with
neighboring plants based on the generalized logistic equation:

dt+1 = dt + dt

(
1 −

(
dt

dmax

)�
)

g ZOIp (2)

where dt is the minimum-domain-diameter or, more specif-
ically, the canopy diameter at time t, dmax the maximum
attainable canopy diameter attainable, � influences the shape
of the growth curve (influencing the location of the single
maximum of the growth increment), and g is the growth rate
(Richards, 1959; Gilpin et al., 1976). Note that the proportion of
resources captured, ZOIp takes values between zero and one.
Therefore, g ZOIp is an effective growth rate smaller than g due
to competition with neighbors.

Stochastic variation of growth is one of the sources of size
inequality in even-aged stands (Benjamin and Hardwick, 1986)
that may be needed to quantitatively reproduce size inequal-
ity. Thus, we investigate four (G1–G4) variations of the growth
regime:

(G1) Deterministic growth as described above; used in the ini-
tial model.

(G2) Growth rates g constant through time, drawn for each
plant at the beginning of the simulation runs from a
normal distribution with mean g = 2.76 cm/5 years and
standard deviation 0.25g.

(G3) Growth rates g variable in time and among plants, follow-
ing a normal distribution with mean g = 2.76 cm/5 years
and standard deviation 0.25g.

(G4) For savanna trees, a more realistic scenario is one that
accounts for both increase and decrease in tree size.
Tree size can decrease because of partial dieback of trees
due to water stress or trampling and browsing of large
animals. This was especially true in the present study

where tree size was measured in terms of maximum
canopy diameter, a measure sometimes dominated by
one branch dying back due to trampling or drought.
Thus, we also investigated scenarios in which plant size
2 1 0 ( 2 0 0 8 ) 431–445

decreases with a probability of 5%. In each time step, for
each plant, it was randomly decided if plant size would
increase or decrease and then the growth rate was drawn
from normal distributions. In accordance with rules G2
and G3, the standard deviation was set to 0.25g. In order
to conserve the overall mean growth rate g, mean growth
rate of shrinking plants was −g while average growth rate
of growing plants was set to 2.105g.

3.6. Initial plant distribution

Variation in post-emergence size is a further source of size
inequality in even-aged stands (Benjamin and Hardwick,
1986) that may be needed to quantitatively reproduce size
inequality. Thus, we use three types of plant size–frequency
distributions to initialize simulations:

(I1) As a null model and to investigate the ability of a model
to create size inequality, we started each simulation with
all plants being of equal size (mean: 5 cm, e.g., Fig. 3a).

(I2) As a simple way to reflect post-emergence size vari-
ability, we distributed initial sizes using a truncated
normal distribution (mean: 5 cm, standard deviation
0.25 × 5 cm = 1.25 cm, distribution tails cut off at 1 cm and
9 cm).

(I3) To initialize simulations with realistic size distributions,
we initialize tree sizes with size distributions observed at
our field site (e.g., Fig. 3b; for size frequency distributions
see Fig. A.1 in supplementary material and for field data
collection, see Wiegand et al., 2005).

For all types of size–frequency distributions, the procedures
for distributing the plants in space are based on a marked
point process invented by Matérn (1960; Appendix D).

3.7. Simulation procedure

All model simulations consisted of several runs (three, if not
stated otherwise). Such a small number of replicates is suf-
ficient because all rules of the initial model are deterministic
and only the initial spatial distribution of the plants introduces
stochasticity. During our attempts to quantitatively reproduce
size inequality under self-thinning as observed for A. refi-
ciens in Namibia, we conducted simulation experiments with
growth rules G2, G3, and G4. In these cases, we increased the
number of replicates to 10. In each simulation run, the ini-
tial size and location of the trees is determined (see Section
3.6) and, in each of 200 simulation steps, the trees compete
with each other, may die, and if they survive, grow. Due to
the discrete time step of the model, we had to make a techni-
cal decision about the influence of dying trees on competitors
in the year of death. Trees dying due to death-by-contact
do not have a competitive effect on their neighbors. How-
ever, the competitive effect of trees dying due to a low ZOIp
is considered in their year of death. Note that the compet-
itive effect of these trees is very small by definition. We do

not consider reproduction because we are interested in the
dynamics of even-aged, monospecific, stands after germina-
tion. For example, in Namibia, germination of younger A.
reficiens is prevented by the rarity of rainfall sufficient for
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Fig. 3 – Details of spatial plant distributions used to initialize model simulations. Solid discs represent the
minimum-domain-area (in this study equivalent to the plant canopy) and open circles the extent of the ZOI. The details (a
and b) are 8 m × 8 m in size. (a) All plants are 23.5 cm in canopy diameter. The distribution was generated applying a marked
point Matérn process to 16,000 trees in an area of 20 m × 20 m of which 3469 trees remained. This example has been used to
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stimate the parameter ZOI scale (cf. Section 3.8). (b) Plant si
ith the smallest average size and greatest number of trees

ermination in arid savannas and the canopy intolerance of
cacias (Wiegand et al., 2006).

