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a b s t r a c t

Double sampling for stratification is a sampling design that is widely used for forest and other resource
inventories in forest ecosystems. It is shown that this sampling design can be adapted to repeated inven-
tories including estimators of net change, even for non-proportional allocation of second-phase units
and periodically updated stratification. The method accounts for the transition of sampling units among
ey words:
ontinuous forest inventory
wo-phase sampling for stratification
nfinite population approach

ulti-purpose optimization

strata. Moreover, it may outperform classical single phase designs if sample plots are appropriately allo-
cated to strata with respect to predefined target variables, here: volume per ha of bigger trees of the main
tree species. The latter requires a clear definition of predominant aims of the inventory and an appropri-
ate optimization method. Access to inventory data of a state forest district from two occasions allowed
for an optimization of the design based on the first occasion, which proved to be still advantageous on the
following occasion. Estimators are developed under the infinite population approach, which is generally

e for
deemed more appropriat

. Introduction

Stratified sampling and in particular double or 2-phase sampling
or stratification (2SS) are basic techniques treated in all standard
extbooks on theory and application of sampling techniques (e.g.
ochran, 1977; Thompson, 1992; Särndal et al., 2003), especially

n those focussing on forest inventory designs (de Vries, 1986;
chreuder et al., 1993; Gregoire and Valentine, 2008; Mandallaz,
008). It is mostly used together with remote sensing techniques
aerial photographs, satellite images), which usually allow for
heap selection and stratification of first-phase units. 2SS can easily
e extended to multiphase designs for stratification. A comprehen-
ive collection of formulas and examples for two, three and four
hases can be found in Frayer (1979). Often, double sampling is
sed in kind of a degenerate version where a population is split
nto only two strata, one that consists of units which have only
ero values and another one with values assumed non-zero (Singh
nd Singh, 1965b), e.g. non-forest and forest units.
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el.: +49 551 393450; fax: +49 551 393465.
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forest inventories.
© 2010 Elsevier B.V. All rights reserved.

There are numerous applications of 2SS in forest inventory, pre-
dominantly in countries with large forest areas such as Canada, the
United States or the former Soviet Union (Gabler and Schadauer,
2007). In the United States, the Forest Inventory and Analysis (FIA)
programme is conducted since the 1930s, where about 2,500,000
photo-interpreted points and 120,000 fixed area plots on forested
land were measured to monitor forest resources (Williams, 2001).
On a smaller but still large scale are the county timber inventories
in the State of Washington, which were used by Mac Lean (1972)
to compare the efficiency of different stratifications and allocations
of sampling units.

Whereas 2SS was already well known much earlier, Singh and
Singh (1965a) and Rao (1973) published subsampling procedures
(second phase) that are mathematically sound and free of the incon-
sistency which arose from the assumption that the second-phase
sample size nh within stratum h is fixed, an assumption that was
usually made in earlier literature but contradicted the sampling
procedure as carried out in practice. 2SS can also be used on suc-
cessive occasions, which is an interesting application from the
viewpoint of forest inventory, because it allows for Sampling with

Partial Replacement (SPR) within the strata. Pure SPR was intro-
duced for Continuous Forest Inventory (CFI) by Ware and Cunia
(1962). Bickford et al. (1963) proposed a combination of a two occa-
sions SPR and 2SS with a new and independent first-phase selection
on the second occasion, but did not provide an estimator of change.

dx.doi.org/10.1016/j.foreco.2010.08.035
http://www.sciencedirect.com/science/journal/03781127
http://www.elsevier.com/locate/foreco
mailto:jsaboro@gwdg.de
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Table 1
L = 8 Strata of first-phase sample plots (DEC: deciduous trees dominating, CON: coniferous trees dominating).

Age classes
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erroneous interpretation either in 1999 or in 2008. Such errors may
particularly occur if plot centres are not exactly located in the aerial
image.

Table 2
Second-phase sampling proportions �h,norm per stratum applied in 1999, and opti-
mum proportions based on variance estimates from the 1999 data, normalized
with respect to n = 1000. For a total second-phase sample size of n = 1644 choose
�h = nh/n′

h
= �h,norm · 1.644, where n′

h
is the number of first-phase units in stratum

h.

Age classes

0–40 >40–80 >80–120 >120
0–40

Dominating species group Deciduous DEC1 (h = 1)
Coniferous CON1 (h = 5

t was not until 1994 that Scott and Köhl (1994) extended that
esign to three occasions and the estimation of net changes. Singh
nd Singh (1965b) also used 2SS on successive occasions for the
stimation of coconut production in Assam. They assumed a static
tratification, i.e. no shifts of units from one stratum to another in
he course of time, as well as no addition of units to or removal of
nits from a stratum, a rather unrealistic assumption in the case of
FIs.

