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Abstract

We consider a regression model in which the tail of the conditional distribution of

the response can be approximated by a Generalized Pareto distribution. Our model

is based on a semiparametric single-index assumption on the conditional tail index,

while no further assumption on the conditional scale parameter is made. The under-

lying dimension reduction assumption allows the procedure to be of prime interest

in the case where the dimension of the covariates is high, in which case the purely

nonparametric techniques fail while the purely parametric ones are too rough to cor-

rectly fit to the data. We derive asymptotic properties of the resulting parameter

estimators, and propose an iterative algorithm for their practical implementation.

We study the finite sample behavior of our methodology through simulations. To

exhibit the interest of the proposed approach in practice, the method is applied to a

new database of operational losses from the bank UniCredit.
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1 Introduction

Generalized Pareto (GP) regression models are adapted to the study of extreme events

depending on covariates. Indeed, in presence of heavy tailed distributions, the exceedance

of a random variable over a sufficiently high threshold can be approximated by a Generalized

Pareto Distribution (GPD in the following), with its parameters denoted by γ for the tail

index, and σ for the scale parameter. Among these two parameters, γ is of prime importance

since it is related to the tail heaviness of the GPD, see e.g., Beirlant et al. (1999), Csörgő

and Viharos (1998) or Beirlant et al. (2004), while σ can be seen as a nuisance parameter.

In Finance, the GPD is the preferred tool to model the distribution of extremes losses, in

the perspective of estimating quantiles very far in the tail for risk quantification purposes

(Martins-Filho et al., 2016). In particular, practitioners widely use the GPD to model

the severity of extreme operational losses (i.e. losses resulting from frauds and failure of

processes or people) and to establish the regulatory capital charge. Recently, the attention

of researchers and practitioners shifted toward the conditional distribution of extremes

(Chavez-Demoulin et al., 2016; Martins-Filho et al., 2016), highlighting the usefulness of

GP-regression to model the distribution of extremes in particular economic conditions.

In this framework, one assumes that the parameters of the GPD depend on the co-

variates X ∈ Rd, according to some specific model. Estimation of the parameters of the

model can then be used to infer the tail index of the underlying conditional distribution

of the response variable. A parametric approach, such as the one described in Beirlant

and Goegebeur (2003), assumes that (γ(X), σ(X)) = f(θ0, X), where θ0 ∈ Rk, and f is

a known function. Parametric models usually provide nice convergence rates of the es-

timators. Nevertheless, they rely on strong assumptions that may not hold in practice,

resulting in poor fitting properties. On the contrary, a nonparametric approach as the

one developed in Beirlant and Goegebeur (2004) relies on fewer assumptions, since it as-

sumes that (γ(X), σ(X)) = f(X), where f is unspecified, and only requires to satisfy some

standard regularity conditions. In this framework, Beirlant and Goegebeur (2004) study a

local polynomial estimator of the regression function f in the case where the covariate is

one-dimensional. However, the convergence rate of this estimator is expected to decrease

considerably when the dimension d of the covariates increases, which is known as the ”curse

of dimensionality”.

In the present paper, we propose a new methodology based on a semiparametric re-
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gression model which can be seen as a convenient compromise between the two approaches

that we mentioned. In view of applying the model to the statistical study of conditional

extremes, we do not assume that the conditional distribution of the response is strictly

GPD. The model that we consider is based on a dimension reduction assumption, which is

related to single-index regression models, see e.g. Ichimura (1993) or Härdle et al. (1993).

Single-index regression models consist in assuming that m(X) = g(θT0 X), where m is a

regression function, θ0 ∈ Rd an unknown parameter, and g an unknown link function. The

idea is that, if we knew the true parameter θ0, we would be back to a fully nonparametric

model, but this time with an one-dimensional covariate. Therefore, we would not suffer

from the so-called curse of dimensionality. The advantage of such a model stands in the

fact that it requires less assumptions on the parametric regression model - and therefore

is probably a better approximation of the real model - while it avoids specific failures of

the nonparametric approach. In most papers related to single-index estimation, authors

focus mostly on the special cases of m being a conditional mean (see Härdle et al. (1993),

Delecroix et al. (2006), Xia and Li (1999), Xia et al. (1999), Xia et al. (2011)), a conditional

density (see Delecroix et al. (2003), Bouaziz and Lopez (2010)), a conditional quantile (see

Wu et al. (2010)) or the parameter of a distribution belonging to the exponential family

(see Carroll et al. (1997)).

Relying on a similar idea, we propose to consider a GP-regression model in which γ(x) =

γθ0(θ
T
0 x), with no additional assumption on the nuisance parameter σ(x). We provide a

n1/2−consistent estimator of θ0, and discuss its use to the estimation of the conditional tail

index γ(x). We prove the convergence of the estimator in a framework where the conditional

distribution is not exactly a GPD, which shows that our technique can be successfully

applied to regression models for extreme events. We also provide an iterative algorithm

to perform the maximization of the pseudo-maximum likelihood criterion that we use, in

order to choose the different parameters involved in the procedure. The performance of

this method is discussed through a simulation study. Lastly, as a real data example, the

method is applied to a new database of operational losses provided by the bank UniCredit.

The rest of this paper is organized as follows. In Section 2, we define the semiparametric

GP-regression model that we consider in the following, and propose a way to estimate

the parameters and regression functions through a pseudo-likelihood approach. Section

3 presents the asymptotic properties of this estimators, while Section 4 disscusses the

practical implementation, through an iterative algorithm. In Section 5, we investigate
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on the finite sample behavior of the procedure through a simulation study and provide

a practical example on a dataset of financial operational losses. The Appendix section

presents some technical computations that are needed to prove the results of Section 3.

2 Semiparametric Generalized Pareto Regression Model

In this section, we first briefly present the GPD in Section 2.1, emphasizing its properties

that are linked with extreme value theory. In Section 2.2 we define the semiparametric

GP-regression model that will be studied throughout this paper. To describe the logic

behind our estimation procedure, which is done in Sections 2.3 to 2.4, we first elude the

fact that our responses may not follow exactly a GPD given the covariates. Then, we

discuss, in Section 2.5, the modifications that should be introduced in case of applying a

Peak-over-threshold (POT) technique, which introduces a misspecification error.

2.1 Generalized Pareto Distribution

The GPD(γ, σ) is defined by the following cumulative distribution function,

G(y;σ, γ) = 1− 1(
1 + γ y

σ

)1/γ
,

for y > 0, γ > 0, and σ > 0. The parameter γ is the extreme-value index, while the

parameter σ can be interpreted as some scale parameter. Indeed, the parameter γ is

related to the following fundamental result in extreme value analysis. If we consider an

i.i.d. random vector (Zi)1≤i≤n, and if we denote by Z(k) the k−th order statistic, and if,

for two sequences (an)n≥0 and (bn)n≥0, we have

lim
n→∞

P
(
Z(n) − bn

an
≤ z

)
= F (z), (2.1)

where F is a distribution function, then F is necessarily of the following form,

F (z) = Fγ(z) =

 exp
(
−(1 + γz)−1/γ

)
, if (1 + γz) > 0, γ 6= 0,

exp (− exp(−z)) , if γ = 0.

In the following, we will focus on the case where γ > 0. A proof of this result can be found

in Fisher and Tippett (1928) and Gnedenko (1943). In view of this result, the parameter

γ describes the heaviness of a distribution, and is of prime importance if one whishes to
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investigate on extreme events. A review of the main estimation methods of γ can be found

in Beirlant et al. (2004).

Among them, the POT technique proposed by Smith (1987) relies on the following

result: if the distribution of Z1 satisfies equation (2.1) with some γ > 0, then, if we denote

Fu(z) = P(Z − u > z|Z ≥ u), we have

lim
u→zF

sup
0<y<zF−u

|Fu(z)−G(y;σ(u), γ)| = 0, (2.2)

where zF = inf{z : P(Z1 ≤ z) = 1}, for some σ(u) (see Pickands (1975)). Hence, the GPD

can be seen as an approximation of the distribution of the excesses over some threshold.

Using this approximation, likelihood techniques can be used to estimate the parameter γ.

2.2 GP-regression

In the Generalized Pareto regression model that we consider, we assume that, given a set of

covariates X ∈ X ⊂ Rd, the response variable Y follows a GPD with conditional tail index

γ(x), and conditional scale parameter σ(x), when X = x. Our semiparametric regression

model consists in assuming that the function γ depends on the covariates only through an

unknown linear combination of these covariates, that is,

γ(x) = γθ0(θ
T
0 x), (2.3)

where θ0 is an unknown parameter belonging to Θ ⊂ Rd (parametric part), and γθ0 is an

unknown link function (nonparametric part). Compared to a fully nonparametric model,

this approach performs dimension reduction, since the relevant information on the covari-

ates needed to compute γ(x) is summarized by θT0 x. The study of the nonparametric part

then becomes a problem of estimating a function of a one-dimensional random vector. To

ensure the identifiability of the model, we need to add a constraint on θ0, e.g. θ01 = 1,

where θ01 denotes the first element of θ0.

In our approach, we do not focus on the nuisance parameter σ. This choice is motivated

by the fact that, from (2.2), the most important parameter for inference in the GPD is

γ. Alternatively, if one wishes to make more precise inference on this scale parameter,

it could be possible to also assume that a dimension reduction assumption holds for this

function, such as σ(x) = σβ0(β
T
0 x). We can easily extend our estimation procedure to this

framework but it would lead to a higher complexity of the procedure due to selection of
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the two vectors (θ0, β0). A way to simplify this issue would be to assume that β0 = θ0,

but this assumption may not be realistic. In practice, the single-index assumption can be

seen as an approximation of the real (nonparametric) model. Additional dimension reduc-

tion assumption could create some additional model bias, without necessarily providing a

significant improvement of the result.

In the following, we assume that we have at our disposal a consistent estimator σ̂(x)

of σ(x) (obtained through parametric, semiparametric or nonparametric modeling and at

least satisfying Assumption 11 in Section 3).

2.3 Estimation procedure for θ0

In this section, we consider observations made of a random vector (Yi, X
T
i )1≤i≤n which are

i.i.d. replications of a random vector (Y,XT ) for which model (2.3) holds. In this first

approach, we proceed as if the conditional law of Yi given Xi were exactly a GPD.

As pointed out before, in studying a model such as (2.3), the key problem stands in the

estimation of the parameter θ0. Indeed, if this parameter were known, we would be back

to a purely nonparametric problem which has already received satisfactory developments

in the literature. To estimate θ0, our procedure consists in adapting a maximum likelihood

strategy. Let Γ = {γθ : θ ∈ Θ} denote a family of functions such that γθ0(θ
T
0 x) = γ(x). We

will discuss the choice of a proper family in detail in Section 2.4. If this family of functions

were known, and if σ were known, the maximum likelihood approach would consist in

maximizing

Mn(γθ, σ; θ) =
1

n

n∑
i=1

l

(
γθ(θ

TXi);
Yi

σ(Xi)

)
, (2.4)

with respect to θ, where

l(γ; y) = −
(

1

γ
+ 1

)
log (1 + yγ) .

