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A B S T R A C T

Forestry around the world has been experiencing a paradigm shift towards more nature-oriented forest

management leading foresters to emulate natural disturbances by their silvicultural treatments.

Important characteristics of all disturbances are their size, severity, temporal and spatial distribution.

This study focuses on the spatial distribution of gaps in the forest canopy which are typically caused by

small-scale, low intensity disturbances.

The considerable spatial extent and irregular shape of canopy gaps are obvious obstacles to the

application of classical point pattern analysis. The approximation of objects by their centroids does not

lead to reasonable results, since the objects are at the same scale as the expected effects. By dividing the

study area in grid cells and analysing all cells covered by an object, the size and the shape of the objects is

accounted for. Nevertheless, both methods show undesirable effects. Thus we propose a new approach

using the boundary polygons of the objects and construct the adapted pair-correlation function from the

shortest distances between polygons.

The adapted pair-correlation function is presented using simulated data and mapped canopy gaps of a

near natural forest reserve. The results of our proposed method are compared to the grid-based approach

and the classical point pattern analysis. The presented method provides meaningful results and even

reveals the relationship of objects at short distances, which is not possible using the classical point

pattern analysis or the grid-based approach. With regard to the analysis of the spatial distribution of

canopy gaps, the adapted pair-correlation function proves to be a useful analytical tool.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Forestry around the world has been experiencing a paradigm
shift towards more nature-oriented forest management (Lähde
et al., 1999; Gamborg and Larsen, 2003; Fürst et al., 2007;
Puettmann and Ammer, 2007). Management objectives are
changing from the mere timber production to more diverse goals,
such as sustaining native biodiversity (Christensen and Emborg,
1996; Mitchell et al., 2002), providing recreational value (Nielsen
et al., 2007), improving stand stability (Emborg et al., 2000) and
utilisation of ‘biological rationalization’ (Gamborg and Larsen,
2003; Schütz, 2004). Gamborg and Larsen (2003) state that this
trend can be found under various terms e.g. ‘close-to-nature’,
‘nature-based silviculture’, and ‘ecosystem management’ in
Europe, North America, and in other forest regions of the world.
But the new silvicultural approaches have been motivated and
developed differently. Puettmann and Ammer (2007) for instance
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describe the differences between the North American and
European approach. However, both have in common that they
build on so-called natural forest dynamics and structure (Gamborg
and Larsen, 2003). While the disparities between natural
disturbance and silviculture can never be fully overcome, the
more the intensity, frequency, and spatial patterns created by the
silvicultural treatments resemble the characteristics of the natural
disturbance regime the narrower the gap (Palik et al., 2002). To
assess the size of the gap, one needs meaningful parameters to
characterise managed forests as well as comparable (near-) natural
forests.

This study focuses on small-scale, low intensity disturbance,
which is found under two dominant conditions: (i) in climatic
zones where large-scale disturbances are rare, such as in tropical or
temperate forests and (ii) in dispersed areas that have escaped
catastrophic disturbances, for example boreal forests which have
gone undisturbed by fires, blowdowns or lethal insect outbreaks
for long time periods. Nevertheless, all forests eventually undergo
small-scale gap dynamics if they escape large-scale disturbance
(Denslow and Diaz, 1990; Runkle, 1990; Coates and Burton, 1997).
Important characteristics of all disturbances are the size, severity,

mailto:rnuske@gwdg.de
http://www.sciencedirect.com/science/journal/03781127
http://dx.doi.org/10.1016/j.foreco.2009.09.050


R.S. Nuske et al. / Forest Ecology and Management 259 (2009) 107–116108
temporal and spatial distribution (Pickett and White, 1985; Coates
and Burton, 1997). The size, severity, and temporal distribution
have been investigated extensively (Runkle, 1982, 1990; Canham
et al., 1990; Pontailler et al., 1997; Tanaka and Nakashizuka, 1997;
Denslow et al., 1998; Meyer et al., 2003; Fujita et al., 2003; Drößler
and von Lüpke, 2005; Mountford et al., 2006; de Lima and de
Moura, 2008), whereas the spatial distribution of canopy gaps was
analysed only in few studies (Runkle and Yetter, 1987; Lawton and
Putz, 1988; Runkle, 1990; Frelich and Lorimer, 1991; Poorter et al.,
1994; van der Meer and Bongers, 1996; Trichon et al., 1998;
Hessburg et al., 1999; Salvador-van Eysenrode et al., 2000). The
wealth of studies on spatial distribution of canopy gaps was carried
out in tropical forests and mostly observed clustered canopy gaps.