Such changes of the structure of a population with respect to the
trata are a crucial point if 2SS is applied on two or several occasions.
hat problem was also mentioned by Scott and Köhl (1994), who
oted that the effectiveness of stratification can be degraded when
he new second-phase sample on the second occasion is selected
rom the first-phase sample of the first occasion. They suggested
n alternative method based on an independent new first-phase
ample on occasion 2 with succeeding stratification of both the
ew first-phase sample and, additionally, all second-phase units
easured at occasion 1. Additionally, they assume proportional

llocation of the second-phase sample, what is optimal if variances
ithin strata are equal and costs are not considered.

Based on the preceding considerations, we propose a 2SS design
or repeated inventories which allows for non-proportional allo-
ation of second-phase units and thereby for optimization of
econd-phase sampling proportions. The stratification of first-
hase units chosen on the first occasion can be updated on every
ew occasion. We will show how one can solve the problem of
hifting units mentioned above, and we will derive unbiased esti-
ators of means and their variances under the infinite population

pproach. We do not consider SPR within strata. The method is
emonstrated using data from a forest district inventory, but it is
ot restricted to forest inventories.

. Data base

In 1999 a 2SS design was applied in the Saupark State Forest dis-
rict of Lower Saxony (Germany) using first-phase sample points
n a 100 m × 100 m grid intersected with the forest area. At each
rid point a virtual ground plot of 13 m radius was assigned to one
f L = 8 strata (Table 1) by interpretation of CIR aerial images. The
trata are defined by age class (4 intervals of 40 years) and dominat-
ng tree species group (two classes: deciduous and coniferous). The
dea behind that stratification was that age and species groups are
losely related to volume, and 4 age classes as well as 2 dominating
ree species groups can easily be distinguished by interpretation
f CIR images at low costs. The number of age strata should be
ow, because shifts of sampling units from one stratum to another

ere expected to be a source of trouble in repeated inventories and
hould be kept on a low level. Within the usual inventory period
f 10 years, roughly 25% of the sampling units of a stratum can be
xpected to move naturally to the next older 40-year age class or
o the youngest. Last but not least, strata should be large, because
n efficient allocation of second-phase ground plots derived from

urrent inventory data should at least approximately hold for the
epeated inventory. That requires that variances within strata do
ot change remarkably within one inventory period. The afore-
entioned arguments are to be considered particularly in more

xtensive inventories using a much larger number of strata.
>40–80 >80–120 >120

DEC2 (h = 2) DEC3 (h = 3) DEC4 (h = 4)
CON2 (h = 6) CON3 (h = 7) CON4 (h = 8)

Here and in the following, “volume” means volume of standing,
alive trees regarding wood of at least 7 cm diameter at breast height
(dbh).

In the second phase, a predefined proportion of first-phase
units (grid points) was selected, where 2 concentric circles of 13 m
(dbh ≥ 30 cm) and 6 m (7 cm ≤ dbh < 30 cm) were established as
terrestrial sample plots. Second-phase sample plots were system-
atically selected from a one-dimensional list of all first-phase units
in a stratum. We note that the 2SS method described in this article
will instead assume simple random sampling in the second phase
and uniform point sampling in the first phase.

The proportions of second-phase sample sizes within strata
related to the respective first-phase sample sizes tend to be larger in
higher age classes (Table 2a) and are larger for strata dominated by
coniferous trees. As will be shown later, this was not optimal for the
estimation of volume per hectare of higher diameter classes of the
main tree species. The total number of terrestrial plots or second-
phase units was 1644. In Table 2 we report proportions normalized
to a second-phase sample size of 1000, because it allows to adapt
those proportions easily to other second-phase sample sizes. If e.g.
higher precision of estimates is required, the second-phase sam-
ple size can be increased leading to proportionally larger sampling
proportions.

End of 2008, 9 years after the first inventory, all second-phase
sampling units of the first occasion were measured a second time.
We note that the first-phase stratification was not updated before
remeasurement on that second occasion. Only for the purpose of
this study, the first-phase stratification was updated later in January
2010 based on CIR images from September 2008. In the following
chapters, we will refer to 2008 as the year of the second occa-
sion.

Table 3 shows a cross-tabulation of 6803 first-phase units strat-
ified on both occasions. As could be expected, most of these units
(74%) remained in the stratum which they were assigned to in 1999
(main diagonal of Table 3), or they moved to the next older stra-
tum, or, in case they belonged to the oldest stratum in 1999, to the
youngest. Nearly all other transitions were also observed, yet to a
lower degree. They can be explained by removal of trees from plots
changing the dominating tree species in mixed stands or changing
the age class in two- or multilayered stands, but evidently also by
(a) Deciduous 0.11 0.07 0.09 0.13
Applied 1999 Coniferous 0.19 0.28 0.24 0.26

(b) Deciduous 0.06 0.13 0.13 0.21
Optimized Coniferous 0.08 0.10 0.30 0.40
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Table 3
Cross-tabulation of n′ = 6803 first-phase sampling units stratified using CIR images from 1999 and 2008. Shaded fields represent the transitions expected by aging and by
harvesting and subsequent reforestation with previous dominating tree species group.