Given a family of nonparametric estimators γ̂θ, and a nonparametric estimator σ̂ of σ,

we can define the following estimator of the single-index parameter,

θ̂ = arg max
θ∈Θ

Mn(γ̂θ, σ̂; θ). (2.5)

In the following, we will show asymptotic properties of θ̂ which do not depend on the

particular type of nonparametric estimator that is used for γθ(θ
Tx) (for a given θ), provided

that this estimator satisfies some relatively standard conditions.
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2.4 The family Γ

In Section 2.3, we focus solely on the estimation of the single-index parameter. This leaves

us some latitude in view of choosing the family of functions Γ that we will use in our

procedure. Let

γ
(1)
θ (u) := arg max

γ
E

[
l

(
γ;

Yi
σ(Xi)

)
|θTXi = u

]
; (2.6)

the family Γ(1) = {γ(1)
θ : θ ∈ Θ} can represent a natural choice. However, this family has

an important disadvantage: there is no closed form for γ
(1)
θ (u) defined as the optimum of

some nonlinear function. If we wish to estimate γ
(1)
θ (u), we can use a local version using

kernel weights, i.e.,

γ̂
(1)
θ,h(u) = arg max

a

n∑
i=1

l

(
a;

Yi
σ̂(Xi)

)
K

(
θTXi − u

h

)
, (2.7)

where K is a kernel function (satisfying
∫
K(u)du = 1), and h is a smoothing parameter.

Alternatively, we can use a local polynomial estimator (see also Beirlant and Goegebeur

(2004)),

(γ̂θ,h(u), γ̂′θ,h(u)) = arg max
a,b

n∑
i=1

l

(
a+ b(θTXi − u);

Yi
σ̂(Xi)

)
K

(
θTXi − u

h

)
(2.8)

which presents the advantage to estimate not only γ(x) but also its derivative γ′(x) by

γ̂′(x). Independently of the estimator we consider, no closed form exists for the solution of

an optimization problem of the type of (2.7). This may lead to prefer other choices of sets

of functions Γ, whose elements can be approached through closed form estimators.

Indeed, observe that

E

[
Yi

σ(Xi)
|Xi

]
= E

[
Yi

σ(Xi)
|θT0 Xi

]
=

1

1− γθ0(θT0 Xi)
,

provided that γθ0(θ
T
0 Xi) < 1. If we assume that this condition holds for all values of θT0 Xi,

one can use the family Γ(2) constituted of the following functions,

γ
(2)
θ (u) = 1− 1

E
[

Yi
σ(Xi)
|θTXi = u

] .
The main advantage is that mθ(u) := E[Yiσ(Xi)

−1|θTXi = u] can be used by the following

kernel estimator

m̂θ(u) =
n∑
i=1

K
(
θTXi−u

h

)
∑n

j=1K
(
θTXj−u

h

) Yi
σ̂(Xi)

,
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leading to

γ̂
(2)
θ (u) = 1− 1

m̂θ(u)
.

This estimator is easier to compute, and will facilitate the implementation of our estimator

of θ0. However, it requires that γθ0(θ
T
0 Xi) < 1.

Note that choosing Γ2 instead of Γ1 impacts the estimation of γθ0(θ
T
0 X) but has less

impact (at least asymptotically) on the final estimation of θ0 (see Theorem 3.2). In our pro-

cedure, we separate the problem of estimating θ0 from the estimation of γθ0(θ
T
0 X): at each

iteration of the proposed methodology, we could use different nonparametric estimators for

γθ0(θ
T
0 X).

2.5 Case of a misspecified distribution in the POT technique

In view of Section 2.1, Gnedenko (1943) showed that there was some equivalence between

the fact that a distribution H(z) = P(Z1 ≤ z) has a tail behavior described by Fγ, and the

fact that

1−H(z) = z−
1
γ δ(z), (2.9)

where δ(z) is a slowly-varying function, that is

lim
z→∞

δ(λz)

δ(z)
→ 1,

for all λ > 0.

Consider that we observe (Zi, X
T
i )1≤i≤m i.i.d., where Zi has a conditional distribution

F (z|x) = P(Z ≤ z|X = x) of the type (2.9) for some δ(z|x), and some γ(x) > 0 which

satisfies (2.3). For the sake of simplicity, we assume thatXi belongs to the compact X ⊂ Rd.

Moreover, defining some threshold function ux, we have

lim
ux→zF,x

sup
0<y<zF,x−ux

|Fux(z|x)−G(z;σ(ux, x), γθ0(θ
T
0 x))| = 0,

where zF,x = inf{z : F (z|x) = 1}, and Fu(z|x) = P(Z − u ≥ y|X = x, Z ≥ u). In the

POT approach, one considers a threshold function ux(m) (with ux(m) → zF,x when m

tends to infinity), taking ux(m) large enough so that the distribution of the excesses over

ux(m) is sufficiently close to a GPD. In this case, the contrast (2.4) can still be used to

estimate θ0, but now with n replaced by n(m) =
∑m

i=1 1Zi≥uXi (m), and Yi replaced by

Yi,m = Zj(i) − uXj(i)(m), where j(i) = inf{k :
∑k

j=1 1Zj≥uXj (m) = i}. In this situation, we
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introduce some misspecification in the model, since the conditional distribution of Yi given

Xi is not exactly a GPD.

In the following, we will denote for the compact Θ ⊂ Rd,

θ0(ux(m)) = arg max
θ∈Θ

Mux(γθ, σ; θ),

where

Mux(γθ, σ; θ) = E

[
l

(
γθ(θ

TX);
Z − uX(m)

σ(X)

)
|Z ≥ uX(m)

]
.

Because of this misspecification error, θ0(ux(m)) 6= θ0, but the difference will be small

provided that one adds conditions on the thresholds, see the next section. Finally, the

empirical version of Mux will be denoted

Mn(γθ, σ; θ) =
1

n

m∑
i=1

l

(
γθ(θ

TXi);
Zi − uXi(m)

σ(Xi)

)
1Zi≥uXi (m).

3 Asymptotic properties

In this section, we discuss the theoretical properties of the estimator described in the

previous section. We first derive consistency in Section 3.1, then asymptotic normality

in Section 3.2. We express the results under general assumptions on the nonparametric

estimators γ̂θ and σ̂ used in the procedure, so as to be adapted to different estimation

strategies of the nonparametric part. Some of these nonparametric estimators and their

applicability in the present context are discussed hereunder but since these do not consist

in the main methodological issue, we prefer to focus on the proofs for θ̂. Some more details

about the estimator γ̂
(2)
θ (u) are however given in the Appendix. The considered Donsker

classes are supposed to have a bracketing entropy of order ε−v where ε is the length of

bracket and v < 2.

3.1 Consistency of θ̂

Assumptions needed to ensure the consistency of θ̂ can be decomposed into three cate-

gories: assumptions on the criterion to maximize, assumptions on the used nonparametric

estimators and assumptions on the regression functions γθ and σ.

Assumptions on the asymptotic criterion.
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The following assumption ensures that the true value of the parameter θ0 is uniquely

defined.

Assumption 1 Let M(γθ, σ; θ) = E
[
l
(
γθ(θ

TX); Y
σ(X)

)]
, where Y given X exactly follows

a GPD. Assume that,

∀θ ∈ Θ, M(γθ, σ; θ) = M(γθ0 , σ; θ0) =⇒ θ = θ0.

Assumption 2 below ensures that some class of functions naturally linked to our problem

satisfies a uniform law of large numbers property.

Assumption 2 Define

fθ,m(x, z) = l(γθ(θ
Tx); (z − ux(m))/σ(x)).

Assume that {(x, z)→ fθ,m(x, z) : θ ∈ Θ,m > 0} is a Glivenko-Cantelli class, that is

sup
θ,m

∣∣∣∣∫ fθ,m(x, z)d(Pn − PX,Z)(x, z)

∣∣∣∣ = oP (1),

where Pn denotes the empirical distribution of (Xi, Zi)1≤i≤m, for which Zi ≥ uXi(m), and

PX,Z the true distribution of (X,Z) given Zi ≥ uXi(m).

In practice, this assumption can be replaced by imposing a regularity condition on the

function γθ. Indeed, if we consider for example a constant ux(m) = u (the threshold does

not depend on either X or m), this condition will hold if the function θ → γθ(θ
T ·) is Lips-

chitz with respect to θ.

Assumptions on the nonparametric estimators.

We need the nonparametric estimators involved in the procedure to be uniformly con-

sistent.

Assumption 3 The nonparametric estimators γ̂θ and σ̂ are uniformly consistent, i.e.

sup
u∈U ,θ∈Θ

|γ̂θ(u)− γθ(u)| = oP (1),

sup
x∈X
|σ̂(x)−1 − σ(x)−1| = oP (1),

where U = {θTx;x ∈ X , θ ∈ Θ}.
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Assumptions on the regression functions.

For technical reasons, we will also impose that the parameters in the GPD stay in a

compact subset which does not include 0.

Assumption 4 There exist some strictly positive constants cγ, Cγ and Cσ such that

cγ ≤ γθ(θ
Tx) ≤ Cγ,

σ(x)−1 ≤ Cσ

for all θ ∈ Θ and x ∈ X .

We now state our consistency Theorem.

Theorem 3.1 Under Assumptions 1 to 4,

θ̂ − θ0 = oP (1)

as n→ +∞.

The proof is postponed to Section 7.1 in the Appendix.

3.2 Asymptotic normality of θ̂

To obtain the asymptotic normality, we need additional assumptions. Basically, they arise

from the need to have some rates of convergence and differentiability properties in order to

complete the proofs. Additionally, a condition on the threshold (see Theorem 3.2 hereun-

der) is required as well as on the type of slowly varying function (with the so-called slow

variation with remainder condition, see Goldie and Smith (1987)).

Assumptions on the asymptotic criterion.

Assumption 5 θ0 is an interior point of Θ.

The above assumption will ensure that we can use differentiation at the point θ0, since

θ0 is not located on the boundary.

Assumption 6 Let Σ = ∇2
θM(γθ0 , σ; θ0), where ∇2

θM denotes the Hessian matrix of M

and the differentiation is performed with respect to all the occurrences of θ in M(γθ, σ; θ).

Assume that Σ is invertible.
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Assumption 7 Denote Z+
0 , the set of positive integers, ∂jγl, the partial derivative of order

j, j = 1, 2 . . . , of l(a; b) with respect to a and ∂jkγσl, the partial derivative of order j + k,

j, k = 1, 2 . . . , of l(a; b) with respect to a (order j) and b (order k). Assume that there exist

Donsker classes

i) {(x, z)→ ∂11
γσl(γθ0(θ

T
0 x); (z − ux(m))/σ(x)) : m ∈ Z+

0 } ⊂ F∂11 ;

ii) {(x, z)→ ∂jγl(γθ0(θ
T
0 x); (z − ux(m))/σ(x)) : m ∈ Z+

0 } ⊂ F∂j , j = 1, 2.

Notice that in the practical case of a constant threshold strategy, Assumption 7 is auto-

matically verified.

Assumptions on the nonparametric estimators and on the regression func-

tions.

We next assume some differentiability and consistency properties for the nonparametric

estimators (and their partial derivatives) that we consider.

Assumption 8 Let ∇θm denote the gradient vector of partial derivatives with respect to

θ of a function m. Assume that γθ(θ
Tx) is twice continuously differentiable with respect to

θ, and that

sup
x∈X

∣∣γ̂θ0(θT0 x)− γθ0(θT0 x)
∣∣+ sup

x
|σ̂(x)−1 − σ(x)−1| = OP (ηn),

sup
x∈X
|∇θγ̂θ0(θ0, x)−∇θγθ0(θ0, x)| = OP (η′n),

sup
θ∈Θ,x∈X

∣∣∇j
θγ̂θ(θ, x)−∇j

θγθ(θ, x)
∣∣ = oP (1), for j = 1, 2,

where ∇1
θ ≡ ∇θ. Assume that ηnη

′
n + η2

n = o(n−1/2).