To gain a thorough understanding of this model, we first
nalyze the initial model and explore its behavior via a global
ensitivity analysis (Fig. 1). To understand both the ability to
enerate size inequality and the effect of pre-existing size
nequality, simulations are initialized either with trees of
qual size (I1) or field sizes (I3). In the second step, we re-
nalyze simulations from the first step, to investigate how
ifferences in spatial pattern and mode of competition affect
ize inequality (“Basic understanding” in Fig. 1). Our results
ill show that all model parameters significantly contribute

o average size and size inequality of the plants. Thus, none
f the two leading hypotheses for generation of size inequal-

ty can be discounted and our initial model appears as a
inimum set of rules needed to reproduce size inequality

uantitatively. In our third step, we attempt, in addition to

eproducing the self-thinning line, to find a model variant
hat quantitatively meets the patterns “degree of size inequal-
ty” and “average plant size at which a certain degree of size
nequality is reached” (formally defined in Section 6). As we

Table 1 – Summary of parameters of the initial model

Parameter Standard value Descrip

� 0.03 Inflection point of logist
g (cm) 2.76 Growth increment in 5 y
ZOI scale 3.5 Diameter ratio ZOI: min
dmax (cm) 500 Maximum attainable mi
b 1.0 Competitive asymmetry

Notes: The standard value refers to Acacia reficiens in Namibia and the low
varied in the sensitivity analysis. The minimum-domain-area of A. reficien
ollow trees observed in the field in the 10 m × 10 m plot

cannot simplify the initial model, we expand it by testing
increasingly realistic growth scenarios (G2–G4; “refined model
variants” in Fig. 1) and initial plant size–frequency distribu-
tions (I1, I2). Size–frequency distributions observed in the field
(I3) are not used in this last step because these plants are
relatively large (cf. Fig. 3b).

3.8. Indirect parameter estimation

We determined the five parameters in the initial model
(Table 1) indirectly by comparing model output to field data on
A. reficiens in Namibia described in Appendix A and Wiegand
et al. (2005). Here we give a brief summary of how we esti-
mated these parameters; details are given in Appendix A. Via
a POM approach, ZOI scale was estimated at 3.5 by imitating
growth of single trees in a competition experiment. Simula-
tions were run with and without competition under different

values of ZOI scale. The underlying idea is that if ZOI scale is,
say, too small, competing model trees grow bigger than field
trees even though trees that grow alone (without competi-
tion) grow to the same size in both the model and the field.

tion Lower limit Upper limit

ic equation 0.01 0.15
ears 0.50 5.00
imum-domain-area 2.0 5.0
nimum-domain-area 400 700

0.0 3.0

er and upper limit are limits within which parameters have been
s increases with plant growth and corresponds to its canopy.
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Fig. 4 – Self-thinning trajectories of the initial model. (A)
Average tree size vs. tree density for the first 12 simulations
of the sensitivity analysis (symbols) and under the
standard parameters (cf. Table 1; bold line). Each symbol
represents the situation for a given parameter set at a
certain simulation time step. Simulations start in the lower
right and follow the curve to the upper left. Every second
time step is shown and thus 10 years have passed between
two symbols of one simulation. Simulations were
initialized with the size distribution of
minimum-domain-areas (canopy sizes) observed in the
field. These simulations follow a self-thinning line
equivalent to a slope of −4/3 in the plant weight–density
plane and a slope of −3/2 in the plant volume–density
plane (Wiegand et al., unpublished). (B) Relative total crown
area (summed crown areas divided by 20 m × 20 m) during
the self-thinning process (quantified as tree density on a
438 e c o l o g i c a l m o d e l l

At this stage of our analysis, we could not estimate compet-
itive asymmetry b from our field data. Consequently, we ran
all simulations under several values of b. Maximum attain-
able canopy diameter dmax was estimated at 5 m from the
largest trees found outside ephemeral riverbeds and washes
at our study site. Again in a POM approach, the growth rate
g and the inflection point of the logistic equation � were esti-
mated concurrently by imitating tree growth as observed in six
tree-encroached 10 m × 10 m plots, with a simple non-spatial
growth simulation program. Simulations were initialized with
the trees observed in the plots and g and � were accepted when
the resulting size–frequency distributions for all plots were not
significantly different from the final size–frequency distribu-
tions observed in the field. This was the case at g = 2.76 cm/5
years and � = 0.03. Thus, A. reficiens trees grow very slowly and
growth does not follow the familiar logistic model but rather
the Gompertz curve (Eq. (E.1) in supplementary material).
Given that we do not have extensive field data, these param-
eter estimates are approximations only. A global sensitivity
analysis of all model parameters is presented in Section 4 and
Appendix E.