Stratum l in 1999

DEC1 DEC2 DEC3 DEC4 CON1 CON2 CON3 CON4 Total

Stratum h in 2008 DEC1 563 18 7 54 19 17 25 6 709
DEC2 260 857 12 26 35 66 7 0 1263
DEC3 7 220 746 36 5 30 26 1 1071
DEC4 67 29 191 1535 5 10 11 5 1853
CON1 18 5 0 2 125 2 7 2 161

3

w
C
a
p
fi
l
a
s
h
e
a
s
s

a
a
.
fi
a
a
t
t
p
t
t

d
a
p
n
(

Y

w
i
t
c
�
r

I

CON2 13 35 9
CON3 8 3 1
CON4 1 1 0
Total 937 1168 966

. Infinite population approach to the 2SS sampling design

We assume a classical double sampling design for stratification
ith random sampling in both phases similar to that defined in
ochran (1977) or Särndal et al. (2003), except that we consider
n infinite population approach in the first phase. In the second
hase of a 2SS design, sampling is done from a finite number of
rst-phase units and can be described by the classical finite popu-

ation approach as usual. We note that Mandallaz (2008) provided
n infinite population approach for a design called one-stage double
ampling for stratification which does not fit to the design applied
ere, because second-phase units are randomly chosen from the
ntire population of first-phase sampling points in his approach,
nd not independently within strata and with different predefined
ampling proportions. In this sense his design represents a post-
tratification as is also pointed out there.

Our notation is a compromise of those used in Cochran (1977)
nd Mandallaz (2008). Let a population of N trees lie in a forest
rea F of surface area �(F), stratified into L disjoined strata Fh(h = 1,
. ., L) with �(F) =

∑
�(Fh) and N =

∑
Nh. It is assumed that the

rst-phase sample � ′, a point sample of size n′, is independently
nd uniformly distributed within F, and each sample point x ∈ � ′ is
ssigned to one of the L strata using auxiliary variables. Let n′

h
be

he number of first-phase sample points x ∈ �h with n′ =
∑

n′
h
. In

his approach, elements of the target population (trees) and sam-
ling units (points) differ, while Cochran (1977) uses N and Nh for
he finite number of population elements, which are at the same
ime the sampling units.

In the second phase, a random subsample �h of size nh = �hn′
h

be
rawn without replacement from the n′

h
first-phase sample points

ccording to a predefined proportion �h. The second-phase sam-
le sizes �hn′

h
may be non-integer and must be rounded to the

ext integer value. At each second-phase point x the local density
Mandallaz, 2008)

(x) = 1
�(Fh)

Nh∑
i=1

Ii(x)Yi

�i
, (1)

ith Yi the response variable of tree i, is provided. �i = P(Ii(x) = 1)
s the inclusion probability of tree i, and the tree is included in
he sample if it lies in the sample plot at sample point x. For con-
entric circles, which are often used in forest inventories, it holds
i = �(Ki ∩ Fh)/�(Fh), where Ki is a circle centred at tree i with a

adius depending on the tree diameter, and
i(x) =
{

1 : x ∈ Ki

0 : x /∈ Ki

.

11 283 1114 6 5 1476
3 7 94 109 0 225
7 2 2 23 9 45

1674 481 1335 214 28 6803

The target parameters of the population are

Ȳ = 1
�(F)

N∑
i=1

Yi Ȳh = 1
�(Fh)

Nh∑
i=1

Yi.

Since the local density is constructed such that its expectation

E Y(x) = 1
�(Fh)

∫
Fh

Y(x)dx

for a uniformly distributed random point x ∈ Fh equals the popula-
tion parameter Ȳh, unbiased estimators of Ȳ and Ȳh are

ˆ̄Y =
L∑

h=1

wh
ˆ̄Yh

ˆ̄Yh = 1
nh

∑
x ∈ �h

Y(x), (2)

respectively, with weights wh = n′
h
/n′ and Ewh = �(Fh)/�(F) =: Wh.

Deviating from the notation of Mandallaz (2008), we use ˆ̄Y and ˆ̄Yh

instead of Ŷ and Ŷh.

The variance of ˆ̄Y is given by (Appendix A)

V( ˆ̄Y) = 1
n′

(
L∑

h=1

WhS2
h

�h
+

L∑
h=1

Wh(Ȳh − Ȳ)
2

)
, (3)

where

S2
h = 1

�(Fh)

∫
Fh

(Y(x) − Ȳh)
2

dx

This formula is similar to Cochran’s approximate formula
(12.14) and structurally equal for large population size N and g′ ≈ 1
(Cochran, 1977), but it is closer to forest inventory practice because
of the more appropriate definitions of S2

h
and Wh. Moreover, it will

lead to a much simpler unbiased variance estimator than that given
by Cochran’s (12.25) for the finite population approach.