Various methods were suggested to capture the spatial
distribution of canopy gaps. They range from landscape indices
to nearest neighbour distances and point processes. Landscape
indices as employed by Hessburg et al. (1999) rather measure the
diversity and intermixing of patch types than solely the spatial
distribution of patches. Landscape indices are, therefore, not useful
for studies focused on the analysis of the spatial distribution of
canopy gaps. Frelich and Lorimer (1991) investigated spatial
patterns of 46 plots in the Porcupine Mountains using Moran’s I to
test for spatial autocorrelation. If Moran’s I is calculated over a
range of scales the size of influence of an ecological process can be
estimated from the ranges with significant autocorrelation.
Detailed information on the spatial distribution cannot be gained.
Hemispherical photographs (Trichon et al., 1998) and nearest
neighbour distances (Poorter et al., 1994; van der Meer and
Bongers, 1996; Salvador-van Eysenrode et al., 2000) provide
information only about the immediate vicinity of the considered
point. Point pattern analysis in contrast provides a useful
framework for investigating the pattern at multiple scales by
considering the distances between all pairs of points. A set of tools
for analysing the spatial distribution of discrete points is available
(Ripley, 1981; Stoyan and Stoyan, 1994; Perry et al., 2002; Møller
and Waagepetersen, 2007; Illian et al., 2008). Second-order
statistics, such as Ripley’s K function or the pair-correlation
function, have proved to be particularly useful in ecological
research (Perry et al., 2006; Getzin et al., 2006; Atkinson et al.,
2007; Longuetaud et al., 2008; Picard et al., 2009). Lawton and Putz
(1988) used canopy gap centres as points and adopted Ripley’s K to
examine gap dispersion. This approximation may lead to valid
results if the size of objects is small in comparison with the spatial
scales investigated but may obscure the real spatial relationships
at scales in the same range as the size of objects (e.g. Simber-loff,
1979; Prentice and Werger, 1985). Accordingly, Lawton and Putz
(1988) mention that their results ‘‘must be interpreted with an eye
to the gap sizes’’. Furthermore, Wiegand et al. (2006) found that
point approximation produces misleading results if the object size
varies substantially. The size and irregular shape of canopy gaps
are obvious obstacles to the application of classical point pattern
analysis for exploring their spatial distribution.

A first approach to account for the size of objects while
investigating their spatial distribution was introduced by Simber-
loff (1979). He approximated the objects by circles and proposed
corrected statistics for nearest neighbour methods. Additionally,
two different approaches for extending the classical point process
analysis for objects of finite size were proposed. Prentice and
Werger (1985) suggested adapting the null model used for
hypothesis testing instead of the pattern itself in order to account
for the average size of the objects. Using non-overlapping circles
instead of points in the null models prevents from the false
conclusion objects are a minimum distance apart. This approach
corresponds to models with no or less than expected short
distances, meaning with a strict or soft minimum distance
between points, namely hard- and soft-core models (e.g. Cressie,
1991; Matérn, 1986). Wiegand et al. (2006) suggested a grid-based
approach to not only account for the size but also the shape of the
objects in the pattern. Following this approach, objects are
approximated by groups of cells in a categorical raster map.
Single objects may occupy several adjacent cells depending on
their size and shape. The resulting point pattern comprises all cell
centres being part of an object. The number of points is, therefore,
much higher than the number of objects. Null models for complete
spatial randomness are constructed by rotating and shifting the
objects in the raster map. Wiegand et al. (2006) found that their
approach does not produce undesirable and misleading pseudo
hard- and soft-core distances caused by the size and shape of the
objects. However, the approximation of the object’s size and shape
by a group of points makes it hard to interpret the pair-correlation
function at small scale. The distance between two objects is no
longer one discrete value but a distribution of distances measured
between all cells of one object and all cells of the other object.
Furthermore, even the distances between all cells belonging to one
object are counted. This leads to a huge number of small distances
masking the real interaction effect in this range. The range of scales
affected is controlled by the object sizes.

Therefore, we propose a new extension of the classical point
pattern analysis for objects of finite size and irregular shape. In our
approach, objects are characterised by their boundary polygon
instead of groups of cells in a categorical raster map or their
centroid. Only one distance is considered for each pair of objects
and calculated as the shortest distance between the borders of the
objects. This approach avoids pseudo hard- and soft-core effects
and is able to describe the real interaction effect at small scales. For
the construction of null models we also resort to random rotation
and positioning within the study area.

We chose the pair-correlation function, which has become a
popular tool for analysing mapped point patterns (e.g. Schurr et al.,
2004; Getzin et al., 2006; Perry et al., 2006; Li and Zhang, 2007).
The pair-correlation function g(r) is related to the derivative of the
widely used K-function (Ripley, 1976, 1981) and can be interpreted
as the expected number of points per unit area (intensity) at a
given distance r of an arbitrary point, divided by the intensity l of
the pattern (Stoyan and Stoyan, 1994). The pair-correlation
function is considered to be more powerful in detecting spatial
patterns across scales, because it indicates precisely the spatial
scales at which the null model is violated (Wiegand and Moloney,
2004; Perry et al., 2006). The pair-correlation function thus
correctly identifies the length of the interval, where the function
deviates from the null model, in contrast to Ripley’s K, which
confounds the effect at large distances with the effect of small
distances (memory effect) complicating its interpretation (Condit
et al., 2000; Schurr et al., 2004).

We first introduce our proposed adaptation of the classical
point pattern analysis and subsequently compare it to the pair-
correlation functions calculated using the point approximation and
the grid-based approach suggested by Wiegand et al. (2006). For
the comparison, a suite of three simulated datasets having a
regular, random, and clustered pattern, respectively, will be used.
A case study with data from a near natural beech forest
demonstrates the suitability of the proposed adaptation of the
pair-correlation function for the analysis of the spatial distribution
of canopy gaps.

2. Material and methods

2.1. Simulated data

To compare our proposed adaptation of the pair-correlation
function with the point approximation and the grid-based
approach, we generated three datasets with different spatial



Fig. 1. Simulated datasets: Within the 100 � 100 m study area the same set of polygons is laid out in a (a) regular, (b) random and (c) clustered arrangement. Placement of the

objects is based on (a) a regular pattern with 10 m spacing, (b) a Binomial process with intensity 0.01 m�2 and (c) a Matérn process with parameters v = 0.0006 m�2, R = 10 m

and g = 16.6. The centroids of the objects are marked with small dots.