4. Sensitivity analyses of the initial model

As our model is meant to be applied to a range of locations
over which parameter values are changing (e.g., Luxmoore
et al., 1991), and because the values of the input parameters
are uncertain (e.g., Porco and Blower, 1998), we conducted a
global sensitivity analysis. For each time step, we investigated
the influence of our five parameters on average tree size and
size inequality over time under our initial model. Wiegand et
al. (unpublished) show that the initial model reproduces the
self-thinning line (see also Fig. 4A). Due to the self-thinning
relationship, the influence of the parameters on number of
trees present follows directly from the results on average tree
size. The sensitivity analysis consisted of 36 parameter com-
binations well distributed within the entire parameter space
given in Table 1 using a stratified sampling method without
replacement (Latin hypercube, McKay et al., 2000). Given our
focus on self-thinning populations clearly below maximum
tree size (and thus mortality due to old age), for each time step,
we restricted our analysis to simulations in which the average
tree size, averaged over all three simulation runs, was below
0.8dmax. These simulation results were then analyzed for all
time steps with linear regression analyses (forward stepwise
and multiple linear).

The results of the sensitivity analysis are presented and
discussed in detail in Appendix E. In summary, average tree
size was well explained (always r2 > 0.65) by the model param-
eters. The three growth parameters (�, g, dmax) and the
competitive asymmetry b had a positive influence on aver-
age tree size, while a greater ZOI scale led to slower growth.
These contributions were significant, except for dmax in simu-
lations initialized with trees of equal size (I1). The contribution
of competitive asymmetry b is more significant in simulations

initialized with field sizes (I3; P < 0.05 vs. <0.001) meaning that
b is more important when size inequalities are present. As one
would expect, the growth parameters � and g are also highly
significant (P ≤ 0.001) for the temporal development of average
logarithmic scale) for the simulations shown in (A). Thin
lines: sensitivity analysis, bold line: standard parameters.

tree size, irrespective of initial tree size–frequency distribu-
tion.

Size inequality was typically explained at the 0.4 level
only, presumably because some parameters interacted non-
monotonically (cf. Section 5). The relative contribution of the

parameters did depend on initial size–frequency distribution
and time. When initially all plants were of equal size (I1),
growth (�, g) and local crowding (ZOI scale) had a highly sig-
nificant positive influence on size inequality within the first
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Fig. 5 – Maximum Gini coefficient reached over the course
of a simulation (Gm) vs. ZOI scale and competitive
asymmetry b. All points shown are based on the sensitivity
analysis initialized with plants of equal size (I1). The
surface shows Gm as an interpolated function of ZOI scale
and b (Gm = −0.0350 + 0.0320 ZOI scale + 0.143b − 0.0426b2).
e c o l o g i c a l m o d e l l i n

0 time steps of the simulation, while later on only competi-
ion (ZOI scale and b) was significant. This is because initially,
ast growth (�, g) sped up population dynamics and therefore
eveloping size inequalities were apparent at earlier stages.

n addition, large ZOIs led to interaction among many plants,
hich gave many opportunities for inequalities to develop.

ater on, once some size inequality had developed, growth
ost its role to the amount of interaction. Large ZOIs con-
inued to contribute to more interactions in terms of the
umber of plants competing, and competitive asymmetry b

ncreased existing inequality. Simulations initialized accord-
ng to field tree sizes (I3) were different because comparatively
igh levels of size inequality were present right from the
eginning of the simulations. Thus, competitive asymmetry b
as highly significant throughout because it could fully draw
n pre-existing size inequality. Surprisingly, b had, on aver-
ge, a negative influence on size inequality. This is because
f the increased mortality of smaller plants under strong size

nequality, which caused a decrease in size inequality among
iving plants and thereby an increase in average plant size.
urther to b, ZOI scale contributed initially significantly and
ositively to size inequality; while fast growth (large �) became

mportant in later time steps because fast growth accelerated
ortality and thereby significantly decreased size inequality

the influence of � was negative).

. Effect of local crowding and competitive
symmetry on size inequality

e now turn to the question of how local crowding (medi-
ted by ZOI scale) and competitive asymmetry b affect size
nequality. The sensitivity analysis showed that ZOI scale and b
oth contribute significantly to the generation of size inequal-

ty. ZOI scale is the most important parameter for the creation
f size inequalities, while competitive asymmetry b plays an

mportant role in maintaining (or, via the mortality of smaller
lants, reducing) existing size inequalities. Thus, spacing

ZOI scale) and competitive asymmetry (b) are both key, but
heir relative importance is not known (cf. Weiner et al.,
001). Consequently, we further analyzed the simulations of
he sensitivity analysis with respect to the influence of these
wo model parameters on the generation of size inequality
Appendix F).