These convergence rates are usually required for nonparametric estimators and in the single-

index model literature. They are obtained for most of the kernel estimators.

Assumption 9 Assume that there exist Donsker classes such that

i) γθ0(θ
T
0 ·) ∈ Fγ and γ̂θ0(θ

T
0 ·) ∈ Fγ with probability tending to one;

ii) ∇θγθ0(θ0, ·) ∈ F∇ and ∇θγ̂θ0(θ0, ·) ∈ F∇ with probability tending to one.

Assumption 9 is often checked by adding regularity conditions on γθ0(θ
T
0 ·) and ∇θγθ0(θ0, ·)

and by proving consistency properties of the estimators involved in these conditions.
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Assumption 10 Assume ∇θγθ0(θ0, x) = U(θT0 x)(x−E[X|θT0 x]) for some function U(θT0 x).

Assumption 10 is easily checked for γ
(2)
θ described above using Lemma 7.1 in the Appendix.

This lemma is easily adapted to γ
(1)
θ by replacingmθ(θ

TX) by E[∂γl(γθ(θ
TX);Y/σ(X))|θTX]

and by assuming that the function u → γθ0(u) is bounded away from zero and has a con-

tinuous first derivative.

The next assumption is required for the part of the asymptotic representation coming

from the estimation of σ(·). It is usually verified for nonparametric kernel estimators. In

our context, we consider that this part, related to σ̂(x)− σ(x), is of minor interest and do

not focus on it. It could be modeled in several different ways (for example, with another

single-index assumption); here we simply require the general Assumption 11 hereunder.

Assumption 11 Assume σ̂(·)−1−σ(·)−1 belongs to a Donsker class with probability tending

to one and admits the following representation

σ̂(x)−1 − σ(x)−1 =
1

n

m∑
j=1

νn(x,Xj, Zj − uXj(m))1Zj≥uXj (m) +Rn(x),

where supx |Rn(x)| = oP (n−1/2). In addition, the function νn(x,X, Z − uX(m)) satisfies

1

n

m∑
i=1

∫
νn(x,Xi, Zi − uXi(m))1Zi≥uXi (m)ϕ(x,w)dPX,W (x,w)

=
1

n

m∑
i=1

[
ν(Xi, Zi − uXi(m))1Zi≥uXi (m)

×E[ϕ(Xi,W )|Xi, Z ≥ uX(m)]fX|Z≥uX(m)(Xi|Z ≥ uX(m))
]

+R∗n(x),

for some function ν(X,Z − uX(m)) with E[ν(X,Z − uX(m))|X = x, Z ≥ uX(m)] =

oP (n−1/2) (uniformly in X = x) and E[|ν(X,Z − uX(m))|3|Z ≥ uX(m)] = O(1) and where

supx |R∗n(x)| = oP (n−1/2), PX,W (·, ·) is the joint distribution of (X, (Z − uX(m))/σ(X))

(given Z ≥ uX(m)), fX|Z≥uX(m)(·|Z ≥ uX(m)) is the probability density function of X

(given Z ≥ uX(m)), ϕ(x,w) is a uniformly bounded function, differentiable with respect

to all the components of x up to order two and all its derivatives (with respect to the

components of x) up to order two are uniformly bounded.

Assumption 12 i) and iii) is also required when constructing the part of the asymptotic

representation related to σ̂(x)−1−σ(x)−1. Assumption 12 ii) is required for the convergence

of the Hessian of the log-likelihood function (to Σ defined in Assumption 6). This set of

assumptions is purely technical and usually assumed in this context.
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Assumption 12 Assume

i) σ(·)−1, γθ0(θ
T
0 ·) and ∇θγθ0(θ0, ·) are differentiable with respect to all the components

of x up to order two and all their derivatives (with respect to the components of x)

up to order two are bounded.

ii) For each component Dl(θ, x) of ∇j
θγθ(θ, x), j = 0, 1, 2 (l = 1, . . . , L, where L = 1, d, d2

according to the value of j),

sup
x∈X

|Dl(θ, x)−Dl(θ
′, x)|

‖θ − θ′‖
< C <∞, (3.1)

for all θ, θ′ ∈ Θ and some C > 0 (‖ · ‖ denotes an appropriate norm).

iii) fX|W (x|w), the density of X given (Z−uX(m))/σ(X) (and Z ≥ uX(m)) is uniformly

bounded, differentiable with respect to all the components of x up to order two and all

its derivatives (with respect to the components of x) up to order two are uniformly

bounded.

Assumptions related to the tail behavior.

Finally, assumptions about the behavior of the random variables Xi and Zi, i = 1, . . . , n,

distributions are added; these concern the right tail of the distribution of the Zi and are

usual in the extreme value theory context.

Assumption 13 Assume that for fX|Z≥uX(m)(x|Z ≥ uX(m)),

lim
ux(m)→zF,x

sup
x∈X
|fX|Z≥uX(m)(x|Z ≥ uX(m))− f̃X(x)| = 0

for a given cumulative distribution function F̃X(x) (with bounded density f̃X(x)).

Assumption 14 Assume that

δ(λz|x)

δ(z|x)
= 1 + φ(z|x)c(x)

∫ λ

1

uρ(x)−1du+ o(φ(z|x)),

as z →∞, for each λ > 0, with φ(z|x) > 0, φ(z|x)→ 0 as z →∞ and ρ(x) ≤ 0.

Assumption 15 Assume that supx φ(ux|x) = o(n−1/2) and supx |c(x)| < ∞, where φ(·|·)

and c(·) are defined in Assumption 14.

We now state the main result of this section. The proof is presented in Section 7.2.
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Theorem 3.2 Under the assumptions of Theorem 3.1, Assumptions 5 to 15 and if, addi-

tionally, ux(m) is a strictly increasing function of m, for all x, and m−1p
(v+2)/(v−2)
m = o(1)

for mpm = mP(Z ≥ uX(m)), a strictly increasing function of m, we have

n1/2(θ̂ − θ0) =⇒ N
(
0,Σ−1V Σ−1

)
as n→ +∞, where

V = E[η̃θ0(X, Y )η̃Tθ0(X, Y )],

ηθ0(X,Z − uX(m)) = ∇θl

(
γθ0(θ

T
0 X);

Z − uX(m)

σ(X)

)
1Z≥uX(m)

+
ν(X,Z − uX(m))1Z≥uX(m)∇θγθ0(θ0, X)fX|Z≥uX(m)(X|Z ≥ uX(m))σ(X)

(1 + γθ0(θ
T
0 X))(1 + 2γθ0(θ

T
0 X))

,

and η̃θ0(X, Y ) corresponds to ηθ0(X, Y ) where X ∼ F̃X(x) and fX|Z≥uX(m)(X|Z ≥ uX(m))

is replaced by f̃X(x).

In the above Theorem, the variance can be estimated consistently in order to provide

asymptotic confidence intervals. For example, if we consider σ(x) = σ (and a global

estimator for σ), the second term of ηθ0(X,Z−uX(m)) disappears. Σ can then be estimated

by ∇2
θMn(γ̂θ̂, σ̂; θ̂) and V by

1

n

m∑
i=1

∇θl(γ̂θ̂(θ̂
TXi);

Zi − uXi(m)

σ̂
)∇T

θ l(γ̂θ̂(θ̂
TXi);

Zi − uXi(m)

σ̂
)1Zi≥uXi (m).

4 Practical implementation

In practice, maximizing Mn is a hard task that requires numerical procedures. In addi-

tion, the most classical nonparametric estimators used here (kernel or local polynomial

estimators) rely on smoothing parameters, whose choice can strongly impact the practical

behavior of the procedure. In Section 4.1, we develop an iterative algorithm to estimate θ0

and to select an adequate smoothing parameter. Since the initialization of this algorithm

is an important step, we provide a simple way to compute a preliminary estimator of θ0 in

Section 4.2. The choice of the threshold uX(m) in practice is left to Section 5.2.

4.1 An iterative algorithm

According to Theorem 3.2 above, the asymptotic distribution of our estimator θ̂ does not

depend on the nonparametric estimator for γθ(θ
TX) (for a given θ). Nevertheless, for a
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finite sample size, the choice of the bandwidth has a significant impact on the procedure.

This is the reason why we introduce an iterative algorithm to compute θ̂ and an appropriate

h at the same time.

The procedure is the following: if at stage k of the algorithm, our current estimator is

θ̂(k), we choose the bandwidth h(k+1) that maximizes the criterion Vn,k(h) = Mn(γ̂−i
θ̂(k),h

, σ̂; θ̂(k))

(where γ̂−iθ,h denotes the cross-validated version of the nonparametric estimator (2.8), see

Beirlant and Goegebeur (2004)), Next, using this selected bandwidth, we update θ by

maximizing the criterion Mn(γ̂θ,h(k+1) , σ̂; θ) with respect to θ.

We can summarize the algorithm in the following way:

Step 0: Initialization by some estimator θ̂(0) (see Section 4.2).

Step k.1: Consider a finite grid of values of h : H. Compute

h(k) = arg max
h∈H

Vn,k−1(h).

Step k.2: Compute

θ̂(k) = arg max
θ∈Θ

Mn(γ̂θ,h(k) , σ̂; θ).

Repeat steps k.1 and k.2 until convergence.

Remark 4.1.1 We do not discuss the choice of the bandwidth parameters that could

be involved in σ̂(X) since they do not consist in the main estimation purpose of our

methodology. Nevertheless, the algorithm described below can be easily adapted to also

choose these bandwidths.

4.2 Initialization of the algorithm

We propose to take as an initial value θ̂(0) a preliminary consistent estimator (even with

slow convergence rate). Based on a preliminary nonparametric estimator γ̃(x) of γ(x),

compute

θ̂(0) = λ×

(
1

n

n∑
i=1

∇xγ̃(Xi)

)
,

where λ is some normalizing constant that ensures that the absolute norm of θ̂(0) is equal to

one (which is the identifiability condition used later in the simulations and the application).

The idea behind this average derivative technique comes from the fact that ∇xγ(x) =

θ0γ
′(θT0 x) if the model is true. Hence, the empirical mean in the definition of θ̂(0) is expected

16



to be (almost) colinear with θ0. The consistency of γ̃ should ensure the consistency of the

technique. As an estimator γ̃(x) (and ∇xγ̃(x)) of γ(x) (and ∇xγ(x)), one may use an

estimator based on the method of (conditional) moments, as for the estimator γ
(2)
θ , or the

local polynomial estimator of Beirlant and Goegebeur (2004) in a multivariate context.

However, an initial estimator based on the moments should be favored in practice, since

the local polynomial likelihood approach is extremely unstable when d > 1. In addition,

it requires to estimate jointly γ(x) and σ(x), which is a pretty hard task. To avoid related

numerical issues, we prefer to rely on the method of conditional moments, allowing us to

estimate separately both parameters. This is this approach that we will use in the next

sections to obtain initial estimations of θ0 (and of σ(x)), both in the simulations and in the

real data analysis.