Fig. 2. Canopy gaps of the core area of the forest nature reserve ‘‘Wiegelskammer’’

mapped from aerial photographs taken in summer 2001.
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distributions. The spatial distribution of the objects should be as
different as possible to test the proposed method. Thus we chose a
strictly regular, a random, and a clustered distribution of objects.
The study area is in all three cases 100 m � 100 m. Since the object
area percentage, the size distribution, and the shapes of the objects
have a strong influence on the performance of the methods, we
first generated a set of n = 100 objects and placed the identical set
of objects subsequently according to the designated spatial
distribution. The size distribution and shapes of the objects are
inspired by measurements of canopy gaps. The areas of the objects
range from 1.6 m2 to 57.7 m2 with an arithmetic mean of 9.7 m2

and a median of 5.5 m2. The total area of all objects is 969.7 m2,
meaning 9.7% of the study area is covered by objects.

For the first dataset, the objects were arranged in a strict regular
manner. A centric systematic grid was constructed, and the objects
of the set were then randomly rotated and randomly placed by
locating the centroids of the objects exactly on the matching
randomly numbered grid points, resulting in a regular arrange-
ment of objects with a constant distance of the centroids of 10 m
(Fig. 1a). For the second dataset with randomly distributed objects,
we generated a realisation of the Binomial process with intensity
0.01 m�2, meaning one point per 100 m2. The objects were again
randomly rotated and numbered and objects put on matching
points with their centroid as close to the point as possible without
overlapping other objects (Fig. 1b). The third dataset represents a
clustered configuration. Again, we first created a point pattern with
100 points and then put the randomly numbered objects on the
points. The point pattern was a realisation of Matérn’s cluster
process with v = 0.0006 m�2 or 6 cluster centres per ha, a
dispersion radius of R = 10 m and on average g = 16.6 points per
cluster (Fig. 1c). We used the R-package spatstat (Baddeley and
Turner, 2005) for simulating the Binomial process and Matérn’s
cluster process. The polygon datasets were finally converted to
categorical raster maps and the centroids of the polygons to points
for the purpose of the grid-based and the centroid-based point
pattern analysis, respectively.

2.2. Case study

The case study is based on data from the forest nature reserve
‘‘Wiegelskammer’’, which has been unmanaged for almost 40 years
and is now part of the National Park Eifel (Schulte, 2003). The forest
is located in the south-west of North Rhine-Westphalia (Germany)
on a north-facing slope at an altitude of about 400 m. The
subatlantic climate of the area is characterised by 750 mm
precipitation per year and an annual average temperature of
7.3 8C. (LÖLF, 1975). The bedrock of the region is mainly sandstone
with additional colluvial layers resulting in a skeletal and well
ventilated cambisol with a mull-like mor. (LÖLF, 1975). The forest
is made up of 150–175-year-old beech (Fagus sylvatica) with a few
sessile oaks (Quercus petraea) and is classified as a nutrient-poor
beech forest (Luzulo-Fagetum) (Schulte, 2003). The forest has one
dense main canopy layer with a height of about 30 m containing a
number of gaps, some of them with already established
regeneration.

The canopy gaps of the central 8 ha of the nature reserve were
mapped using aerial photographs and a digital stereoplotter. The
photographs were taken in summer 2001 with sufficient overlap to
provide a stereoscopic view of the canopy surface. We followed
Runkle’s (1992) gap definition and mapped all areas not covered by
trees of the main canopy layer as gaps (Fig. 2). Vegetation within
the gap was regarded as belonging to the main canopy if it was
higher than 2/3 of the stand height. The size of mapped canopy
gaps ranges from 5 to 650 m2, the lower limit being set as the
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minimum gap size for mapping. A total of n = 72 gaps were found,
which cover 5.5% of the study area.

Before performing a spatial analysis of this dataset, the
fundamental assumption of stationarity must be addressed. Illian
et al. (2008) recommend justifying stationarity based on non-
statistical arguments, since it is impossible to prove rigorously that
a specific point pattern is a sample from a stationary point process.
The study site is the core area of a forest nature reserve and thus
not influenced by silvicultural treatment or edge effects. The trees
of the main canopy layer are about the same height throughout the
study area. The study site being quite small is under the same
climatic conditions, and the soil does not vary considerably within
the area. Moreover, the pair-correlation function of this dataset
approaches one for larger distances (cf. Fig. 5), a typical property of
stationary point processes. Although natural environments are
rarely totally homogeneous, we consider the assumption as met.

2.3. Adaptation of the pair-correlation function

The pair-correlation function g(r) is based on object-to-object
distances and describes regularity and aggregation at a given
radius r. For a completely random point process (i.e. a homo-
geneous Poisson process), g(r) is equal to 1. If g(r) > 1, the inter-
object distances around r are relatively more frequent than they
would be under complete spatial randomness; if this is the case for
small values of r, it suggests clustering. Values of g(r) < 1 indicate
that the corresponding inter-object distances are relatively rare,
which suggests regularity. The pair-correlation function can take
any value between zero and infinity; as r increases, g(r) typically
approaches 1 (Stoyan and Stoyan, 1994).