As a measure of size inequality generated under a cer-
ain parameter set, we used the maximum value of the Gini
oefficient (Gm) over the course of an entire simulation (200
ime steps, calculated from the average over three runs, all
6 simulations in their entire length included). Gm is a use-
ul measure because, during simulation runs initialized with
lants of equal size, size inequality increases, reaches Gm, and
ecreases again when small trees die and large trees approach
heir maximum size (cf. Weiner and Whigham, 1988). In one
ase, growth was extremely slow (g = 1.5, � = 0.011) and, after
00 time steps, size inequality was still in its increasing phase.
n this case, we approximated G with the Gini coefficient
m

eached at the end of the simulation (time step 200).
An inspection of a three-dimensional plot of the data from

he sensitivity analysis (I1; ZOI scale, b, and Gm) indicated that
OI scale and Gm were linearly interrelated and b and Gm were
The borders of gray shading on the surface are at Gm = 0.05,
0.10, 0.15 and 0.20.

interrelated by a quadratic polynomial (Fig. 5). Indeed, the
regression Gm = −0.0350 + 0.0320 ZOI scale + 0.143b − 0.0426b2

fits the data well (adj. r2 = 0.70; P < 0.001; F = 27.8; but b and b2

have a Variance inflation factor ≈16). Intermediate values of b
and intermediate to large values of ZOI scale led to the greatest
inequalities (Fig. 5). This is because large values of ZOI scale
mean that many plants interact and thus there is more
opportunity for size inequalities to arise. Thus, the larger
the ZOI scale, the greater is the size inequality. However, if
competitive asymmetry is very small, it does not matter how
many plants interact because larger plants have no advantage
over smaller plants. Thus, great size inequality could not
arise under small competitive asymmetry even if ZOI scale is
large. For intermediate competitive asymmetries (b ≈ 1.5), the
increase in size inequality with increasing ZOI scale was max-
imal because more and more plants interacted intensively.
However, for greater competitive asymmetries, large plants
suppressed their neighbors, had access to an increasing pro-
portion of the resources, became even bigger and killed their
small neighbors via death-by-contact. Consequently, there
was high mortality among smaller plants and increasing
size inequality was soon decreased due to mortality of small
plants.

6. Attempt to parameterize model variant
to an actual tree population
With the initial model (with four of five parameters estimated)
and several biologically reasonable variants concerning
growth rules and model initialization, our aim is now to find
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Fig. 6 – Maximum size inequality (Gini coefficient) reached
over the course of a simulation P1 vs. the average
minimum-domain-diameter under which this maximum
inequality was reached under different growth scenarios
(as in Table 2; colored symbols) and for several competitive
asymmetries b. Symbol shape represents initial tree
size–frequency distribution (circles: I1, equal size; triangles:
I2, normally distributed sizes). Symbol color represents
growth scenario (yellow: G1, initial model; green: G2, growth
rates different among plants; blue: G3, normally distributed
growth rates; gray: G4 double stochastic growth including
increase and decrease in plant size). Competitive
asymmetries are increasing from left to right following the
black lines (b = 0.0, 0.3, 0.5, 0.7, 1.0). Black dots represent
the Gini coefficient vs. the average minimum-domain-area
in 12 field plots described in Wiegand et al. (2005). The
rectangle represents the area within which model
simulations fulfill patterns P1 and P2 and has been
440 e c o l o g i c a l m o d e l l

a model variant that quantitatively reproduces patterns of
size inequality under self-thinning observed for A. reficiens in
Namibia. Following the POM idea, we require that the model
variant and parameterization (with respect to the unknown
value of b) reproduces, in addition to the self-thinning line (P0),
two further patterns (P1 and P2) of the self-thinning process
simultaneously. P1 is a realistic level of size inequality; hence-
forth measured in terms of the maximum value of the Gini
coefficient over the course of an entire simulation (200 time
steps, calculated from the average over three runs), Gm. In the
field plots, which are 10 m × 10 m in size, the observed size
inequality was on average G = 0.284 and ranged from G = 0.209
to 0.379. P2 requires that the average canopy diameter at which
the maximum Gini coefficient is exhibited in the model (dGm)
is realistic. In the field plots, the canopy diameter averaged
across plots at 73 cm and ranged from 48 cm to 91 cm. P2 is a
secondary prediction, i.e. has not been used for model devel-
opment. Thus, fulfillment of P2 can be regarded as model
validation (Wiegand et al., 2003).

The sensitivity analysis showed that all processes included
in our initial model are essential to the generation of size
inequality. Consequently, we examine first whether the ini-
tial model already generates realistic levels of size inequality
(P1) under the full range of parameters given in Table 1. If not,
additional features need to be added to the initial model. Can-
didates for such additional features are the stochastic growth
scenarios G2–G4 given in Section 3. Condition for the best-
fit model variant is that it satisfies both patterns, P1 and P2.
Note that variations G1–G4 of the initial model will in any
case reproduce the self-thinning line P0 (cf. Wiegand et al.,
unpublished).