5 Simulations and real data analysis

5.1 Simulations

In this section, we study the finite sample behavior of the proposed procedure. Especially,

we want to know how our iterative procedure improves an initial estimation θ̂(0) of θ0,

based on the average derivative technique. We generate B = 200 samples of size n ∈

{1000, 1500, 2000} from the GPD, following the single-index model described in the previous

section. We specify two different functions γ(x). The scale parameter (σ) is assumed to

be known, constant and equal to 1. The covariates X are composed of d ∈ {3, 4, 5}

components, independently and uniformly distributed on [0, 1]. Analytically

Y ∼ GPD(γ(x), σ), (5.1)

X(p) ∼ U(0, 1), p = 1, · · · , d, (5.2)

where the two different functions are:

Model 1: γ(x) = (sin(sin(2πθT0,(j)x)) + 1)/7 + 0.1,

Model 2: γ(x) = (sin(sin(2πθT0,(j)x)) + 1)/3 + 0.3,

with θ0,(1) = [0.2 0.2 0.6], θ0,(2) = [0.1 0.2 0.4 0.3], θ0,(3) = [0.1 0.1 0.2 0.2 0.4] and X(p)
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denotes the pth covariate. To improve numerical stability, we re-formulate the identifica-

tion condition θ01 = 1 in the following equivalent way (Horowitz, 2009): ‖θ0‖ = 1 with

θ01 > 0, where ‖ · ‖ denotes the l1 norm. This expression is found to be easier to deal

with, practically speaking. We use the average derivative technique based on a multivari-

ate local polynomial regression of the moments (Ruppert and Wand, 1994) to obtain an

initial estimation θ̂
(0)
(j) of θ0,(j) (we prefer to use the moment-based approach over the local

polynomial likelihood approach of Beirlant and Goegebeur (2004), since we find the latter

highly unstable when d > 1 and the source of numerical issues). We compare the quality of

the estimation obtained with the proposed iterative procedure (θ̂(j)) to this initial solution

(in the latter, a subscript b is added to identify an estimator of θ0 computed on sample

b). In our iterative procedure, we use the local polynomial likelihood procedure of Beirlant

and Goegebeur (2004), as well as their proposed leave-one-out cross-validation approach to

select the bandwidth. The estimator γ̂θ,h of γθ0 used here is defined by equation (2.8). To

measure the quality of the estimation, we use the mean squared error (MSEθ(j)) and the

mean absolute error (MAEθ(j)) criteria. These quantities are computed in the following

way:

MSEθ̂(j) =
1

B

B∑
b=1

dj∑
p=1

(θ̂(j),b(p)− θ0,(j)(p))
2, (5.3)

MAEθ̂(j) =
1

B

B∑
b=1

dj∑
p=1

|θ̂(j),b(p)− θ0,(j)(p)|, (5.4)

for j = 1, 2, 3 and where θ0,(j)(p) is the pth element of the vector θ0,(j).

To obtain indicators less sensitive to extreme values, we also compute the median

squared error and the median absolute error, given by

mSEθ̂(j) = Md

 dj∑
p=1

(θ̂(j),b(p)− θ0,(j)(p))
2

 , b = 1, · · · , B, (5.5)

mAEθ̂(j) = Md

 dj∑
p=1

|θ̂(j),b(p)− θ0,(j)(p)|

 , b = 1, · · · , B, (5.6)

for j = 1, 2, 3 and where Md stands for empirical median.

We measure the quality of the final estimation γ̂θ,h(θ̂
Tx) of γ(x) and we compare it

to the initial estimation performed with θ̂(0). To this end, we use the mean and median
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integrated squared error criteria, computed in the following way:

MISEγ̂θ,(j) =
1

B · n

B∑
b=1

n∑
i=1

(γ̂θ,h(θ̂
T
(j),bxj,b,i)− γ(xj,b,i))

2, (5.7)

mISEγ̂θ,(j) = Md

(
1

n

n∑
i=1

(γ̂θ,h(θ̂
T
(j),bxj,b,i)− γ(xj,b,i))

2

)
, b = 1, · · · , B, (5.8)

for j = 1, 2, 3 and n = 1000, 1500, 2000.Having at our disposalB random vectors {yi, xi}1≤i≤n

following (5.2) and (5.1), xj,b,i denotes the ith vector of covariates in the bth simulated sam-

ple where θ0 = θ0,(j); whereas γ̂θ,h(θ̂
T
(j),bxj,b,i) is the final estimation of γ(xj,b,i) in sample

b obtained with θ̂(j),b. To measure the quality of the initial estimation, we obtain simi-

lar quantities simply by replacing θ̂(j),b by θ̂
(0)
(j),b (the initial estimation of the single-index

parameter in the bth sample).

The bandwidths used to obtain the initial solution are selected with a leave-one-out

cross-validation procedure over a grid between 0.1 and 0.5. We select the bandwidths h
(1)
0

and h
(2)
0 that minimize a least-square criterion:

h
(1)
0 = argmin

h∈H

n∑
i=1

(yi − m̂(1)
h,−i(xi))

2, (5.9)

h
(2)
0 = argmin

h∈H

n∑
i=1

(y2
i − m̂

(2)
h,−i(xi))

2, (5.10)

where m̂
(1)
h,−i(xi) (respectively m̂

(2)
h,−i(xi)) is the cross-validated (multivariate) local polyno-

mial estimation of the first (respectively second) conditional moment at point xi, computed

with a bandwidth h ∈ H and omitting the observation {yi, xi}.

At each iteration of the proposed procedure, we also choose the bandwidth of the local

polynomial regression with the leave-one-out cross-validation procedure of Beirlant and

Goegebeur (2004), using a grid of values depending on the range of θ̂
(k)T
(j) x. The kernel

function is the bi-quadratic kernel function, as in Goegebeur et al. (2014) (this assumption

does not influence much the final result) and is given by

K(x) =
15

16
(1− x2)2

1{x ∈ [−1, 1]}. (5.11)

We perform a maximum of 20 iterations. Our final estimator θ̂(j) of θ0,(j) is the one

that maximizes the global likelihood function given by equation (2.4). To compare our

procedure to the average derivative technique, we compute RMSEθ(j) = MSEθ̂(j)/MSE
θ
(0)
(j)

,

where MSEθ̂(j) is the estimated MSE obtained with our procedure and MSE
θ
(0)
(j)

is the
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MSE obtained with the average derivative technique. A ratio below 1 indicates that our

procedure provides better results. Similarly, we compute RmSEθ(j) , RMAEθ(j) , RmAEθ(j) ,

RMISEγ̂θ̂,(j) and RmISEγ̂θ̂,(j). The results are displayed in Tables 1 and 2.

For the first model (Table 1), we see that our iterative procedure is the best for all

tested values of θ0 and all considered criteria. The criteria based on the median emphasize

the presence of several large errors (both with the average derivative method and our

method) for n = 1000. It appears that when the average derivative method provides a

very bad starting solution, we have some difficulties in improving a lot the final estimation

of θ0. Thus, controlling for these errors improves the results in favour of our procedure,

as shown by the median criteria. When the sample size increases, the gap between the

average derivative technique and our procedure tends to increase. For a sample of size

n = 1000, we observe a decrease of the MSE ranging from 5.4% to 16.7%. For n = 1500,

the decrease varies between 19.4% and 27.3%. For n = 2000, the decrease ranges from

23.3% to 28.6%. The decrease is larger if we look at the mSE criterion. Similar figures

and effects are observed for the MAE and mAE criteria (although the decreases related to

these criteria are weaker). Looking at the criteria on γ(x), we also perform better with our

procedure, except for n = 1000 and d = 5 where there is no difference. When the sample

size increases, we achieve a reduction of the MISE criterion up to 21%, whereas the mISE

criterion decreases by up to 26%.

For the second model (Table 2), initial estimations provided by the average derivative

technique are less good. Simultaneously, our final estimations display smaller error rates

compared to the first model, with the consequence that the ratios are closer to zero. Con-

sidering the MSE criterion only, we observe a maximum improvement of 68.7%, 78.1%

and 69.6% for the three different sets of covariates, respectively. The best improvement

in term of MAE reaches an 85.6% decrease, compared to the estimation with the average

derivative technique. Looking at the criteria on γ(x), we are way better than the initial

estimation. Our procedure enables a decrease of the MISE and mISE between 36% and

56% for n = 1000. When the sample size increases, the decreases are between 50% and 63%

for n = 1500, and between 60% and 71% for n = 2000.

Hence, the proposed procedure improves well the initial estimation of θ0. We notice that

if the initial parameters are too far from the true parameters, we may have some difficulties

in improving a lot this initial solution. Our procedure also improves the estimation of γ(x),

especially for the second DGP and when the sample size is larger than 1000. Eventually,
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notice that the good results for Model 2, compared to the initial estimation, are partly due

to the fact that the initial solution based on local polynomial estimations of the second

moment is biased when γ(x) > 1/2 (which is the case for some values of γ(x) in the

simulated samples). We could have used other local regression techniques that do not suffer

from this drawback (e.g. local quantile regression or a multivariate version of Beirlant and

Goegebeur (2004) estimator). However, as mentioned earlier, these approaches suffer from

practical and theoretical issues (see, e.g. Zhang, 2010), that are beyond the scope of this

paper and make them hard to implement.

Model 1

n = 1000 θ̂(1) θ̂
(0)
(1)

Ratio(1) θ̂(2) θ̂
(0)
(2)

Ratio(2) θ̂(3) θ̂
(0)
(3)

Ratio(3)

MSE
θ̂(j)

0.204 0.245 0.833 0.154 0.174 0.885 0.175 0.185 0.946

MAE
θ̂(j)

0.579 0.644 0.899 0.615 0.654 0.940 0.723 0.758 0.954

mSE
θ̂(j)

0.110 0.151 0.729 0.104 0.130 0.800 0.120 0.156 0.769

mAE
θ̂(j)

0.476 0.573 0.831 0.562 0.607 0.926 0.666 0.736 0.905

MISEγ̂θ,(j)
5.7e−3 6.1e−3 0.94 6.3e−3 6.5e−3 0.97 7.3e−3 7.4e−3 0.99

mISEγ̂θ,(j)
5.1e−3 5.6e−3 0.90 5.4e−3 5.7e−3 0.96 6.8e−3 6.8e−3 1.00

n = 1500 θ̂(1) θ̂
(0)
(1)

Ratio(1) θ̂(2) θ̂
(0)
(2)

Ratio(2) θ̂(3) θ̂
(0)
(3)

Ratio(3)

MSE
θ̂(j)

0.149 0.205 0.727 0.121 0.161 0.751 0.124 0.153 0.806

MAE
θ̂(j)

0.479 0.576 0.832 0.521 0.607 0.859 0.615 0.687 0.895

mSE
θ̂(j)

0.079 0.125 0.632 0.080 0.116 0.685 0.100 0.132 0.757

mAE
θ̂(j)

0.400 0.504 0.794 0.487 0.580 0.840 0.573 0.657 0.872

MISEγ̂θ,(j)
3.7e−3 4.7e−3 0.79 4.4e−3 4.9e−3 0.91 5.3e−3 5.7e−3 0.94

mISEγ̂θ,(j)
3.3e−3 4.1e−3 0.80 3.6e−3 4.4e−3 0.82 4.7e−3 5.4e−3 0.88

n = 2000 θ̂(1) θ̂
(0)
(1)

Ratio(1) θ̂(2) θ̂
(0)
(2)

Ratio(2) θ̂(3) θ̂
(0)
(3)

Ratio(3)

MSE
θ̂(j)