We adapted the pair-correlation function, basically, by describ-
ing the objects by their boundary polygons instead of their centroids.
Accordingly, the distances between objects are calculated as length
of the shortest straight line between polygons. This new distance
concept implies that the estimation of the pair-correlation function
can no longer be based on the well-known estimator

ĝðrÞ ¼
Xn

i¼1

Xn

j¼1;i 6¼ j

vðri j � rÞ

l̂
2
2pr sðrÞ

; r>0 (1)

suggested by Penttinen et al. (1992), as it is the case for the point
approximation. Therefore, that estimator has to be appropriately
adapted to the modified distance concept. In Eq. (1) rij is the
distance between points i and j of the point pattern, l̂ the
estimated point intensity, s(r) an edge correction, and v(�) a kernel
function. The kernel function weights point pairs according to the
deviation of their inter-point distance rij from r. That way not only
point pairs with exactly rij = r are counted but also those with rij

close to r, leading to a smoother pair-correlation function.
In order to explain the implications of the polygon approach, we

first simplify (1) by ignoring the edge correction factor, that is
replacing s(r) by the area A of the study region, and using the
simple rectangular kernel function

vðxÞ ¼
1

2D
; if �D � x �D

0; otherwise

(

putting equal weights of 1/(2D) on all point pairs, whose inter-
point distance deviates not more than D from r. Using l̂ ¼ n=A as
an estimate of the overall intensity, we obtain the intuitive
estimator for point patterns

ĝðrÞ ¼ 1

n

Xn

i¼1

#f j : r �D � ri j � r þDg
l̂ 2pr 2D

; r>0;

where the function #{j: r �D � rij � r + D} counts the objects j

within the given distance interval. It shows that the estimated
pair-correlation function can simply be interpreted as the mean
ratio of the number of points observed within a small distance
interval [r �D, r + D] related to a given point i of the pattern
(numerator) and of the expected number of points within that
interval in case of a homogeneous Poisson pattern (denominator).

In the new polygon approach, we replace the numerator by the
number of polygons within the distance interval using the polygon
distance defined above. Accordingly, we should also replace the
denominator by the expected number of polygons within that
distance interval under a completely random process, but the latter
can no longer be estimated by 2pr2D times the number of objects
(polygons) per unit area, l̂, as it is done for the point
approximation. The expected number of polygons is difficult to
determine in a closed form and even distance dependent as will be
shown later by simulation of completely random polygon patterns.
It means that, under the polygon approach, the intuitive estimator,
as well as (1), yields a biased estimator ĝbiasedðrÞ of the pair-
correlation function, which has to be corrected by a distance
dependent correction factor. The latter will be derived by Monte
Carlo simulation of the null model.

Since the pair-correlation function is a density function, we
return to estimator (1) together with the frequently used and more
efficient Epanechnikov kernel (Silverman, 1986; Stoyan and
Stoyan, 1994)

vEðxÞ ¼
3

4d
1� x2

d2

� �
; if � d< x< d

0; otherwise

8<
:

and an appropriate edge correction, instead of using the intuitive
estimator. The Epanechnikov kernel is a weight function putting
maximal weight to point pairs with distance exactly equal to r but
also incorporating point pairs only roughly at distance r with
reduced weight. This weight falls to zero if the actual distance
between the points differs from r by at least d, the so-called
bandwidth parameter, which determines the degree of smooth-
ness of the function. We set d between 0:1=

ffiffiffiffi
l
p

and 0:2=
ffiffiffiffi
l
p

as
suggested by Penttinen et al. (1992) and Stoyan and Stoyan (1994).
Then the adapted pair-correlation function can be estimated as

ĝðrÞ ¼
Xn

i¼1

Xn

j¼1;i 6¼ j

vEðri j � rÞ

l̂
2
2pr pi j

; r>0 (2)

with pij being the edge correction replacing s(r) based on suggestions
by Ripley (1981). For each pair of objects i and j, a buffer with buffer
distance rij is constructed around the object i. The object j is then
weighted by the inverse of the proportion pij of the buffer perimeter
being within the study area. That way we account for the reduced
probability of finding objects close to the edge of the study area. We
emphasize that (2) is still biased for the polygon approach if the
kernel function is evaluated using the polygon distance and l̂
estimated by the number of polygons per unit area as described
above. Before we will develop the bias-correction factor, we describe
the Monte Carlo method for the simulation of the null model and the
construction of confidence envelopes.

To test for the significance of regularity or clustering within a
point process, as expressed by the g(r) function, it is necessary to
compare the results to an appropriate null model. Complete spatial
randomness usually serves as the null hypothesis for a univariate
point process. Confidence envelopes are computed using Monte
Carlo simulation. Each simulation generates an estimation of the
pair-correlation function. Approximate confidence envelopes to the
significance level a are calculated from the ðkþ 1Þa=2 and k� ððkþ
1ÞaÞ=ð2Þ þ 1 lowest value of ĝðrÞ taken from k simulations of the null
model (Besag and Diggle, 1977; Stoyan and Stoyan, 1994).

In this case, the 5th smallest and the 5th largest values of 199
randomisations provide a 95% confidence envelope. If the



Fig. 3. Pair-correlation functions of the simulated dataset with randomly

distributed objects (cf. Fig. 1a) in (a) uncorrected and (b) corrected form. Black

line: estimated function; white line: theoretical value of the function under the null

hypothesis of complete spatial randomness; grey area: 95% confidence envelope

under the null hypothesis, computed by Monte Carlo simulation using 199

replicates. Values g(r) < 1 suggest inhibition between points and values g(r) > 1

suggest clustering.
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estimated pair-correlation function of the investigated pattern has
some part outside of that envelope, it is judged to be a significant
deviation from the null model.

Following Wiegand et al. (2006), we constructed the null model
for complete spatial randomness by random rotation and
positioning of the original objects. Beginning with the largest
object, all randomly rotated objects are placed randomly inside the
study area until the smallest object is set. If the current object
overlaps with already placed objects, another attempt at placing
the object is made.