When comparing these patterns, we must take into
account the different nature of field and simulated data. The
simulation results are extremes of time series while the field
data represent snapshots. Thus, it is possible that the maxi-
mum size inequality in the field is underestimated by our data.
Also, the minimum-domain-diameter at which size inequality
is maximal may both be smaller or larger than those currently
observed in the field. Obviously, there is considerable variation
in the size inequality observed in the field but no relationship
between size inequality and minimum-domain-diameter (see
Fig. 6 or Wiegand et al., 2005). From this, we derive two inter-
pretations: (1) spatial habitat heterogeneity has a noticeable
influence on size inequality and therefore explains the great
degree of variation. Given that the simulation model excludes
spatial habitat heterogeneities, we cannot expect to reproduce
with the model the maximum size inequality observed in the
field. Rather, model predictions are expected to be at the lower
end of the field values. (2) The simplest explanation for the lack
of trend in the inequality–size relationship is that field popula-
tions are near their maximum size inequality. Based on these
considerations, we decided not to compare field and model
data via statistical tests but devised the following pattern ful-
fillment criteria: model variants are considered to meet the
criterion of realistic size inequality (P1) if they fall between the
minimum (0.209) and average (0.284) size inequality observed

in the field plots (cf. interpretation (1)). The criterion of realistic
tree size at maximal size inequality (P2) is based on the range
of minimum-domain-areas observed in the field (minimum:
47.96 cm, maximum: 99.32 cm, range: 51.37 cm). A model vari-
constructed based on the different nature of the model and
field data.

ant is considered to meet P2 if the minimum-domain-area
under this scenario is within the minimum minus a buffer
of 50% of the range and the maximum minimum-domain-
area observed in the field plus a buffer of 50% of the range
(cf. interpretation (2)). Our aim is to find model variants that
concurrently meet patterns P1 and P2 (see box in Fig. 6).

6.1. Levels of size inequality in field populations and
under the initial model

Here, we check if our initial model creates realistic levels of
size inequality in which case the initial model could serve
as a successfully validated model of self-thinning under size
inequality of A. reficiens in Namibia. However, we find that,
maximum inequalities during the course of the model simula-
tions initialized with trees of equal size (I1) tended to be much
lower than those observed in the field, i.e. the initial model
does not meet P1 (model results of sensitivity analysis: average
Gm = 0.162, range: 0.056–0.274, simulated area: 20 m × 20 m).

Also, the mean canopy diameter at which the maximum Gini
coefficient was observed in the model (dGm) was high com-
pared to the size of the trees that had been investigated in
the field, i.e. the initial model does not meet P2 either (model:
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Table 2 – Size inequality (Gini coefficient) at an average
tree size of about 73 cm under different growth
scenarios, i.e. P2

b I1–G1 I2–G1 I1–G2* I1–G3* I1–G4* I2–G4*

0.0 0.08 0.09 0.22 0.10 0.12 0.14
0.3 0.10 0.12 0.29 0.12 0.17 0.19
0.5 0.12 0.14 0.33 0.14 0.20 0.23
0.7 0.13 0.16 0.34 0.16 0.22 0.24
1.0 0.18 0.20 0.30 0.21 0.23 0.25

Notes: The aim of this table is to find model scenarios where size
inequality has similar levels to size inequality in the field (G = 0.28;
95% confidence interval = [0.22, 0.33]; agreement indicated in bold),
when model populations have the same average tree size as field
populations (a maximum canopy size of 73 cm). All simulations
were run under standard parameters given in Table 1 except for the
competitive asymmetry b, which was varied from 0.0 to 1.0. Sim-
ulations were initialized with 1000 plants distributed in an area of
20 m × 20 m after Matérn (1960). Initial plant size was either equal
(5 cm, I1) or normally distributed (mean: 5 cm, S.D.: 1.25 cm, I2). Sim-
ulations consisted of 3 or 10 (indicated with *) simulation runs. All
values are averages across all trees and a certain year (chosen to
match average tree size of 73 cm as closely as possible) of all sim-
ulation runs. G1: initial model; G2: growth rate different among
plants but constant through time; G3: stochastic growth rate fol-
lowing a normal distribution with mean g; G4: double stochastic
growth process accounting for the possibility of both increase (95%
probability) and decrease (5%) in plant size by −g and 2.105g, respec-
tively. Growth rates were drawn from two normal distributions with
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the respective means and standard deviation 0.25g. The minimum-
domain-diameter of A. reficiens was approximated by the maximum
canopy diameter.

verage dGm = 134 cm, range: 41–285). Thus, competition as
escribed in our ZOI model was not sufficient to generate
ealistic size inequality from initially equal-sized seedlings.

.2. Generation of realistic size inequalities

o investigate the influence of stochastic variabilities in
rowth on size inequality, we conducted a series of six sim-
lation experiments for a range of competitive asymmetries

Fig. 6; Table 2) and using the standard values for the remain-
ng parameters (Table 1). The scenarios differ in the initial size
istribution (I1 and I2) and in the stochastic variability of the
rowth rate g (G1–G4).