Cochran (1977) points out that a sample copy of (12.14) would
be an almost unbiased estimator in almost all applications. Here,
the sample copy of (3) is

ˆ 1
(

L∑whs2
h

L∑
ˆ ˆ 2

)

V̂(Ȳ) =

n′
h=1

�h
+

h=1

wh(Ȳh − Ȳ) .

s2
h

= 1
nh − 1

∑
x ∈ �h

(Y(x) − ˆ̄Yh)
2
,

(4)
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ut a strictly unbiased estimator of (3) is given by

V̂( ˆ̄Y) = 1
n′ − 1

(
L∑

h=1

whs2
h

�h
+

L∑
h=1

wh

(
ˆ̄Yh − ˆ̄Y

)2
−

L∑
h=1

s2
h

n′�h

)

= 1
n′ − 1

(
L∑

h=1

n′
h

− 1

n′
s2

h

�h
+

L∑
h=1

wh

(
ˆ̄Yh − ˆ̄Y

)2
) , (5)

hich predominantly differs from (4) by the factor (n′
h

− 1)/n′

nstead of wh = n′
h
/n′, or equivalently by the third sum within the

arentheses. That term will usually be small for large n′. Again,
e can state a structural similarity with the finite population

pproach of Cochran (1977) comparing his unbiased variance esti-
ator (12.25) with (5) under the assumptions g′ ≈ 1 and N large.

ee Appendix A for a proof of (5).

. Sampling procedure on the second occasion

At the second occasion the first-phase stratification of all sam-
ling units is assumed to be repeated leading to an updated
llocation of first-phase units to the L strata:

′ =
L∑

h=1

m′
h

Compared to the first occasion, a certain number of units will
ave changed their stratum, because they have passed an age
hreshold, or the dominant tree species group has changed from
eciduous to coniferous or vice versa, or by removal of a stand layer.
onsequently, it cannot be assumed that m′

h
= n′

h
for the L strata,

nd the proportion of second-phase units among the first-phase
nits in a stratum will also change, even if m′ = n′.

Consequently, the m′
h

first-phase units assigned to stratum h on
he second occasion may comprise units which had been assigned
o any of the strata on the first occasion, i.e.

′
h =

L∑
l=1

m′
hl

here m′
hl

represents the number of first-phase units which moved
rom stratum l to stratum h, and in particular m′

hh
the number

f units which did not change strata. Since the expected num-

V( ˆ̄Zprop) = 1
m′

L∑
h=1

W (2)
h

S2
zh + 1

m′

L∑
h=1

W (2)
h

(

S2
zh

=
L∑

l=1

W (2)
hl

V̂( ˆ̄Zprop) = 1
m′

L∑
h=1

m′
h

m′ Ŝ2
zh + 1

m′

L∑
h=1

m′
h

m′

(
ˆ̄Zh

= 1
m′

(
L∑

h=1

w(2)
h

�h

L∑
l=1

w(2)
hl

s2
zhl +

L∑
h=
er of second-phase plots among each group of m′
hl

first-phase
lots is �lm

′
hl

, with first occasion sampling proportions �l usually
arying among those groups, one has to select additional second-
hase plots or to delete existing plots in order to achieve any
equired sampling proportion �h = mh/m′

h
, even if �h = �h. That
anagement 260 (2010) 1886–1895 1889

additional selection or deletion has to be done groupwise to avoid
over- or underrepresentation of first-phase units from different
original strata and yields second-phase sample sizes mhl = �hm′

hl

with mh =∑L
l=1mhl . Given the first-phase stratification the m′

hl
are fixed and known and form substrata of the m′

h
units of stra-

tum h. The mhl second-phase plots may comprise only existing
plots that moved from l to h, occasionally randomly reduced to
meet mhl = �hm′

hl
, or they may comprise existing plots as well

as additional randomly selected plots newly established on the
second occasion if the number of existing plots was smaller than
�hm′

hl
. According to this procedure all m′

hl
first-phase units have

equal chances of being selected as second-phase plots leading to
simple random sampling without replacement from the m′

hl
first-

phase units, or in other words to equal inclusion probabilities
�h = mhl/m′

hl
(l = 1, . . ., L) within all substrata, i.e. proportional

allocation.
The estimator (2) for 2SS (the target variable Y is replaced by Z

indicating the volume per ha on the second occasion)

ˆ̄Z =
L∑

h=1

m′
h

m′
ˆ̄Zh

is adapted to that stratified subsampling procedure of the second
phase using

ˆ̄Zh,prop =
L∑

l=1

m′
hl

m′
h

ˆ̄Zhl = 1
mh

L∑
l=1

mhl∑
j=1

zhlj

instead of ˆ̄Zh. ˆ̄Zh,prop is the well known estimator (e.g. Cochran,
1977) for stratified random sampling with proportional allocation.
For notational convenience, zhlj = Z(xhlj) be the local density at a
sample point randomly selected from all first-phase sample points
which have moved from stratum l to stratum h. Thus,