The simulation of the null model allows for the estimation of a
correction factor which removes the bias inherent in (2). If the
uncorrected estimator ĝbiasedðrÞ were unbiased for each distance r,
the mean of all simulated realisations of ĝbiasedðrÞ under the null
model would be close to one. Instead, according to Fig. 3a depicting
the 95% confidence envelope of ĝbiasedðrÞ under the null hypothesis,
we found that it is mostly above one and increases monotonously
for r! 0. This means that the expected number of polygons having
distance r to a given polygon i under the null model is larger than
for point patterns, where it can unbiasedly be estimated by
2pr2Dl̂. This can be explained by the size of the given polygon:
the closed curve connecting all points of distance r to that polygon
is longer than the circumference 2pr of a circle with radius r

around its centre point and increases the probability of encounter-
ing another polygon with distance r to the centre polygon. This
effect obviously becomes weaker for larger r, since the ratio of the
length of that curve and 2pr decreases.

The mean cðrÞ ¼ ¯̂gbiasedðrÞ of the simulated realisations of
ĝbiasedðrÞ under the null model is, by definition of ĝbiasedðrÞ, an
appropriate Monte Carlo estimator for the ratio

expected number of polyggons having distance r

to a given object under the null model

2pr2Dl̂

and serves as a bias correction factor in the final estimator

ĝðrÞ ¼ c�1ðrÞ
Xn

i¼1

Xn

j¼1;i 6¼ j

vEðri j � rÞ

l̂
2
2pr pi j

; r>0 (3)

for the pair-correlation function g(r) of the polygon approach. The
corrected pair-correlation function and its confidence envelope are
shown in Fig. 3b.

The calculation of the distances and the creation of the null
models were carried out using functionality of GEOS (Geometry
Engine Open Source) within PostGIS, which adds support for
geographic objects to the PostgreSQL database (PostGIS Develop-
ment Team, 2008). The calculation of the pair-correlation function
and the confidence envelopes were done with the statistical
software R (R Development Core Team, 2008).

The grid-based estimation of the pair-correlation function was
carried out using the software Programita developed by Wiegand
et al. (2006). This estimation of the pair-correlation function faces
the same problem as the polygon approach. The expected number
of cells having distance r to a given cell can also not be estimated
simply via the overall density l̂. Therefore, we applied here as well
the previously described correction by a distance dependent factor
derived from Monte Carlo simulation of the null model.

The estimation of the pair-correlation function based on the
point approximation was done with the R-package spatstat
(Baddeley and Turner, 2005).

3. Results

3.1. Simulated data

The estimated pair-correlation functions of the simulated
datasets show the typical shapes of random, regular, and clustered
distributions of objects (cf. Fig. 4). The pair-correlation function of
the randomly distributed objects estimated by means of the
polygon-based approach is, as expected, over all scales close to one
and thus indicates a random pattern (Fig. 4b). The grid-based pair-
correlation function does not deviate from the confidence
envelopes either. Only the centroid-based pair-correlation func-
tion shows a typical soft-core effect caused by the object sizes and
departs from the confidence envelopes up to 2.5 m.

The regular pattern is picked up very well by all three methods
(Fig. 4a) and the pair-correlation functions show accumulations of
certain distances while other distances have obviously less counts
than expected under complete spatial randomness. The pair-
correlation function using the centroids shows a first maximum at
approximately 10 m. This is caused by the distance between
centroids of two adjacent objects, which is exactly 10 m. The next
peak is at 14 m reflecting the distance to the nearest neighbours in
diagonal direction in the square grid. The last maximum with a
double peak has its highest point at 21.5 m and represents the
next but one object in a straight line and the next object in a
diagonal direction with a more acute angle. The pair-correlation
functions of the other two methods display accumulations at
corresponding scales but with lower and wider peaks. The
polygon-based pair-correlation function also shows a shift of
the peaks towards smaller scales.



Fig. 4. Pair-correlation function of the simulated datasets having (a) regular, (b) random, and (c) clustered objects using the (1) point approximation, (2) grid-based and (3)

polygon-based approach. Black line: estimated function; white line: theoretical value of the function under the null hypothesis of complete spatial randomness; grey area:

95% confidence envelope under the null hypothesis, computed by Monte Carlo simulation using 199 replicates. Values g(r) < 1 suggest inhibition between points and values

g(r) > 1 suggest clustering.
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In Fig. 4c, the pair-correlation functions of all three methods
display an accumulation of short distances, while long distances
are rare, as expected for a clustered configuration. Only the
centroid-based estimation of the pair-correlation function starts
with less distances than expected under complete spatial
randomness, which is again a depiction of a soft-core effect. The
positive deviation from the confidence envelopes reaches up to one
and a half times the cluster radius for the centroid- and grid-based
estimation of the pair-correlation function, whereas the polygon-
based estimation deviates only up to the order of the cluster radius
from the confidence envelope.

The differences arising from the different approaches to
calculate the pair-correlation function can be clearly seen in
Fig. 4. The pair-correlation function based on the point
approximation suggests a soft-core distance of 4.5 m (Fig. 4,
1b and c) which is not pointed out by the other two methods. The
grid-based approach produces empirical pair-correlation func-
tions close to one for very small scales for all three simulated
datasets. The interaction effect at small scales, inhibition for the
regular and attraction for the aggregated pattern, becomes only
visible in the further shape of the curve, thus obscuring the real
small-scale effect. The peaks in the pair-correlation function of
the regularly distributed objects are varyingly distinct in the
different methods and, with the polygon approach, shifted
towards smaller scales.