Under the two reference cases corresponding to the initial
odel (I1–G1, I2–G1), size inequality can reach values similar

o field observations, i.e. approximate pattern P1 when b is
ufficiently large. This is especially true in scenario I2–G1 due
o the size inequalities present in the initial size distribution
note that this case (I2) was not investigated in the previous
ection). However, these values are reached only at average
ree sizes way beyond the average size of 73 cm investigated
n the field (Fig. 6), a size at which size inequality is still below
.2 in these simulations (P2; Table 2). Thus, we confirm the
onclusion from the previous section that the initial model
oes not meet pattern P2.
Under growth rates variable across trees but constant over
ime (I1–G2), size inequality is realistic at low values of com-
etitive asymmetry b (meeting P1) but too great for larger size

nequalities (not meeting P1). Positive growth rates changing
0 ( 2 0 0 8 ) 431–445 441

from year to year (I1–G3) are not able to create realistic inequal-
ity from initially equal-sized trees, i.e. fail to meet P1. However,
if stochasticity includes both increases and decreases in plant
growth (I1–G4), maximum inequality is similar to the aver-
age field value of 0.28 at b = 0.7 and 1.0 (meeting P1) and size
inequality at 73 cm average size equals 0.22 (Table 2). These
values increase somewhat when size inequality in the initial
size distribution is included (I2–G4; Fig. 6; Table 2). Irrespec-
tive of the initial tree size distribution (I1 or I2), simulations
under G4 reach maximum size inequality at realistic average
tree sizes (Fig. 6), i.e. meet P2.

6.3. Selecting the model variant that best reproduces
size inequality

In summary, among the factors investigated here, tree-
specific, constant growth rates (G2) have the greatest potential
to generate size inequality (meet P1). However, apart from
genetic differences, it seems unrealistic that such differences
in growth rates among plants persist for many years (for a
different opinion, see Turner and Rabinowitz, 1983). The sce-
nario with the second highest size inequality included variable
initial sizes and variable (both positive and negative) growth.
This scenario I2–G4 also reaches maximum size inequality at
reasonable average tree sizes (meets P2) and is biologically
plausible. Therefore, among the models tested, the model with
I2–G4 is most suitable as “best-fit” model of size inequality
for our study site. Nevertheless, the size inequality under sce-
nario I2–G4 is still somewhat below the size inequality found
in the field, meaning that we were not able to successfully val-
idate our model at our study site. Though tested as a separate
hypothesis, it is likely that growth regimes G2 (correlation of
growth rates through time) and G4 (stochastic increase and
decrease) are not mutually exclusive. Future field and mod-
eling research should test the hypothesis that a combination
of G2 and G4 drives size inequality. From the current study,
we can already derive the conclusion that size inequality is
driven not only by competitive asymmetry and the size of the
ZOI but a full range of details of plant growth is responsible
for size inequalities observed in the field.

6.3.1. Fixing a standard value for competitive asymmetry
We have seen in Section 5 that intermediate degrees of com-
petitive asymmetry (b) lead to the greatest inequalities (Fig. 5)
and that the size at which the maximum inequality is reached
increases with increasing b. This means when choosing b,
a small to intermediate value should be chosen in order to
reach relatively high inequalities for trees as young (small) as
possible. Based on our parsimonious model (scenario I2–G4 in
Table 2), a value of b = 1.0 seems appropriate. However, further
field and modeling research will be needed for a good estimate
of b.

7. Discussion
7.1. Major model assumptions

A challenge in modeling is to find a good balance between
realism and simplicity. Most published self-thinning models
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aim for simplicity and have been found to rely on biologi-
cally unreasonable representations of competition (Reynolds
and Ford, 2005). Despite a great number of simplifications and
in contrast to published self-thinning models as reviewed in
Reynolds and Ford (2005), our model does (1) not rely on rep-
resenting the population by the mean plant, (2) not assume a
constant total minimum-domain-area (representing projected
crown area; Fig. 4B), (3) explicitly consider competitive hierar-
chy developing from differential access to resources, and (4)
allow for differences in initial stand conditions to affect the
process of self-thinning (e.g., Appendix E: Fig. E.1). This com-
paratively high level of realism was facilitated by a spatially
explicit, individual-based modeling approach (Grimm et al.,
2005). However, one may criticize that our model ignores mor-
phological plasticity in response to competition (e.g. Mohler
et al., 1978; e.g. Gilbert et al., 2001; Stoll et al., 2002). Our
model development was guided by the ecology of A. reficiens in
arid savanna. This species mainly competes for belowground
resources in a shallow soil layer, which facilitated a two-
dimensional modeling approach that eliminated plasticity in
tree height. Brisson and Reynolds (1997) observed plasticity in
root growth in Larrea tridentata in a winter rain desert. How-
ever, the spatial root distribution of A. mellifera is not affected
by competitors (Ward and Wiegand, personal observation in
the Kalahari thornveld, South Africa). Thus, we did not include
plasticity in root growth for two reasons: (1) simplicity and (2)
our study species and area are ecologically more similar to the
A. mellifera-observation.

We believe that in an equivalent model that includes
height plasticity, the relative competitive hierarchy would
have remained unaltered and thus would have had a quan-
titative but no qualitative effect on our results. If data on tree
allometry during self-thinning are available, the effect of plas-
ticity in height growth on the biomass/volume–tree density
relationship can be estimated by transforming minimum-
domain-area to biomass or volume accordingly.