ˆ̄Zprop =
L∑

h=1

m′
h

m′
ˆ̄Zh,prop =

L∑
h=1

⎛
⎝m′

h

m′ · 1
mh

L∑
l=1

mhl∑
j=1

zhlj

⎞
⎠ (6)

is an unbiased estimator of Z̄ with the true variance

Z̄
)2 + E1

(
1

m′

L∑
h=1

m′
h

m′

(
1

�h
− 1
) L∑

l=1

m′
hl

m′
h

s′2
zhl

)

L∑
l=1

W (2)
hl

(
Z̄hl − Z̄h

)2

(7)

and the sample copy as a variance estimator

− ˆ̄Zprop

)2
+ 1

m′

L∑
h=1

m′
h

m′

(
1

�h
− 1
) L∑

l=1

m′
hl

m′
h

s2
zhl

)

[(
ˆ̄Zh,prop − ˆ̄Zprop

)2
+

L∑
l=1

w(2)
hl

(
ˆ̄Zhl − ˆ̄Zh,prop

)2
]) (8)

(Appendix B), with

Ŝ2
zh

=
L∑

l=1

m′
hl

m′
h

s2
zhl

+
L∑

l=1

m′
hl

m′
h

(
ˆ̄Zhl − ˆ̄Zh,prop

)2
, s2

zhl
= 1

mhl − 1

mhl∑
j=1

(
zhlj − ˆ̄Zhl

)2
,

and w(2)
h

and w(2)
hl

the estimates of relative strata and substrata sizes,
respectively, on the second occasion.

If standard double sampling formulas (3) and (4) are used
accordingly for the variance of estimator (6) instead of (7) and (8),
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gnoring proportional stratified subsampling, the variance of (6)
ends to be overestimated more or less due to the usually higher
recision of stratified sampling with proportional allocation com-
ared to simple random sampling (de Vries, 1986). Therefore, (3)
nd (4) could be used as simplified variance formulas leading to
ore or less conservative estimates of the sampling error.
In case of our example, many of the L strata will most likely

ontribute only a few transition units to a stratum h on the sec-
nd occasion in practice. Usually, most of the transition units will
riginate from the next younger or, in case of the youngest decidu-
us or coniferous stratum, from the respective oldest stratum. For
ll strata l that do not contribute transition units to h, one obtains
′
hl

= 0 as well as mhl = 0, and the respective summands vanish in
ormulas (6) to (8).

If, for smaller m′
hl

, one obtains 0 ≤ mhl ≤ 1, the variance estima-
or s2

hl
is not defined, and the m′

hl
units of that substratum within

tratum h should be merged with another substratum, as it is done
ith the collapsed stratum estimator (Wolter, 1985), or eventu-

lly simple random sampling might be assumed within all strata of
he second occasion, both leading to conservative estimates as was
easoned above.

Since increasing age will be the predominant reason for first-
hase units to change strata, it might be reasonable to use the
onstraints

1 ≤ �2 ≤ �3 ≤ �4 (DEC1 − 4) and �5 ≤ �6 ≤ �7 ≤ �8(CON1 − 4),

hat means monotonously increasing sampling proportions with
ncreasing age classes in the optimization process. In general, this

ould more often require to establish additional terrestrial sample
lots in the second phase rather than giving up existing ones, an
xception being the transition of first-phase units from the two
ldest age classes to the youngest, from stratum 4 to stratum 1 and
rom stratum 8 to stratum 5 after harvesting the plot.

. Estimation of net change

The estimators ˆ̄Y and ˆ̄Zprop estimate the means on the first and
econd occasion, respectively. The estimator of net change is simply

ˆ̄
prop − ˆ̄Y , and for its variance it holds

V( ˆ̄Zprop − ˆ̄Y) = V( ˆ̄Zprop) + V( ˆ̄Y) − 2Cov( ˆ̄Y, ˆ̄Zpro

Cov ( ˆ̄Y, ˆ̄Zprop) =
L∑

h=1

L∑
k=1

n′
h

n′
m′

k

m′ Cov( ˆ̄Yh, ˆ̄Zk,prop) =
L∑

h=1

L∑
k=1

n′
h

n′
m′

k

m′
1
nh

erein, the covariance between ˆ̄Yh and ˆ̄Zk,prop can be estimated by

ôv( ˆ̄Yh, ˆ̄Zk,prop) = 1
nh

1
mk

uhk
1

uhk − 1

uhk∑
r=1

(yhr − ȳh(uhk))(zkr − z̄k(uhk)),

here uhk is the number of second-phase plots which shifted from
tratum h to stratum k (or stayed in h if h = k), and ȳh(uhk) and z̄k(uhk)
re the means of those uhk plots on occasions one and two, respec-
ively. If uhk = 0, the covariance is 0, if uhk = 1, it cannot be estimated
ut may be set to 0, particularly if nhmk is large.