3.2. Case study

The spatial distribution of the canopy gaps of the forest nature
reserve ‘‘Wiegelskammer’’ shows no large deviations from the
confidence envelopes and thus from complete spatial randomness
(Fig. 5). The grid-based estimator does not show any deviations
from the confidence envelopes and the point approximation and
the polygon-based approach have only two minor deviations.
Those small but nominally significant departures from a random
distribution occur in the polygon-based approach at the scales
from 9.8 to 12.3 m and less pronounced from 15.7 to 18.2 m. The
pair-correlation function using the point approximation deviates
from the confidence envelopes at the scales from 16.1 to 17.8 m
and more clearly from 25.3 to 32.2 m indicating an accumulation of
the corresponding distances. The function values of the grid-based
estimator stay very close to the reference value one for scales up to
23 m. The curve then stays above the reference line for the range
from 23 to 46 m having a peak at 30 m. The pair-correlation
function using the point approximation shows a soft-core effect,
whereas the function values of the polygon-based estimator are



Fig. 5. Pair-correlation function of the canopy gaps of the forest nature reserve

‘‘Wiegelskammer’’ using the point approximation (centroid), the grid-based (grid)

and the polygon-based approach (polygon). Black line: estimated function; white

line: theoretical value of the function under the null hypothesis of complete spatial

randomness; grey area: 95% confidence envelope under the null hypothesis,

computed by Monte Carlo simulation using 199 replicates. Values g(r) < 1 suggest

inhibition between points and values g(r) > 1 suggest clustering.
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continuously larger than one for distances up to 29 m but mostly
without significant differences. These distances are more frequent
than expected under complete spatial randomness and suggest a
trend towards clustering.

4. Discussion

First we cover the influence of the different methods on the
pair-correlation function using simulated data with a random,
regular, or clustered distribution. Subsequently, we address the
suitability of the methods presented for analysing the spatial
distribution of canopy gaps.

4.1. Comparison of methods

The different representation of objects implies different
approaches to the estimation of the pair-correlation function.
The pair-correlation function based on the point approximation
describes the distribution of distances between the centroids of the
considered objects. The grid approach dissects the objects in
individual cells and calculates the distances between all cells of the
objects. The pair-correlation function estimated with the polygon-
based approach provides information about the distribution of
distances from the boundary of one object to the boundary of
another object and hence information about the space between the
objects. The different approaches affect the shape of the pair-
correlation function considerably as can be seen in Fig. 4.

The grid-based estimation of the pair-correlation function has a
lower amplitude, deviates less but still clearly from the confidence
envelopes and peaks are spread out over a larger range. This is
because the distance of two objects is measured between the
individual cells of the two objects. These distances are scattered
around the corresponding distance between the centroids. There-
fore, the range where distances are more frequent than under
complete spatial randomness is not as sharply delimited as with
the centroid-based distance measure. Thus, the effect of the spatial
configuration of the objects is less clearly visible.

The differences between the three approaches are particularly
recognisable at small scales. The grid-based approach produces
function values close to one at very small scales and approaches
one for r! 0. The length of this effect is about the same size as the
diameter of the larger objects of the simulated patterns, which is
about 7 m. The function values close to reference value one at small
scales are caused by the cell representation of objects. Since both
the null models and the original data have a nearly equal large
number of short distances, the pair-correlation function takes
values close to one. The large numbers of short distances are
mainly caused by distances between cells of the same object, since
the grid-based approach considers distances between all cells.
These distances are obviously short and range between the size of a
cell and the maximum extension of the objects. The obfuscating
effect of this behaviour is obvious in the regular and the aggregated
patterns (cf. Fig. 4a and c).

The pair-correlation functions estimated based on the centroids
of the objects have at small scales usually function values
considerably below the confidence envelopes. These low values
are caused by the fact that objects do not overlap, so that their
centroids have a minimum distance according to the size of the
two objects. This is the so-called soft-core distance, which should
not be detected in the simulated data, since there is no such effect
at the scale of the objects in the simulated dataset. The point
approximation as well as the grid-based approach is affected by
the size of the objects, although in different ways. If the size of the
objects has no meaning in the research question at hand, the size
effect leads to difficulties while interpreting the pair-correlation
function, because the effect caused by object sizes interferes with
the effect of the spatial distribution of the objects of interest.

Using the adapted pair-correlation function of the polygon
approach, no specific function values are expected at small scales.
There can be high values in case of clustered objects as well as very
small values or zero detecting a segregation effect at small scales.

Each pair of objects has the same influence on the pair-
correlation function in the point- and polygon-based pattern
analysis, since there is only one unambiguously identifiable
distance. But the grid-based estimation of the pair-correlation
function takes several distances into account for every pair of



R.S. Nuske et al. / Forest Ecology and Management 259 (2009) 107–116114
objects. Hence, large objects contribute more distances to the
estimation of the pair-correlation function than smaller objects.
The influence of the individual objects on the pair-correlation
function is not the same but rather weighted by their sizes. This is
the so-called weighting effect (cf. Wiegand et al., 2006). As a
consequence, a few large, regularly distributed objects can for
example overpower the effect of a large number of smaller,
clustered objects resulting in a pair-correlation function showing,
unexpectedly, a regular pattern.