7.2. Self-thinning

Wiegand et al. (unpublished) developed a parsimonious model
of self-thinning with a single condition that the self-thinning
line is reproduced. Starting from the same initial model as
used in the present paper, it was possible to cut down the
initial model dramatically to a model lacking a zone of influ-
ence and thereby details on inter-tree competition other than
death-by-contact. This model reduces self-thinning to a pure
geometric process, i.e., packing circles in two-dimensional
space conditional upon the spatial distribution of seedlings
at the time of establishment (cf. White, 1981). In this paper,
we advance from pure geometry to an understanding of
the mechanisms of self-thinning by looking for a model
that reproduces several patterns of the self-thinning process
simultaneously (self-thinning line, the degree of size inequal-
ity, and the average size of the population at which a certain
degree of size inequality is reached). Due to the two additional
patterns, this model of self-thinning under size inequality is

a much more realistic representation of the processes driving
tree population dynamics. Adler (1996) reproduced the self-
thinning rule using a dynamic model including size inequality
and local resource competition but excluding explicit mortal-
2 1 0 ( 2 0 0 8 ) 431–445

ity. Due to the lack of explicit mortality, Adler’s (1996) model
establishes only an indirect connection between local plant
competition and self-thinning because it relies on average
ensemble properties instead of modeling mortality at the level
of the individual. However, in the present paper, we could
establish the direct link between local competition that drives
mortality at the level of the individual and self-thinning.

Interestingly, the model variant that best meets the field
patterns contains virtually all factors hypothesized to cause
size inequality: spatial pattern, competitive asymmetry, vari-
ation in post-emergence size, and stochastic growth variation
including sporadic decreases in plant size and, possibly, spa-
tial heterogeneity (not investigated here). We did not expect
the more complex model variants to yield better model fits
because all model variants were developed and parameterized
a priori (with the exception of the degree of size asymmetry).
Thus, our results show that self-thinning is a complex process
and that true understanding of self-thinning requires investi-
gation of multiple patterns.

7.3. Size inequality

Most modeling studies on the generation of size inequality
focus on populations that are not crowded. Studies on size
inequality in uncrowded populations observe increasing size
variation over time (e.g., reviewed in Wyszomirski, 1986). How-
ever, in self-thinning populations in the field, the smallest
individuals have the lowest rate of survivorship (e.g., Ford,
1975; Kenkel et al., 1997). Thus, mortality counteracts the
increasing size inequality caused by competition and has been
observed to cause a net-decline in size inequality (Weiner and
Whigham, 1988). However, beyond mortality, the same factors
should cause size inequality in both uncrowded and crowded
conditions.

The factors causing size inequality are a matter of debate
leading to a series of modeling studies. Several models have
shown that variation in local crowding is sufficient to increase
size variability (Huston, 1986; Miller and Weiner, 1989; Bonan,
1991). As a consequence of local variation in the size, prox-
imity, and number of neighbors, different plants have access
to different quantities of resources and thus size inequality
is augmented via differences in their growth rate. However,
this phenomenon cannot be sufficient to explain the degree
of size inequality observed in nature because size variation
is commonly observed in forest plantations with regularly
spaced individuals of initially nearly equal size (e.g., Harms et
al., 1994). Alternatively, size variability may increase because
of asymmetry in competition between individuals, meaning
that larger individuals obtain a disproportionate share of the
resources for their relative size (Weiner and Thomas, 1986;
Weiner, 1990). Thus, initially small differences in plant size
will be increased over time and self-thinning will eventually
reduce inequality.

Our model indicates that both local crowding and asym-
metric competition generate size inequalities (see also Weiner
et al., 2001), and their relative importance may vary greatly. It

is difficult to separate their relative importance in the field
because they both interact and because a general evaluation
would require one to understand susceptibility to differences
in spatial pattern (ZOI scale) and the mode of competition (b)
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or a variety of plants. In the modeling literature, the effect
f variation in local crowding is tested by using different spa-
ial patterns (hexagonal, random; e.g., Bonan, 1988; Miller and

einer, 1989; Weiner et al., 2001). Certainly, for plant cultiva-
ion, it may be important to conduct such simulations in order
o develop planting patterns that minimize size variation.
owever, from an ecological point of view, it is an indirect way
f analyzing the importance of spacing. The relative impor-
ance of spacing depends on the spatial range over which
lants are interacting with neighbors. By changing ZOI scale,
e have changed this range and were able to relate it to size

nequality. Specifically, ZOI scale can have a significant effect
n size variation and thus determine whether spatial pat-
ern or the competitive mode is more important. We agree
ith Weiner et al. (2001) who state “Overall, two-dimensional
OI studies to date have explored very small regions of the
iologically relevant parameter space [. . .]. Advances in com-
uting technology [. . .] allow us to make more informative
imulation studies”. In this spirit, our answer to the prob-
em of not knowing the real-world values of competitive
symmetry and ZOI scale was to conduct a global sensitivity
nalysis in which both have been varied independently over
range of values. Indeed, we found a great deal of interac-