0.140 0.196 0.714 0.091 0.127 0.720 0.099 0.129 0.767

MAE
θ̂(j)

0.459 0.550 0.834 0.448 0.532 0.842 0.547 0.623 0.878

mSE
θ̂(j)

0.064 0.099 0.647 0.053 0.075 0.668 0.077 0.110 0.700

mAE
θ̂(j)

0.400 0.445 0.899 0.396 0.466 0.849 0.506 0.606 0.835

MISEγ̂θ,(j)
3.2e−3 4.1e−3 0.80 3.5e−3 4.1e−3 0.87 3.9e−3 4.4e−3 0.89

mISEγ̂θ,(j)
2.7e−3 3.4e−3 0.81 2.9e−3 3.9e−3 0.74 3.4e−3 4.1e−3 0.83

Table 1: Values of the various error rates and the ratio statistics, obtained with the average

derivative technique and our iterative procedure, for Model 1.
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Model 2

n = 1000 θ̂(1) θ̂
(0)
(1)

Ratio(1) θ̂(2) θ̂
(0)
(2)

Ratio(2) θ̂(3) θ̂
(0)
(3)

Ratio(3)

MSE
θ̂(j)

0.122 0.276 0.443 0.103 0.233 0.441 0.118 0.221 0.533

MAE
θ̂(j)

0.411 0.713 0.576 0.473 0.758 0.623 0.533 0.829 0.692

mSE
θ̂(j)

0.059 0.199 0.297 0.060 0.191 0.314 0.075 0.201 0.371

mAE
θ̂(j)

0.369 0.685 0.539 0.413 0.725 0.569 0.496 0.804 0.618

MISEγ̂θ,(j)
1.4e−2 2.8e−2 0.50 1.6e−2 2.8e−2 0.58 1.9e−2 3e−2 0.64

mISEγ̂θ,(j)
1.2e−2 2.6e−2 0.44 1.3e−2 2.7e−2 0.49 1.7e−2 3e−2 0.56

n = 1500 θ̂(1) θ̂
(0)
(1)

Ratio(1) θ̂(2) θ̂
(0)
(2)

Ratio(2) θ̂(3) θ̂
(0)
(3)

Ratio(3)

MSE
θ̂(j)

0.119 0.291 0.411 0.068 0.208 0.326 0.072 0.206 0.352

MAE
θ̂(j)

0.381 0.717 0.531 0.372 0.709 0.525 0.459 0.804 0.570

mSE
θ̂(j)

0.039 0.186 0.211 0.031 0.179 0.171 0.052 0.177 0.294

mAE
θ̂(j)

0.315 0.649 0.486 0.302 0.699 0.432 0.423 0.788 0.537

MISEγ̂θ,(j)
1.1e−2 2.6e−2 0.41 1.2e−2 2.5e−2 0.47 1.3e−2 2.6e−2 0.50

mISEγ̂θ,(j)
0.8e−2 2.3e−2 0.37 0.98e−2 2.5e−2 0.39 1.2e−2 2.6e−2 0.45

n = 2000 θ̂(1) θ̂
(0)
(1)

Ratio(1) θ̂(2) θ̂
(0)
(2)

Ratio(2) θ̂(3) θ̂
(0)
(3)

Ratio(3)

MSE
θ̂(j)

0.072 0.231 0.313 0.042 0.208 0.193 0.059 0.189 0.314

MAE
θ̂(j)

0.299 0.664 0.451 0.281 0.705 0.399 0.401 0.759 0.528

mSE
θ̂(j)

0.025 0.184 0.134 0.022 0.177 0.124 0.037 0.156 0.236

mAE
θ̂(j)

0.245 0.600 0.408 0.251 0.697 0.360 0.355 0.714 0.497

MISEγ̂θ,(j)
0.95e−2 2.5e−2 0.38 0.84e−2 2.4e−2 0.35 1.1e−2 2.4e−2 0.44

mISEγ̂θ,(j)
0.77e−2 2.2e−2 0.35 0.71e−2 2.4e−2 0.29 0.94e−2 2.3e−2 0.40

Table 2: Values of the various error rates and the ratio statistics, obtained with the average

derivative technique and our iterative procedure, for Model 2.

5.2 Real data analysis

In this section, we illustrate our methodology on a database of operational losses from the

Italian bank UniCredit. These losses are defined as being losses resulting from inadequate or

failed internal processes, people and systems or from external events (...) (Basel Committee

on Banking Supervision, 2004). For regulatory purposes, banks are asked to set aside a

capital reserve to cover themselves against these losses. This capital reserve is a function

of the 99.9th order statistic of their severity distribution, usually modeled with a GPD in
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the Advanced Measurement Approach (AMA, Basel Committee on Banking Supervision,

2004). Traditionally, banks assume that this distribution is independent of the economic

conditions but recent studies (Chernobai et al., 2011; Cope et al., 2012; Wang and Hsu,

2013; Chavez-Demoulin et al., 2016) suggest otherwise. Hence, the use of a GP-regression

model in this context would be a natural extension of the traditional models and would be

of interest to improve the adequacy of these capital reserves.

Our database consists of 3,862 operational losses recorded between 2005 and 2014.

According to UniCredit internal classification system, these losses are related to the risk

classes Employment practices & Workplace safety (EPWS), Damages to Physical Assets

(DPA) and Business Disruption & System Failures (BDSF). We assume that (2.3), (2.9)

and γ(x) > 0 hold so that the GPD can be considered as a valid approximation of the

loss excess distribution (Z − uX(m)) (see, e.g. Davison and Smith, 1990; Embrechts et al.,

1997, for a similar approach). We use a value of 25,000e as an estimate for the threshold

parameter uX(m) (denoted û in the sequel) and assume that it does not depend on the

covariates. We chose this value thanks to a mean excess plot that appears to be linear

starting from 25,000e. See Scarrot and MacDonald (2012) for more considerations regard-

ing the threshold selection. It gives us a final number of 585 losses above û. Figure 1 shows

the losses over time, whereas in Appendix 7.4, Table A1 gives descriptive statistics for this

sample of losses.
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Figure 1: Size of the losses larger that 25,000e, for the period 01/2005-07/2014.
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In addition to the sub-classification, we have at our disposal the following covariates: the

percentage of the bank’s revenue that comes from fees (PRF), the stock price of the bank,

Thomson Reuters (TR) European stock index value, the long term (LT) bond rate and the

Italian unemployment rate. These covariates are measured at a quarterly frequency. The

PRF gives us the proportion of the revenue that does not come from taking a financial risk,

but from executing an operation on behalf of its clients. It might be seen as a measure

of the economic well-being of the bank: a high PRF indicates that the bank makes profit

independently from the level of the interest rates. In the same idea, the stock price of the

bank is another measure of its economic well-being (a high stock price indicates a good

economic situation for the bank). Besides, Thomson Reuters index and the unemployment

rate are measures of the overall performance of an economy. Similarly, high long term

interest rates might indicate an increase in the perceived default risk and a defavourable

economic situation. As noticed by Cope et al. (2012), high unemployment rates may have

an impact on the quality of a bank’s staff and may increase the overall crime rate of an

economy, suggesting that the severity distribution of the considered operational losses may

exhibit fatter tails in this situation. In addition, the same authors notice that a booming

economy may generate incentives for employees to commit frauds, thus increasing the

probability of large operational losses.

In Appendix 7.4, Figure A1 shows the distributions of these covariates, whereas Table

A2 displays the correlation matrix between covariates. We observe a strong positive corre-

lation between the PRF and the stock price, as well as between the stock price and the TR

index. On the other side, we observe that the LT bond rate is strongly negatively correlated

with the PRF and the stock index. Lastly, the unemployment rate has a strong negative

correlation with the PRF and the stock price. These high correlations between explanatory

variables suggest that combining them into a smaller number of covariates might be a good

way to perform a dimension reduction, not loosing too much of their explanatory powers

in the process.

Similarly to what we do in Section 5.1, we obtain an initial estimation of θ0 using the

average derivative technique, with multivariate local polynomial estimations of the first

and second conditional moments (Hristache et al., 2001). We choose the bandwidth pa-

rameter over a grid of values between 0.1 and 0.5, with a leave-one-out cross-validation

procedure (to ease the selection, we scale all covariates to ensure that they vary between

zero and one). More precisely, we select the bandwidth parameters that minimize the sum
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of squared differences between the cross-validated estimations of the first (respectively sec-

ond) moment and the observed losses (respectively squared losses).

To obtain an initial estimation for the scale parameter σ(x), we use the fact that (for

γ(x) < 1/2)

σ(x) =
m1(x)

2

(
1 +

m1(x)2

m2(x)−m1(x)2

)
, (5.12)

where m1(x) and m2(x) are the conditional first and second moments of the excess loss

(Z−uX(m)). We estimate m1(x) and m2(x) with the same local polynomial estimators m̂1

and m̂2 used for the initial estimation of θ0 (Hristache et al., 2001), and then we plug the

estimates in equation 5.12 to obtain an estimated conditional scale parameter σ̂(x). Since

we observe that the scale parameter has estimations close to each other in a small interval,

we assume it constant across covariates and estimate it by

σ̂(0) = (1/m)
m∑
i=1

σ̂(xi). (5.13)

This estimation is biased if γ(x) > 1/2.

To improve this initial guess, we re-estimate σ along the iterative procedure. We max-

imize, with respect to σ, the log-likelihood function given by equation (2.4) and where the

tail indices are set to their estimated values at iteration k (γ̂θ,h(θ̂
(k)Txi), for i = 1, · · · , 585).

Our final estimation is denoted σ̂FIN and is obtained with the same maximization proce-

dure, using γ̂θ,h(θ̂
Tx) (our final estimation of γ(x)) in the likelihood function.

We perform a maximum of 20 iterations of the proposed procedure, using the same

identification condition as in the simulations. For the nonparametric estimation of the

conditional tail index, we rely on the estimator of Beirlant and Goegebeur (2004). The

bandwidth parameter is chosen with a leave-one-out cross-validation procedure, over a

grid depending on the single-index range. The selected h is the one that minimizes the

global likelihood function, where we replace the conditional tail index by its cross-validated

estimate (as in Beirlant and Goegebeur, 2004).

We consider two combinations of the covariates. In the first combination, we pool all risk

categories and we perform the estimation with respect to the economic covariates. Table 3

displays the initial (θ̂(0)) and final (θ̂) estimations of θ0, the estimated scale parameter and

the selected bandwidth. We also compute the (Pearson) correlation coefficients between
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the single-index variable and the different covariates (ρ̂(θ̂Tx, x(p)), p = 1, · · · , 5). This

quantity indicates the intensity of the relationship between each covariate and the single-

index variable. Figure 2 shows the estimated conditional tail index, as a function of the

single-index variable.

In the first model (see Table 3), the PRF and the LT bond rate appear to be strongly

correlated with the single-index variable. The PRF has the strongest correlation coeffi-

cient (−0.824). The stock price appears to be correlated with the single-index too, but the

coefficient is smaller. The TR index and the unemployment rate exhibit very small cor-

relation coefficients. Regarding the signs of θ̂ and ρ̂(θ̂Tx, x(p)) associated to the PRF and

the stock price, we observe negative values (for both θ̂ and ρ̂(θ̂Tx, x(p))). Due to the shape

of γ̂θ,h(θ̂
Tx) (Figure 2, left side), it indicates that an increase in these variables (all other

things remaining equal) is associated with an increasing probability of very large losses.