The development of the true covariance formula in (9) is straight

orward, and the estimator of the covariance between ˆ̄Yh and ˆ̄Zh,prop
omprises the factor (nhmk)−1 of the true covariance and an estima-
or of the total of nhmk terms Cov(yhi, zkj). Only uhk of these terms

re unequal 0 and can be estimated by

1
uhk − 1

uhk∑
r=1

(yhr − ȳh(uhk))(zkr − z̄k(uhk))
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nh

i=1

mk∑
j=1

Cov(yhi, zkj).
(9)

This finally yields the proposed covariance estimator.

6. Optimization

Usually, optimum allocation of sample plots to strata is achieved

by minimizing the inventory costs for a predefined variance of ˆ̄Y , or
by minimizing that variance for given total costs (Cochran, 1977).
Instead of fixing the costs, we minimize the variance for a fixed ter-
restrial sample size n. We assume equal costs per unit in all strata,
because the inventory teams are often paid per plot, independent
of the plot type or the amount of time spent at the plot. Therefore, n
is an appropriate placeholder for the inventory costs. The optimum
allocation is then estimated by

�h = nh

n′
h

= n
sh

L∑
h=1

n′
h
sh

(Appendix C). An optimum allocation can be obtained using the
inventory data of the first occasion for the calculation of s2

h
. It will

be an appropriate guideline for planning the repeated inventory on
the second occasion if the within-strata variances do not change
remarkably during one inventory cycle, which is about 10 years in
forest district inventories in Lower Saxony.

Optimization needs to focus on target variables and populations
of primary interest, and it usually has to serve multiple purposes in
practice. Since target diameter selection has become a wide-spread
harvesting strategy, foresters are often particularly interested in
more precise estimations of volume per hectare of higher diam-
eter classes. Discussions with forest management officers lead to
the definition of 4 target populations: Oak, dbh > 50 cm; Beech,
dbh > 50 cm; Spruce, dbh > 35 cm, and Pine, dbh > 40 cm. They rep-
resent the most important tree species groups in the example
district (Oak 16.32 m3/ha, Beech 86.57 m3/ha, Spruce: 38.66 m3/ha,
Pine: 0.74 m3/ha) and the operationally most relevant diameter
classes. Allocation of sampling units was to be optimized with
respect to these populations. According to the recommendation of
Cochran (1977, 5A.3) and de Vries (1986, 2.4), optimal �h were cal-
culated for each of the populations and finally averaged (Table 2b).

As a reference for the discussion of sampling errors under dif-
ferent allocations of second-phase sample plots, we calculated also
the sampling errors of a simple random sampling design according
to

V( ˆ̄Y) = S2

n
(10)

using the variance decomposition (Appendix A)

S2 = 1
�(F)

L∑
h=1

∫
Fh

(
Y(x) − Ȳh + Ȳh − Ȳ

)2

dx

=
L∑

h=1

�(Fh)
�(F)

S2
h +

L∑
h=1

�(Fh)
�(F)

(
Ȳh − Ȳ

)2
The strata weights were estimated by wh = n′
h
/n′, the within-

strata variances by s2
h
, and we substituted ˆ̄Yh and ˆ̄Y for the according

population parameters. This was equivalently done for 2008, where
we used the stratification of 1999 and the sample plot data of 2008.
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Table 4
Final number mhl of second-phase plots using the 1999 allocation in 2008, number of plots to be established in 2008 (+), and number of existing plots to be released (−).

Stratum l in 1999

DEC1 DEC2 DEC3 DEC4 CON1 CON2 CON3 CON4

Stratum h in 2008 DEC1 98 (−6) 3 (+1) 1 10 4 3 (−3) 5 (−6) 1 (−1)
DEC2 30 (−11) 99 (+1) 1 (−1) 3 (−2) 4 (−6) 8 (−22) 1 (−4) 0
DEC3 1 32 (+9) 110 (−8) 6 (−3) 1 (−2) 4 (−12) 4 (−6) 0 (−1)
DEC4 14 (+1) 6 (+3) 41 (+21) 326 (−2) 1 (+1) 2 (+1) 3 (−1) 1
CON1 6 (+5) 1 (−1) 0 1 (+1) 38 (−1) 1 (+1) 3 (+2) 1
CON2 6 (+4) 16 (+10) 4 (+2) 5 (+2) 128 (+40) 505 (−9) 3 2 (−1)
CON3 3 (+3) 1 (+1) 1 (+1) 1 3 (+2) 37 44 (+2) 0
CON4 0 1 0 3 (+3) 1 0 (−1) 10 (+1) 3 (−1)

Table 5
Final number mhl of second-phase plots using the optimized allocation of 1999 in 2008, number of plots to be established in 2008 (+), and number of existing plots to be
released (−).