ion between competitive asymmetry and ZOI scale as they
etermine size inequality. Thus, assuming an arbitrary, con-
tant relation between ZOI and plant size and investigating
nly extreme cases of competitive asymmetry, as frequently
one in the literature, would have led to spurious results.
or example, investigating exclusively a ZOI scale of, say, 2.0
nd extreme competitive asymmetries b of, say, 0.0 and 3.0
ould have led to the conclusion that competitive asymmetry
as a moderately positive influence on size inequality (from

m ≈ 0.0 to ≈0.1; Fig. 5), overlooking the much greater size
nequality Gm ≈ 0.25 at the more realistic parameter values
OI scale = 3.5 and b = 1.0. In other words, model results show-

ng that extreme asymmetry can override effects of spatial
istribution (in our case ZOI scale) may well be meaningless if
eal plants never exhibit such extreme asymmetry. As a con-
equence, the relative importance of crowding is likely to be
pecies specific as it depends on the size of the area within
hich plants compete with neighbors, a species-specific prop-

rty (cf. Bella, 1971).
Spatial pattern and the mode of competition are not the

nly factors contributing to the generation of size inequal-
ties. One further factor is plant density (e.g., Bonan, 1991;

einer et al., 2001), which was not investigated by us because
f our special interest in crowded populations. Other factors
e have examined are variation in the initial size distribution,

tochastic variation in the inherent growth rate among plants,
nd stochastic between-year variation in the growth rate of all
lants (all reviewed in Benjamin and Hardwick, 1986). These
actors not only contributed to size inequality but also were
ecessary to produce size variation similar to the variation
bserved in the field. Furthermore, our simulations show that
heir influence on size inequality can be similar in magnitude
o the influence of competitive asymmetry (Fig. 6; Table 2).

owever, suggestions that variation in growth rates during

he exponential growth phase of plants could explain plant
ize variation (Turner and Rabinowitz, 1983), seem unrealis-
ic for long-lived plants. Our point of view is that a series of
0 ( 2 0 0 8 ) 431–445 443

factors, and interactions among them, significantly influence
plant sizes.

7.4. Pattern-oriented modeling POM

In this study, we applied POM with different degrees of suc-
cess. Based on literature and own field data, we successfully
designed the structure of the initial model so that both the
self-thinning line and size inequality emerged. We were also
able to better understand the two leading hypotheses for gen-
eration of size inequality and pinpoint that instead of being
mutually exclusive, they interact to generate size inequal-
ity. One way to look at Fig. 5 is that different combinations
of local crowding and competitive asymmetry may lead to
the same level of size inequality. Thus, the degree of size
inequality alone cannot be used to infer and quantify the
underlying mechanisms. This will frequently be the case due
to non-linearities and it emphasizes the importance of observ-
ing multiple patterns. We used multiple patterns to infer the
mechanisms causing size inequality at our study site. How-
ever, our best-fit model variant still underestimates actual size
inequality, suggesting yet another mechanism, not explored
in this study. A common feature of the variations to the initial
model (explored and not explored) is stochasticity. Thus, the
next logical step would be to collect more field data that serve
to quantify the degree of stochasticity in nature and there-
after attempt a second modeling cycle. Thus, this study shows
that POM has its merits and limitations. Ultimately, knowledge
and understanding are fleeting ideals that we must approach
in small steps. POM facilitates but does not relieve us from
several cycles of fieldwork and modeling.

8. Conclusions

The self-thinning line was first discovered almost a century
ago (Frothingham, 1914) and has received continuous atten-
tion since Yoda et al. (1963) and White and Harper (1970). We
propose that the key to understanding this aggregated pattern
is to include co-occurring patterns such as size inequality in
the investigations. As shown in this paper, reproducing the
self-thinning line under size inequality is far more difficult
than reproducing self-thinning alone and helps to understand
the underlying processes. Our modeling study suggests that
these processes are inter-tree competition along with stochas-
ticity in both initial tree sizes and plant growth and thus
highlights the importance of stochasticity in ecological pro-
cesses.

Acknowledgements

We thank Fred Adler, Helene Muller-Landau, and especially
Thorsten Wiegand for inspiring discussions and comments
that improved the presentation of our results. We also
thank the anonymous reviewers for helpful comments. K.
Wiegand gratefully acknowledges financial support by the

“Gemeinsames Hochschulsonderprogramm III von Bund und
Ländern” of the German Academic Exchange Service (DAAD),
the Andrew W. Mellon Foundation (grant to S.A. Levin),
the Blaustein Center for Scientific Cooperation of the Jacob



i n g

r

444 e c o l o g i c a l m o d e l l

Blaustein Institute for Desert Research, partial funding by
BIOLOG program of the German Ministry of Science (BMBF;
grant to V. Wolters and W. Köhler), the Volkswagen founda-
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