Besides, we observe positive values of θ̂ and ρ̂(θ̂Tx, x(p)) for the LT bond rate, meaning

that high values of the LT bond rate are associated with high values of the single-index

variable, thus with low values of γ̂θ,h(θ̂
Tx). Hence, high values of γ̂θ,h(θ̂

Tx) are associ-

ated with positive internal economic indicators (high PRF and high stock prices, low LT

bond rates), whereas low values of γ̂θ,h(θ̂
Tx) are associated with negative indicators (high

LT bond rates, low stock prices and low PRF). The considered macroeconomic covariates

don’t seem to have important explanatory powers.

In the second model, we consider simultaneously the effect of the economic covariates

exhibiting the highest correlation coefficients (namely the PRF, the stock price and the LT

bond rate) and the risk categories. We expect the risk categories to posses some explanatory

powers, since regulators recommend to model separately the severity distribution of the

losses from different categories (Basel Committee on Banking Supervision, 2004). We map

the EPWS, DPA and BDSF categories into two binary variables (CAT1 and CAT2). CAT1

(resp. CAT2) takes value 1 when the loss belongs to the EPWS (resp. DPA) category, 0

otherwise. Table 3 displays the results of the regression analysis using these five covariates,

whereas Figure 2 (right side) shows the estimated conditional tail index as a function of the

single-index variable. The PRF and the LT bond rate variables appear to have the strongest

correlation coefficients with the single-index (-0.426 and 0.497, respectively), whereas the

CAT1 (i.e. EPWS) variable displays also an interesting correlation coefficient (-0.367).

A negative sign indicates that high values of the considered variable are associated with

negative values of the single-index variable, thus with high values of γ̂θ,h(θ̂
Tx) (as shown
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on Figure 2, right side). In other words, when the PRF is high, the LT bond rate is low

and/or that a loss belongs to the EPWS category, the severity distribution has a fatter tail

compared to low PRF, high LT bond rates and losses belonging to DPA or BDSF categories.

These results are in line with those obtained with the first set of covariates. Besides,

the stock price and the CAT2 (i.e DPA) variables display small correlation coefficients,

suggesting that their explanatory power is small and that most of the available information

are contained in the other variables.

For inference, we compute bootstrap confidence intervals for θ0 and ρ. We use the

estimated GP-regression model to generate B = 2000 resamples of size 585 (with fixed

covariates). Then, we execute the iterative procedure to obtain bootstrap estimations θ̂∗b ,

σ̂∗b and ρ((θ̂∗b )
Tx, x(p)), with b = 1, · · · , B and p = 1, · · · , 5. Applying first the Fisher

z-transform to ensure that the bounds of the confidence intervals lie between −1 and 1,

we are able to compute basic bootstrap confidence intervals. Table 3 displays the bounds

of the 95% confidence intervals. We conclude that both the PRF and the LT bond rate

have θ0 and ρ parameters significantly different from zero. In the second model, we find

in addition that the stock price has a single-index parameter significantly different from

zero (but not its correlation coefficient). We cannot conclude anything for the categorical

variables. We provide confidence intervals on σ in the same table.

To check the goodness-of-fit of the estimated models, we compare the empirical distri-

bution of

ei =
(

1/γ̂θ,h(θ̂
Txi)

)
log
(

1 + γ̂θ,h(θ̂
Txi)(zi − û)/σ̂FIN

)
, i = 1, · · · , 585, (5.14)

with the standardized exponential distribution (see Chavez-Demoulin et al., 2016, for a

similar approach). The QQ-plots displayed in Figure 3 show the good fits of the estimated

models, even far in the tail (up to the quantile 99%). Model 2 seems a bit better, presumably

because we take into account the category effect.

In summary, both GP-regression exercises indicate that low LT bond rates and high

PRF are associated with high values of the tail index, whereas high long term bond rates

and small PRF values correspond to smaller values of γ̂θ,h(θ̂
Tx). Also, the EPWS losses

severity distribution has a fatter tail than losses from the DPA and BDSF categories (all

other things remaining equal). It is in line with the higher kurtosis coefficient observed

for the marginal distribution of EPWS excess losses (see Table A1). The relationship

between the stock price and γ̂θ,h(θ̂
Tx) is more difficult to determine: at first look, an
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increase in stock price is associated with an increase in γ̂θ,h(θ̂
Tx), but if we control for

the risk category its influence mostly disappears. Macroeconomic variables do not display

important explanatory powers.

Overall, these results suggest a positive link between economic well-being and the sever-

ity of operational losses, and are in line with the ones of Cope et al. (2012) (however, in

our case, we observe such a relationship for the likelihood of large losses, and not for their

expected size). They also highlight the need of flexible models, to investigate the nonlinear

nature of the relationship between γ(x) and the covariates. Nevertheless, this application

must be seen as an illustration of the potential of our statistical approach (e.g. as a pre-

liminary step in the perspective of choosing a nonlinear parametric model), and not as a

comprehensive empirical study, for which several issues should still be carefully considered

in the semiparametric context (e.g. variable selection, model comparison and confidence

interval issues).

28



Set of covariates 1

Stat. PRF Stock Price TR index LT bond Unemp.

θ̂(0) -0.252 -0.135 0.268 -0.110 -0.235

θ̂ −0.534∗∗ -0.010 0.147 0.187∗ -0.123

(-0.86, -0.40) (-0.22, 0.29) (-0.06, 0.52) (-0.00, 0.61) (-0.47,0.26)

ρ(θ̂TX,X(p)) −0.824∗∗ -0.354 0.042 0.692∗∗ 0.035

(-0.99,-0.53) (-0.91, 0.60) (-0.63, 0.73) (0.43, 0.98) (-0.75, 0.74)

hopt = 0.123 σ̂FIN = 41283.3 (34864, 46954.9)

Set of covariates 2

Stat. PRF Stock Price LT bond CAT1 CAT2

θ̂(0) -0.451 0.120 0.348 -0.070 -0.011

θ̂ −0.356∗∗ 0.131∗ 0.331∗∗ -0.084 -0.098

(-0.75, -0.26) (-0.03, 0.37) (0.12, 0.61) (-0.22, 0.16) (-0.44, 0.21)

ρ(θ̂TX,X(p)) −0.426∗ 0.055 0.497∗∗ -0.366 -0.139

(-0.89, 0.04) (-0.69, 0.70) (0.03, 0.9) (-0.81, 0.65) (-0.88, 0.54)

hopt = 0.101 σ̂FIN = 42347.2 (35994.7, 47993.6)

Table 3: Initial and final estimations of θ0, empirical correlation coefficients ρ̂(θ̂Tx, x(d))

and final estimate σ̂FIN of σ, conditional on the first (top) and second (bottom) sets of

covariates. hopt is the cross-validated bandwidth used to perform the final regression. *

(resp. **) indicates that the parameter is significantly different from 0 with a confidence

level of 90% (resp. 95%). Bounds of the 95% confidence intervals are in parentheses.
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Figure 2: Estimated conditional tail index (γ̂(θ̂Tx)) using the first (left) and second (right)

set of covariates, as a function of the single-index variable. Dotted: estimation performed

with hopt. ∗ (respectively ×): estimations performed with h = 0.9hopt (respectively h =

1.1hopt). Dashed: 95% bootstrap confidence bands obtained with θ̂ and hopt (B = 2000).
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Figure 3: QQ-plot between the quantile of the standard exponential distribution (solid

line) and the observed quantiles (*) of ei, i = 1, · · · , 585 (given by equation 5.14) for Model

1 (left) and Model 2 (right). Dashed: 95% bootstrap confidence intervals (B = 2000).
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6 Conclusion

In this paper, we provide a new regression model for inference on the conditional tail index

γ(x) of a Generalized Pareto distribution. This model is based on a dimension reduction

throughout a single-index assumption that makes it particularly valuable when the number

of covariates is high. In this framework, purely nonparametric approaches usually have an

erratic behavior, while purely parametric ones are often too rough to describe correctly

the data. We propose a likelihood-based iterative procedure that makes the computation

of the estimators easier. We provide asymptotic properties of the single-index parameter

estimator under general assumptions and a simulation study investigates the finite sample

behavior of this procedure. Lastly, we conduct a regression analysis with our methodology,

on a novel database of financial operational losses from the bank UniCredit. Our results

suggest that an improvement in the economic conditions increases the probability of large

losses.

As already mentioned, several extensions of our approach may be proposed. First of

all, one could also model the conditional parameter σ(x) as a single-index model. Also

γ(x) itself could be modeled through a multiple index regression model, as it has been

proposed in Chiou and Müller (2004) for mean-regression, the only limitation being, of

course, that adding too many indices to the model will increase excessively the complexity

of the problem. Lastly, some additional procedures beyond the scope of this paper would be

obviously of prime interest so as to conduct more thorough empirical studies. In particular,

an automatic variable selection procedure, a test on the linearity of the link function as

well as a test investigating a priori if γ(x) < 1 would help to strengthen the conclusions of

empirical studies relying on the proposed methodology.
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7 Appendix

In this section, we provide the proofs of Theorems 3.1 and 3.2 in Section 7.1 and 7.2. To

simplify notations, we will use Zm
i = Zi − uXi(m), i = 1, . . . ,m.

7.1 Proof of Theorem 3.1

To prove consistency, it suffices to prove that supθ∈Θ |Mn(γ̂θ, σ̂; θ) −M(γθ, σ; θ)| = oP (1),

since θ0 is defined as the unique maximizer of M from Assumption 1. This can be done in

two steps, showing that

sup
θ∈Θ
|Mn(γ̂θ, σ̂; θ)−Mux(γθ, σ; θ)| = oP (1) (7.1)

and

sup
θ∈Θ
|Mux(γθ, σ; θ)−M(γθ, σ; θ)| = oP (1). (7.2)

The second equality is straightforward using expression (A.2) in Beirlant and Goegebeur

(2004) and Assumption 4, and the first one is decomposed in

sup
θ∈Θ
|Mn(γ̂θ, σ̂; θ)−Mn(γθ, σ; θ)| = oP (1) (7.3)

and

sup
θ∈Θ
|Mn(γθ, σ; θ)−Mux(γθ, σ; θ)| = oP (1). (7.4)

Equation (7.4) is a direct consequence of Assumption 2, while for (7.3), we write

Mn(γ̂θ, σ̂; θ)−Mn(γθ, σ; θ) =
1

n

m∑
i=1

1Zmi ≥0

(
1

γθ(θTXi)
+ 1

)
log

1 +
Zmi γθ(θTXi)

σ(Xi)

1 +
Zmi γ̂θ(θTXi)

σ̂(Xi)


− 1

n

m∑
i=1

1Zmi ≥0

(
1

γ̂θ(θTXi)
− 1

γθ(θTXi)

)
× log

(
1 +

Zm
i γ̂θ(θ

TXi)

σ̂(Xi)

)
(7.5)
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In decomposition (7.5), from Assumptions 3 and 4, the absolute value of the first sum on

the right-hand side is bounded by(
1

cγ
+ 1

)
sup
θ,x

∣∣∣∣ γ̂θ(θTx)

σ̂(x)
− γθ(θ

Tx)

σ(x)

∣∣∣∣ (7.6)

with probability tending to one. The supremum in (7.6) tends to zero from Assumptions

3 and 4, showing that the first sum in (7.5) tends to zero uniformly in θ. Similarly, the

second sum in (7.5) can be bounded by

sup
θ,x

∣∣∣∣ 1

γ̂θ(θTx)
− 1

γθ(θTx)

∣∣∣∣ 1

n

m∑
i=1

log (1 + 4Zm
i CγCσ) 1Zmi ≥0,

with the supremum tending to zero by Assumptions 3 and 4.