Besides the estimation of the pair-correlation function, it is
important to choose an appropriate null model for hypotheses
testing. Therefore, null models representing completely randomly
distributed objects are generated for each approach. A comparison
of these null models is not easily available, since they are
constructed differently. The null models for the grid- and polygon-
based approach are generated by relocation of the original objects,
whereas for the centroid-based analysis a homogeneous Poisson
process was used to generate null models. Strictly speaking, the
usage of a Poisson process for objects approximated by points gives
a wrong impression of the distribution of the objects, since the
Poisson process allows points to be arbitrarily close to each other,
which should not be possible, if the represented objects are not
allowed to overlap. This leads to deviations from the confidence
envelopes at small scales showing an undesirable soft-core effect
which is only caused by the size of the objects. A way to account for
this effect would be to use soft-core models (cf. Matérn, 1986;
Prentice and Werger, 1985; Cressie, 1991) as null models or to
construct null models with circular objects of the same size,
although these methods do not allow for irregular shapes of the
objects. The grid- and the polygon-based approach on the other
hand consider the soft-core effect implicitly.

The polygon approach as well as the grid-based approach are
applicable only together with the Monte Carlo simulation of the
null model, needed to construct the distant dependent correction
factors for the inappropriate estimation of the expected number of
objects under complete spatial randomness in a distance interval
via the intensity of object centroids, l̂. That way the expected
number of polygons under complete spatial randomness within a
distance interval can be estimated in accordance with the intuitive
estimator of the pair-correlation function and the pair-correlation
function in its original definition in the theory of point processes.

All three approaches show the essential characteristics of the
simulated patterns. Thus, they are all capable of describing the main
trend of the pattern. Nevertheless, the issues described above, which
are particularly noticeable at small scales, have to be considered
while choosing an appropriate method and interpreting the results.
While analysing patterns with small objects and large distances the
differences between the methods are less pronounced, but the
differences have a noticeable impact on the outcome of the analysis
if patterns of large objects with small inter-object distances are
studied. In the former case, it might be advisable to use the point
approximation, since the method is less computationally intensive
and implemented in common statistical software. However, the
bigger the objects in relation to the inter-object distances the more
inappropriate is the point approximation. Even in the extreme case
where objects are almost touching, the pair-correlation function
using the point approximation would still report almost exclusively
soft-core distances. This becomes even more problematic if the
pattern has a large range of object sizes causing the soft-core
distances and spatial effects to become indistinct.

To avoid the above mentioned issues arising from the use of
classical point pattern analysis, one should revert to other methods
to analyse patterns of large objects with an irregular shape and
small inter-object distances. Since the grid-based approach
considers distances for all cells of an object and even distances
between cells of the same object, it emphasises large objects. Thus
larger objects have a greater influence on the corresponding pair-
correlation function. If this weighting effect is not wanted, it poses
an obstacle to the interpretation of the pair-correlation function,
because it hides spatial effects occurring at small scales and blurs
the true range of effects. Furthermore, the size and interaction
influences are difficult to separate while interpreting the pair-
correlation function. Particularly problematic are long and small
objects, because they influence a large range of scales. The
polygon-based method eliminates the size of objects, so that
the pair-correlation function for small scales is only influenced by
the spatial distribution of objects. Using the polygon-based
method is recommendable for patterns with a large range of
object sizes or if one is interested in effects at scales smaller than
the average diameter of the objects.

4.2. Case study

The fall of a tree generates a gap of at least the size of its crown,
which, for old beech trees, is about 12 m in diameter (Nagel, 1999).
Furthermore, the investigated forest has also canopy gaps with a
length of up to 50 m, while the distances between the gaps
measure sometimes just a few meters. Thus, canopy gaps are large
objects in comparison to the inter-object distances and the
considered scales. Considering this constellation, the point
approximation would be an oversimplification having the already
discussed issues. The two main effects, the shift of the peaks
towards larger scales and the soft-core effect, can clearly be seen in
Fig. 5. The grid-based estimator is, at small scales, affected by the
large number of small distances caused by the cell representation
of the objects. Since canopy gaps are relatively large and irregularly
shaped objects, this effect influences a range of scales up to 20 m.
For the same reason the weighting effect leads to a very wide peak
instead of number of narrow ones. Since effects in the magnitude of
the size of gaps must be expected, the application of the grid
approach is not advisable in this case. Thus, the estimation of the
pair-correlation function using the polygon-based approach seems
to be the appropriate choice for analysing the distribution of
canopy gaps of the natural forest reserve ‘‘Wiegelskammer’’.

The canopy layer is made up of the crowns of individual trees
and gaps in the canopy arise through the death or fall of a tree or
major parts of a tree crown. Canopy gaps, therefore, can only be
bordered by tree crowns or parts thereof (e.g. a large branch). Since
crowns have a non-negligible diameter, we would have expected
to find this distance as a soft-core effect in the pair-correlation
function. But this is not the case; the pair-correlation function
shows rather an accumulation of short distances. This suggests
that canopy gaps are often separated by single large branches or by
trees with elongated and very narrow crowns. The peak of the pair-
correlation function at 11 m represents a large number of distances
of this magnitude meaning many gaps are about 11 m apart, which
is about the crown diameter of a large beech tree (Nagel, 1999).

The pair-correlation function showing no considerable devia-
tion from the confidence envelopes suggests that the canopy gaps
of the researched forest are at least approximately randomly
distributed. This agrees with other studies in temperate forests
(Runkle and Yetter, 1987; Runkle, 1990; Frelich and Lorimer,
1991). Tropical forests in contrast seem to show mostly clustered
canopy gap patterns. Whether these most different patterns are
caused by different single tree stability or topographic or edaphic
factors needs further research (Fujita et al., 2003; de Lima and de
Moura, 2008).