Stratum l in 1999

DEC1 DEC2 DEC3 DEC4 CON1 CON2 CON3 CON4

Stratum h in 2008 DEC1 58 (−46) 2 1 5 (−5) 2 (−2) 1 (−5) 2 (−9) 1 (−1)
DEC2 57 (+16) 189 (+91) 3 (+1) 6 (+1) 8 (−2) 15 (−15) 1 (−4) 0
DEC3 2 (+1) 48 (+25) 164 (+46) 8 (−1) 1 (−2) 7 (−9) 6 (−4) 0 (−1)
DEC4 23 (+10) 10 (+7) 66 (+46) 529 (+201) 1 (+1) 4 (+3) 4 2 (+1)
CON1 3 (+2) 1 (−1) 0 0 15 (−24) 0 0 (−1) 0 (−1)
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diameter classes with mean ranks 16/8, 13/8 and 19/8 in 2008.
Over all diameter classes, mean ranks 24/12, 24/12 and 24/12 are
all equal in 2008.

To assess the efforts necessary to achieve the precision of the
optimized 2SS design in 2008 using a simple random sampling

Table 6
Comparison of relative sampling errors (ranks per population) of 1999 allocation,
optimal allocation and simple random sampling in 1999 (a) and 2008 (b). Target
populations of the optimization shaded.

Target population 1999 allocation Optimized
allocation

Simple random
sampling

(a)
Beech < 25 cm 0.0613 (3) 0.0588 (2) 0.0522 (1)
Beech 25–50 cm 0.0405 (3) 0.0328 (1) 0.0377 (2)
Beech > 50 cm 0.0389 (2) 0.0353 (1) 0.0429 (3)
Oak < 25 cm 0.1728 (2) 0.1755 (3) 0.1366 (1)
Oak 25–50 cm 0.1639 (3) 0.1247 (2) 0.1219 (1)
Oak > 50 cm 0.1273 (3) 0.1009 (1) 0.1149 (2)
Spruce < 25 cm 0.0581 (1) 0.0814 (2) 0.0747 (1)
Spruce 25–35 cm 0.0399 (1) 0.0540 (2) 0.0542 (3)
Spruce > 35 cm 0.0420 (1) 0.0479 (2) 0.0583 (3)
Pine < 25 cm 0.2422 (1) 0.3895 (3) 0.3296 (2)
Pine 25–40 cm 0.1862 (1) 0.2481 (3) 0.2157 (2)
Pine > 40 cm 0.3734 (3) 0.2983 (1) 0.3394 (2)

(b)
Beech < 25 cm 0.0576 (3) 0.0563 (2) 0.0512 (1)
Beech 25–50 cm 0.0380 (3) 0.0310 (1) 0.0356 (2)
Beech > 50 cm 0.0396 (2) 0.0344 (1) 0.0414 (3)
Oak < 25 cm 0.1843 (2) 0.2226 (3) 0.1643 (1)
Oak 25–50 cm 0.1389 (3) 0.1109 (2) 0.1065 (1)
Oak > 50 cm 0.1170 (3) 0.0925 (1) 0.1060 (2)
Spruce < 25 cm 0.0815 (1) 0.1139 (3) 0.1035 (2)
CON2 2 6 1 (−1
CON3 4 (+4) 1 (+1)
CON4 1 (+1) 0 (−1)

. Case study

The sampling proportions optimized using the 1999 inventory
ata are provided in Table 2a. Because of the usually larger vari-
nces in older strata, it could be expected beforehand that the
ptimum allocations tend to be higher in older strata. This is
learly confirmed by the result in Table 2a, except for the two
ntermediate age classes of the deciduous species strata, where
he monotony constraint lead to 0.13 for both strata instead of
he original optima 0.15 and 0.11 for DEC2 and DEC3, respec-
ively.

If the allocation �h of second-phase units according to Table 2a
1999) was also used in 2008 for �h, 111 of 1644 existing second-
hase plots would have been released in 2008, and 118 new plots
stablished (Table 4). With the �h optimized using the 1999 data,
01 plots and 498 plots would have been released and newly estab-

ished, respectively (Table 5).
The resulting sampling errors for the two allocations, original

nd optimized, as well as for a simple random sampling scheme
hich uses the same number of terrestrial (second-phase) plots,

re reported in Table 6a and b. We used the estimator (5) and
ariances (7) and (10). In (7) and (10), we substituted estimates
or means and variances based on the existing second-phase plots

stablished 1999. That means Z̄h is not estimated by ˆ̄Zh,prop =
/mh

∑L
l=1

∑mhl
j=1zhlj , because using only the second-phase plots

f 1999 we have a non-proportional allocation to the substrata
nd must apply an appropriate weighting for the substrata sample

eans. Instead, we use ˆ̄Zh = 1/mh

∑L
l=1

(
m′

hl
/m′

h

)
(1/mhl)

∑mhl
j=1zhlj .

urther, for the variances of 2008 as given in Table 6b, we merged
ubstrata with mh = 0 or mh = 1 with the next younger or next older
ubstratum into a larger one allowing for the calculation of within-
ubstrata variances s2

zhl
. All three standard errors of each population

ere related to a unique volume per hectare. It was estimated by∑ ( )