7.2 Proof of Theorem 3.2

By definition of θ̂, we have ∇θMn(γ̂θ̂, σ̂; θ̂) = 0. Therefore, from a first order Taylor expan-

sion,

∇θMn(γ̂θ0 , σ̂; θ0) = (θ0 − θ̂)T∇2
θMn(γ̂θ̃, σ̂; θ̃),

where θ̃ tends to θ0 due to the consistency of θ̂. Therefore, ∇2
θMn(γ̂θ̃, σ̂; θ̃) = Σ + oP (1)

using Assumptions 3, 8 and 12 ii).

Hence, the result of Theorem 3.2 follows if we show that n1/2∇θMn(γ̂θ0 , σ̂; θ0) =⇒

N (0, V ). To show this convergence, decompose

∇θMn(γ̂θ0 , σ̂; θ0) =
1

n

m∑
i=1

∇θγθ0(θ0, Xi)∂γl(γθ0(θ
T
0 Xi);

Zm
i

σ̂(Xi)
)1Zmi ≥0

+
1

n

m∑
i=1

{∇θγ̂θ0(θ0, Xi)−∇θγθ0(θ0, Xi)}∂γl(γθ0(θT0 Xi);
Zm
i

σ̂(Xi)
)1Zmi ≥0

+
1

n

m∑
i=1

{∇θγ̂θ0(θ0, Xi)−∇θγθ0(θ0, Xi)}{γ̂θ0(θT0 Xi)− γθ0(θT0 Xi)}

×∂2
γl(γ̃i;

Zm
i

σ̂(Xi)
)1Zmi ≥0

+
1

n

m∑
i=1

∇θγθ0(θ0, Xi){γ̂θ0(θT0 Xi)− γθ0(θT0 Xi)}

×∂2
γl(γ̃i;

Zm
i

σ̂(Xi)
)1Zmi ≥0

=: A1n + A2n + A3n + A4n, (7.7)

where γ̃i tends to γθ0(θ
T
0 Xi) due to the uniform consistency of γ̂θ0 . From the uniform

consistency rates of ∇θγ̂θ0 and γ̂θ0 , we get that A3n = oP (n−1/2).
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First, let’s treat the term A4n. It can be written

A4n =
1

n

m∑
i=1

∇θγθ0(θ0, Xi){γ̂θ0(θT0 Xi)− γθ0(θT0 Xi)}

×∂2
γl(γθ0(θ

T
0 Xi);

Zm
i

σ(Xi)
)1Zmi ≥0 + oP (n−1/2)

=
1

n

m∑
i=1

∇θγθ0(θ0, Xi){γ̂θ0(θT0 Xi)− γθ0(θT0 Xi)}

×∂2
γl(γθ0(θ

T
0 Xi);

Zm
i

σ(Xi)
)1Zmi ≥01log(1+Zmi )>(mpm)β

+
1

n

m∑
i=1

∇θγθ0(θ0, Xi){γ̂θ0(θT0 Xi)− γθ0(θT0 Xi)}

×∂2
γl(γθ0(θ

T
0 Xi);

Zm
i

σ(Xi)
)1Zmi ≥01log(1+Zmi )≤(mpm)β + oP (n−1/2)

= A41n + A42n + oP (n−1/2)

for some β > 0 (to be fixed further). Since E[log(1 + Y )] < +∞ (to treat the derivative of

order 3 of the log-likelihood function with respect to its first variable) and ∂21
γσl(γ̃i;

Zmi
σ̃i

) (σ̃i

lies between σ(Xi) and σ̂(Xi)) is uniformly bounded for n sufficiently large, the last term

oP (n−1/2) is uniform by the uniform consistencies of γ̂θ0 and σ̂(Xi)
−1. Next, for all ε > 0,

P ((mpm)−1/2n|A41n| > ε) ≤ C
ηn(mpm)1/2E[log(1 + Zm)1log(1+Zm)≥(mpm)β |Zm ≥ 0]

ε

≤ C ′
ηn(mpm)1/2(P(log(1 + Zm) > (mpm)β|Zm ≥ 0)(Km−1/Km)

ε

≤ C ′cn(mpm)1/4−β(Km−1)

ε
,

for some C,C ′ > 0, where cn → 0 and Km is a constant that can be chosen as large as needed

(E[(log(1+Zm))Km|Zm ≥ 0] <∞ for anyKm). As a consequence, (mpm)−1/2nA41n = oP (1)

and A41n = oP (n−1/2) since (m/n)pm = OP (1).

We then treat the term A42n. The function x → γ̂θ0(θ
T
0 x) − γθ0(θ

T
0 x) belongs to a

Donsker class with probability tending to one by Assumption 9 i) and is multiplied by the

function (x, z)→ ∂2
γl(γθ0(θ

T
0 x); (z−ux(m))/σ(x))10≤z−ux(m)≤exp((mpm)β)−1, m ∈ Z+

0 (the set

of positive integers). The first factor of this function ∂2
γl(γθ0(θ

T
0 x); (z − ux(m))/σ(x)) is

Donsker by Assumption 7 ii). For the second factor, we restrict to the class of functions

(x, z) → 1z≤ux(m)+exp((mpm)β)−1, m ∈ Z+
0 , for which 10≤z−ux(m) is a particular case. Since

ux(m) + exp((mpm)β)− 1 is an increasing function of m, we denote m1 = 1,m2, . . . ,mk =

∞ and divide P (Z ≤ uX(m) + exp((mpm)β) − 1) into k − 1 intervals of length O(ε2)
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(P (Z ≤ uX(mi) + exp((mipmi)
β) − 1) − P (Z ≤ uX(mi−1) + exp((mi−1pmi−1

)β) − 1) =

O(ε2), i = 2, . . . , k). The above class of functions is therefore Donsker with a bracketing

number equal to O(ε−2) (using the L2(P )−norm). As a consequence, the resulting class

H = {(x, z) → ∇θγθ0(θ0, x)(f 1
1 (x) − f 2

1 (x))f2(x, z) : f 1
1 , f

2
1 ∈ Fγ, f2 ∈ F∂2} is Donsker.

Applying Lemma 19.36 of van der Vaart (1998) for the functions hm, hm ∈ H, we have

√
m

[
1

m

m∑
i=1

hm(Xi, Zi)−
∫
hm(x, z)dPuX,Z(x, z)

]
= oP ((mpm)v/8−1/4p1/2−v/4

m )

uniformly in hm ∈ H and where Pu(x, z) is the joint distribution of (X,Z). Indeed, for

δ2 = o(m−1/2p
1/2
m ) = E[h2

m(X,Z)], we have

J(δ,H, L2(PuX,Z(x, z)))(1 +
J(δ,H, L2(PuX,Z(x, z))) ‖hm‖∞

δ2
√
m

)

= o((mpm)v/8−1/4p1/2−v/4
m ) +O(mβ−3/4+v/4pβ−1/4−v/4

m ),

where ‖ · ‖∞ denotes the infinite norm. Defining

A∗421n(x, z) = ∇θγθ0(θ0, x){γ̂θ0(θT0 x)− γθ0(θT0 x)}

×∂2
γl(γθ0(θ

T
0 x);

z − ux(m)

σ(x)
)1z≥ux(m)1log(1+z−ux(m))≤(mpm)β

and

A421n =
m

n

{
1

m

m∑
i=1

A∗421n(Xi, Zi)−
∫
A∗421n(x, z)dPuX,Z(x, z)

}
,

we easily obtain

n1/2A421n =

√
m√
n
oP ((mpm)v/8−1/4p1/2−v/4

m ) = oP ((mpm)v/8−1/4p−v/4m ) = oP (1).

To reduce n1/2A421n to the single term above, we used for example, Km = 2 and β = 1/4

but other choices are possible. It then remains for A42n = A421n + A422n,

A422n =
mpm
n

∫
∇θγθ0(θ0, x){γ̂θ0(θT0 x)− γθ0(θT0 x)}∂2

γl(γθ0(θ
T
0 x);w)dPX,W (x,w)

+oP (n−1/2),

where PX,W (x,w) corresponds to the joint distribution of (X,Zm/σ(X)) given Zm ≥ 0.

Expectation of A422n is zero, by Lemma 7.1. By first integrating with respect to the

distribution of Zm/σ(X) given X and Zm ≥ 0, the conditional mean (given X and

Zm ≥ 0) of ∂2
γl(γθ0(θ

T
0 X); Zm

σ(X)
) tends to a function which only depends on θT0 X such that
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E[∂2
γl(γθ0(θ

T
0 X); Zm

σ(X)
)|X,Zm ≥ 0] = Q(θT0 X) + o(n−1/2) (see expression (A.6) in Beirlant

and Goegebeur (2004)). As a consequence, the first term of A422n is

mpm
n

∫
∇θγθ0(θ0, x){γ̂θ0(θT0 x)− γθ0(θT0 x)}Q(θT0 x)dPX(x) + oP (n−1/2)

=
mpm
n

∫
{γ̂θ0(z)− γθ0(z)}Q(z)

∫
∇θγθ0(θ0, x)dPX|θT0 X(x|z)dPθT0 X(z) + oP (n−1/2),

where PX|θT0 X(·|·) and PθT0 X(·) denote the distributions of X given θT0 X and θT0 X respec-

tively. Next, using Assumption 10, A4n = oP (n−1/2).

To study A1n, first replace σ̂ by σ, leading to

A1n =
1

n

m∑
i=1

∇θγθ0(θ0, Xi)∂γl(γθ0(θ
T
0 Xi);

Zm
i

σ(Xi)
)1Zmi ≥0

+
1

n

m∑
i=1

[σ̂(Xi)
−1 − σ(Xi)

−1]∇θγθ0(θ0, Xi)∂
11
γσl(γθ0(θ

T
0 Xi);

Zm
i

σ(Xi)
)1Zmi ≥0

+
1

n

m∑
i=1

[σ̂(Xi)
−1 − σ(Xi)

−1]2

2
∇θγθ0(θ0, Xi)∂

12
γσl(γθ0(θ

T
0 Xi);

Zm
i

σ̃i
)1Zmi ≥0

=: A11n + A12n + A13n, (7.8)

where σ̃−1
i tends to σ(Xi)

−1 due to the uniform consistency of σ̂−1. We easily see that

A13n = oP (n−1/2) due to the uniform convergence rate of σ̂−1.