5. Conclusions

The comparison of the methods to estimate a pair-correlation
function using simulated datasets shows that all three methods
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have the ability to show the most important characteristics of the
spatial distribution of objects of finite size and irregular shape.
However, the pair-correlation functions estimated by the different
methods vary considerably in their explanatory power and
suitability. The differences between the methods we pointed out
are caused by the different construction of the estimators, namely
the dissimilar distance concepts. The shift of peaks or the
distracting shape of the curves at small scales may be of varying
size depending on the object sizes but will nevertheless remain.
The choice of an appropriate approach should be based on the
characteristics of the investigated pattern, particularly the size of
the objects in relation to the inter-object distances, the object
shapes and the present research question.

Depending on the question at hand a weighting of the objects by
their size might be needed or obstructive. The grid-based approach
does weight objects by their size, larger objects, thus, have more
influence on the pair-correlation function. The polygon-based pair-
correlation function, in contrast, describes the spatial distribution
of objects without being influenced by their size. This facilitates the
investigation of the space between the objects without mixing size
and interaction effects. According to that characterization, a final
and generally valid ranking of the three approaches is not possible.

With regard to the analysis of the spatial distribution of canopy
gaps, where no weighting is wanted, the polygon-based approach
provides meaningful results and even reveals the interaction of
objects at small scales, which was not possible using the point
approximation or the grid-based approach. Hence, the adapted
pair-correlation function proves to be a useful analytical tool for
analysing the spatial distribution of canopy gaps.
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Nagel, J., 1999. Konzeptionelle Überlegungen zum schrittweisen Aufbau eines
waldwachstumskundlichen Simulationssystems für Nordwestdeutschland.
Sauerländer, Frankfurt a.M.

Nielsen, A., Olsen, S., Lundhede, T., 2007. An economic valuation of the recreational
benefits associated with nature-based forest management practices. Landsc.
Urban Plan. 80, 63–71.

Palik, B., Mitchell, R., Hiers, J., 2002. Modeling silviculture after natural disturbance
to sustain biodiversity in the longleaf pine (Pinus palustris) ecosystem: balan-
cing complexity and implementation. For. Ecol. Manage. 155, 347–356.

Penttinen, A., Stoyan, D., Henttonen, H., 1992. Marked point-processes in forest
statistics. For. Sci. 38, 806–824.

Perry, J.N., Liebhold, A.M., Rosenberg, M.S., Dungan, J., Miriti, M., Jakomulska, A.,
Citron-Pousty, S., 2002. Illustrations and guidelines for selecting statistical
methods for quantifying spatial pattern in ecological data. Ecography 25,
578–600.

Perry, G., Miller, B., Enright, N., 2006. A comparison of methods for the
statistical analysis of spatial point patterns in plant ecology. Plant Ecol.
187, 59–82.

Picard, N., Bar-Hen, A., Mortier, F., Chadoeuf, J., 2009. Understanding the dynamics
of an undisturbed tropical rain forest from the spatial pattern of trees. J. Ecol. 97,
97–108.

Pickett, S., White, P., 1985. The Ecology of Natural Disturbance and Patch Dynamics.
Academic Press, San Diego.

Pontailler, J., Faille, A., Lemee, G., 1997. Storms drive successional dynamics in
natural forests: a case study in Fontainebleau forest (France). For. Ecol. Manage.
98, 1–15.

Poorter, L., Jans, L., Bongers, E., Vanrompaey, R., 1994. Spatial-distribution of gaps
along 3 catenas in the moist forest of Tai National-Park, Ivory-Coast. J. Trop.
Ecol. 10, 385–398.

PostGIS Development Team, 2008. PostGIS. http://postgis.refractions.net.
Prentice, I., Werger, M., 1985. Clump spacing in a desert dwarf shrub community.

Vegetatio 63, 133–139.
Puettmann, K., Ammer, C., 2007. Trends in North American and European regen-

eration research under the ecosystem management paradigm. Eur. J. For. Res.
126, 1–9.

R Development Core Team, 2008. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. http://
www.r-project.org.

Ripley, B.D., 1976. 2nd-order analysis of stationary point processes. J. Appl. Probab.
13, 255–266.

Ripley, B.D., 1981. Spatial Statistics. Wiley, New York.
Runkle, J., 1982. Patterns of disturbance in some old-growth mesic forests of Eastern

North-America. Ecology 63, 1533–1546.
Runkle, J., 1990. Gap dynamics in an Ohio Acer-Fagus forest and speculations on the

geography of disturbance. Can. J. For. Res. 20, 632–641.

http://postgis.refractions.net/
http://www.r-project.org/
http://www.r-project.org/


R.S. Nuske et al. / Forest Ecology and Management 259 (2009) 107–116116
Runkle, J.R., 1992. Guidelines and Sample Protocol for Sampling Forest Gaps. U.S. Dept.
of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.

Runkle, J., Yetter, T., 1987. Treefalls revisited: gap dynamics in the Southern
Appalachians. Ecology 68, 417–424.

Salvador-van Eysenrode, D., Bogaert, J., Van Hecke, P., Impens, I., 2000. Forest
canopy perforation in time and space in Amazonian Ecuador. Acta Oecol. 21,
285–291.

Schulte, U., 2003. Waldökologische Strukturveränderungen. LÖBF-Mitteilungen 28.
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