Next, we treat the term A12n. By Assumptions 7 i) and 11 (and similarly to the term

A42n),

gm : (x, z)→ (σ̂(x)−1−σ(x)−1)∇θγθ0(θ0, x)∂11
γσl(γθ0(θ

T
0 x); (z−ux(m))/σ(x))1z≥ux(m),m ∈ Z+

0

belongs to a Donsker class G with probability tending to one. Since this function is bounded

by a constant times 1z≥ux(m) supx |σ̂(x)−1−σ(x)−1|, its second moment is OP (η2
npm). Then,

A12n =
m

n

[
1

m

m∑
i=1

gm(Xi, Zi)−
∫
gm(x, z)dPuX,Z(x, z)

]
+
m

n
pm

∫
gm(x, z)dPX,Z(x, z)

= A121n +
m

n
P(Zm ≥ 0)A122n
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and A121n is treated similarly to A421n above. For A122n, we have

A122n =
1

n

m∑
j=1

∫
νn(x,Xj, Z

m
j )1Zmj ≥0∇θγθ0(θ0, x)∂11

γσl(γθ0(θ
T
0 x);

z − ux(m)

σ(x)
)dPX,Z(x, z)

+oP (n−1/2)

=
1

n

m∑
j=1

∫
νn(x,Xj, Z

m
j )1Zmj ≥0∇θγθ0(θ0, x)

×
∫ +∞

0

∂11
γσl(γθ0(θ

T
0 x);w)dPW |X(w|x)dPX(x) + oP (n−1/2)

=
1

n

m∑
j=1

ν(Xj, Z
m
j )1Zmj ≥0∇θγθ0(θ0, Xj)

×
∫ +∞

0

∂11
γσl(γθ0(θ

T
0 Xj);w)dPW |X(w|Xj)fX|Z≥uX(m)(Xj) + oP (n−1/2),

where PX(·) and PW |X(·|·) denote the distributions X and Zm/σ(X) given X = x (these

distributions are defined given Zm ≥ 0) respectively and the last equality follows from

Assumptions 11 and 12 i) and iii). Finally, using expression (A7) in Beirlant and Goegebeur

(2004)

A122n =
1

n

m∑
j=1

−ν(Xj, Z
m
j )1Zmj ≥0∇θγθ0(θ0, Xj)fX|Z≥uX(m)(Xj)σ(Xj)

(1 + γθ0(θ
T
0 Xj))(1 + 2γθ0(θ

T
0 Xj))

+ oP (n−1/2).

Since E[ν2(X,Zm)|Zm ≥ 0] is bounded as well as the other factors in the main term of the

above expression, the Chebichev inequality leads to A122n = OP (m1/2p
1/2
m /n) and the factor

(m/n)pm before A122n in A12n can be replaced by one so that A12n = A122n + oP (n−1/2).

Next, we compute the mean of each term of the sum in A11n. We obtain

pmE

[
∇θγθ0(θ0, Xi)E

[
∂γl

(
γθ0(θ

T
0 Xi);

Zm
i

σ(Xi)

)
|Xi, Z

m
i ≥ 0

]
|Zm

i ≥ 0

]
,

where

E

[
∂γl

(
γθ0(θ

T
0 Xi);

Zm
i

σ(Xi)

)
|Xi, Z

m
i ≥ 0

]
=

c(Xi)φ(uXi(m)|Xi)

γθ0(θ
T
0 Xi)(

1
γθ0 (θT0 Xi)

− ρ(Xi))(1 + 1
γθ0 (θT0 Xi))

− ρ(Xi))
+ o(n−1/2), (7.9)

from (A.4) in Beirlant and Goegebeur (2004). The sum of means of the terms in A11n is then

mpmo(n
−1/2). Finally, an application of the Lyapounov Theorem (E[(log(1 +Y ))3] < +∞)

leads to n1/2(A11n + A122n) =⇒ N (0, V ). More precisely, the Lyapounov ratio is of order
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(mpm)−1/2 and tends to 0 since mpm →∞. From this, n√
m

(A11n + A12n) has a variance

E[ηθ0(X,Z
m)ηTθ0(X,Z

m)]

=

∫ ∫
η̃θ0(x, y)η̃Tθ0(x, y)dFY |X(y|x)dF̃X(x)pm + oP (pm)

= E[η̃θ0(X, Y )η̃Tθ0(X, Y )]pm + oP (pm),

using Assumption 13 and where FY |X(y|x) is the Generalized Pareto cumulative distribution

function of Y given X. It results that n√
pmm

(A11n + A12n) =⇒ N (0, V ) and by Slutsky

Theorem, n1/2(A11n + A122n) =⇒ N (0, V ).

The term A2n is treated similarly to A12n and A42n. Using Assumptions 7 ii) and 9 ii),

lemma 19.36 of van der Vaart (1998) leads to

A2n =
mpm
n

∫
{∇θγ̂θ0(θ0, x)−∇θγθ0(θ0, x)}∂γl(γθ0(θT0 x);w)1w≥0dPX,W (x,w) + oP (n−1/2),

=
mpm
n

∫
{∇θγ̂θ0(θ0, x)−∇θγθ0(θ0, x)}

∫ +∞

0

∂γl(γθ0(θ
T
0 x);w)dPW |X(w|x)dPX(x)

+oP (n−1/2).

By expression 7.9 above, A2n = oP (n−1/2) and this finishes the proof.

Lemma 7.1 Assume that u→ mθ0(u) has a continuous derivative m′θ0 . Then

∇θmθ0(θ0, x) = (x− E[X|θT0 X])m′θ0(θ
T
0 x).

Proof. We have

mθ(θ
TX) = E

[
Y σ(X)−1|θTX

]
= E

[
E
[
Y σ(X)−1|X

]
|θTX

]
= E

[
E
[
Y σ(X)−1|θT0 X

]
|θTX

]
= E

[
mθ0(θ

T
0 X)|θTX

]
.

Let α(X, θ) = θT0 X − θTX. Define

ΓX(θ1, θ2) = E
[
mθ0(α(X, θ1) + θT2 X)|θT2 X

]
.

We have mθ(θ
TX) = Γ(θ, θ). Hence,

∇θmθ0(θ0, X) = ∇θ1ΓX(θ0, θ0) +∇θ2ΓX(θ0, θ0).
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Moreover,

∇θ1ΓX(θ0, θ0) = −m′θ0(θ
T
0 X)E

[
X|θT0 X

]
(7.10)

∇θ2ΓX(θ0, θ0) = m′θ0(θ
T
0 X)X. (7.11)

7.3 Discussion on the assumptions on the nonparametric estima-

tors

The consistency and asymptotic normality of θ̂ rely on consistency properties of the non-

parametric estimators γ̂θ (Assumptions 3 and 8) and specific conditions on γθ (Assumptions

9 and 10). We briefly show conditions under which they hold, in the case of the estimator

γ̂
(2)
θ but this can also be achieved similarly for other estimators (as suggested and explained

in Sections 2 and 3). For the purpose of simplicity, we consider the case where Yi given Xi,

i = 1, . . . , n, exactly follows a GPD. However, for the Zi that follow a distribution of the

type (2.9) in the present context with the assumptions described in Section 3, the Yi can

be replaced by the nonnegative Zi − uXi(m) and the resulting sums and integrals can be

treated as in the proofs developed for Theorems 3.1 and 3.2.

Let ηn = h2 +n−1/2h−1/2 log(n)1/2, where h is the smoothing parameter involved in γ̂
(2)
θ .

Since we assumed supx |σ̂(x) − σ(x)| = OP (ηn), we have γ̂
(2)
θ (u) = 1 −m∗θ(u)−1 + OP (ηn),

where the OP−rate holds uniformly in θ and u (with supθ,u γ
(2)
θ (u) < 1), and where

m∗θ(u) =
n∑
i=1

K
(
θTXi−u

h

)
∑n

j=1K
(
θTXj−u

h

) Yi
σ(Xi)

.

Assume that K is twice continuously differentiable with compact support and bounded

derivatives up to order 2. If we assume that infθ,u fθTX(u) > 0, where fθTX denotes the

density of θTX (alternatively, we can relax this assumption by using some trimming strategy

as in Härdle et al. (1993) or Delecroix et al. (2006)), supθ,u |m∗θ(u) − mθ(u)| = OP (ηn)

provided that E[Y 2
i /σ

2(Xi)] <∞ and that mθ(u) is twice continuously differentiable with

bounded derivatives (uniformly in θ and u). A proof of this assertion can be found in Lopez

et al. (2013) in a more general framework. This shows that Assumption 3 holds in this

case.

A proof for the convergence rate η′n = h2 + n−1/2h−3/2 log(n)1/2 of ∇θm
∗
θ0

(θ0, x) can be

found in Lopez et al. (2013) (uniformly in x); the uniform (in x and θ) convergence of
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∇j
θm
∗
θ(θ, x), j = 1, 2, is achieved provided that η′′n = h2 +n−1/2h−5/2 log(n)1/2 tends to zero

(also proved in this paper). This shows that the conditions of Assumptions 8 hold provided

that nh5 →∞ and nh8 → 0.

Let us now discuss Assumption 9. Let C1(M) = {f : R → R; ‖f‖∞ + ‖f ′‖∞ ≤ M} :

C1(M) is a Donsker class of functions from Corollary 2.7.2 in van der Vaart and Wellner

(1996). Using the notations of Assumption 9, if we take, for point i), Fγ = C1(M), then,

due to the uniform convergence of γ̂
(2)
θ0

(θT0 ·) and of its first order derivative (see Lopez et al.

(2013)), γ̂
(2)
θ0

(θT0 ·) belongs to Fγ with probability tending to one provided that γ
(2)
θ0

(θT0 ·)

does (with bounded m′θ0) and that M is taken large enough.

Moreover, it follows from Lemma 7.1 that

∇θmθ0(θ0, x) = (x− E[X|θT0 x])m′θ0(θ
T
0 x).

Recall that ∇θγθ0(θ0, x) = mθ0(θ
T
0 x)−2∇θmθ0(θ0, x) and that mθ0(θ

T
0 x) is bounded away

from 0. If we assume that m′θ0 and fθT0 X are C1, we see that ∇θmθ0(θ0, ·) belongs to the

class of functions

F∇ := xC1(M) + C1(M).

forM large enough. Using standard kernel estimators arguments and under some additional

assumptions, we can show the uniform consistency of ∇θm
∗
θ0

(θ0, x) and its first derivative.

This together with the uniform consistency of m∗θ0(θ
T
0 x) (and its first derivative) enables

∇θγ̂
(2)
θ0

(θ0, x) to belong to F∇ with probability tending to one. Next, observe that F∇ is

a Donsker class of functions, since C1(M) is, and using Examples 2.10.7 and 2.10.10 in

van der Vaart and Wellner (1996).
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7.4 Additional information on the data

Risk category Mean Median Std Kurtosis Max γUNC #

EPWS 159,190 61,270 739,600 345.41 15,034,330 0.662 479

DPA 149,630 62,215 310,130 29.61 1,933,100 0.776 39

BDSF 97,650 62,196 105,030 9.39 525,620 0.452 67

All 151,510 61,742 674,990 408.31 15,034,330 0.651 585

Table A1: Descriptive statistics of the empirical severity distribution. Losses are split

between risks sub-classifications (lines 1 to 3) and pooled together (line 4). The column

γUNC gives the unconditional maximum likelihood estimator of the GPD tail index.
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Figure A1: On the diagonal: empirical distribution of the considered covariates (from top

left to bottom right: PRF (in %), stock price (in e), Thomson Reuters index, long term

bond rate (in %) and unemployment rate (in %)). In the other cells: scatter plot of one

covariate on another, normalized between zero and one.
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ρij PRF Stock Price TR index LT bond Unemp.

PRF 1 0.692 0.383 -0.54 -0.433

Stock Price 0.692 1 0.665 -0.557 -0.73

TR index 0.383 0.665 1 -0.253 -0.299

LT bond -0.54 -0.557 -0.253 1 0.156

Unemp. -0.433 -0.73 -0.299 0.156 1

Loss size 0.128 0.078 0.037 -0.048 -0.072

Table A2: Correlation matrix between covariates. The last row displays the Spearman’s

correlation coefficient with the loss size.
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