2) and ˆ̄Z = L

h=1 m′
h
/m′ ˆ̄Zh ( ˆ̄Zh as previously defined) for the first

nd second occasion, respectively.
Differences between the sample copy variance estimator (4) and

he unbiased estimator (5) for the relative variances in Table 6a
ere small (≤10−4, fourth digit or smaller) for all 24 estimates.
2 (−1) 49 (−39) 192 (−322) 1 (−2) 1 (−2)
2 (+1) 4 (+3) 47 (+10) 54 (+12) 0
4 (+4) 2 (+1) 1 16 (+7) 6 (+2)

Mean ranks of the three designs (1999 and optimized alloca-
tion, simple random sampling) in 1999 for the 4 target populations
are 9/4, 5/4 and 10/4, respectively. In 2008 they are still nearly
unchanged (8/4, 5/4 and 11/4), with the optimized allocation hav-
ing the smallest mean rank. This is also true for the 8 highest
Spruce 25–35 cm 0.0445 (1) 0.0600 (2) 0.0621 (3)
Spruce > 35 cm 0.0371 (1) 0.0419 (2) 0.0495 (3)
Pine < 25 cm 0.4179 (2) 0.4441 (3) 0.3952 (1)
Pine 25–40 cm 0.1889 (1) 0.2440 (3) 0.2238 (2)
Pine > 40 cm 0.2636 (2) 0.2514 (1) 0.2796 (3)
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Table 7
Comparison of double sampling for stratification and simple random sampling.
Total (n) and additional (n+) sample sizes to achieve the precision of 2SS (n′ = 6803,
n = 1644, optimum allocation) with simple random sampling for the 4 target popu-
lations in 2008.

Population n n+

Oak, dbh > 50 cm 2,156 512
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Beech, dbh > 50 cm 2,377 733
Spruce, dbh > 35 cm 2,289 645
Pine, dbh > 40 cm 2,130 486

esign, we calculated the number of sample plots to be established
nd measured in the random sampling design (Table 7). They have
o be compared with n = 1644 and the additional costs for the 2SS.
he latter must be assessed within the wider framework of the
nventory. If, as practiced in Lower Saxony, the CIR images are also
sed for other purposes such as delineation of management units,
alamity assessment, and spatial prediction of stand parameters,
elated costs should not or at least not fully be considered in an
fficiency analysis. Currently, 35 Euro are paid per second-phase
lot and 0.35 Euro per first-phase unit (excluding acquisition of
IR images).

Finally, net volume change is estimated as −7.64 m3/ha, based
n the 1999 plots, and the estimated sampling errors are 3.83 m3/ha
or the 1999 allocation and 3.24 m3/ha for the optimized allocation.

. Discussion

Under the infinite population approach for the 2SS design, the
ample of first-phase sample points is randomly taken from the
nfinite number of points located in the study area, whereas the
econd-phase sampling is conditionally done from finite popula-
ions, namely the n′

h
first-phase sample points assigned to stratum

. The variance expression of the 2SS estimate of the population
ean is simpler than the variance in the finite population approach,

ut it approximately equals the latter for large finite population size
and relatively small first-phase sample size n′. The variance esti-
ator in the infinite population approach is unbiased and differs

nly slightly from the sample copy of the true variance, the dif-
erence being negligible for moderately large n′

h
. In the case study,

ifferences between approximate and unbiased estimates of the
elative sampling errors were ≤10−4 for all target populations, in
ccordance with Cochran’s (1977) statement.

On the second occasion, the 2SS is expanded by an additional
ubsampling with proportional allocation. Again we could derive
n unbiased estimator for the population mean and its true vari-
nce, and we propose the sample copy of the variance formula as a
ariance estimator which will not be exactly unbiased but consis-
ent. It is justified by Cochran’s recommendation of the sample copy
stimator in the simple 2SS design and our own empirical result for
he first occasion.

The advantage of 2SS over simple random sampling regarding
he sampling error is not only due to stratification but also to an
ppropriate allocation of second-phase units to the strata depend-
ng on variances within and between strata. If inventory costs
er unit are homogeneous, the latter will be a non-proportional
llocation, whenever within-strata variances are inhomogeneous
Cochran, 1977). In our case study, we suggested an unequal alloca-
ion to the 8 strata which was the mean of optimal allocations for 4
arget populations. The sampling proportions suggested by that ad-
oc method increased with increasing age class (Table 2a), except
or the strata DEC2 and DEC3, where the optimization resulted in
slight decrease which was corrected afterwards. The optimized

llocation turned out to achieve a remarkably higher precision com-
ared to simple random sampling for the 4 target populations on
oth occasions in 1999 and 2008. Herewith, the results for 2008
anagement 260 (2010) 1886–1895

are of higher practical relevance, because they show that the opti-
mization based on the 1999 inventory data is still clearly superior to
simple random sampling in 2008, regarding the target populations.

Table 6 shows also the trade-off between that higher precision
for the target populations and lower precision for lower diameter
classes. In 2008 the intermediate diameter classes of beech and
spruce are still estimated more precisely by the optimized 2SS than
with simple random sampling, but for the intermediate oak and
pine diameter class, and all lowest diameter classes, simple random
sampling is superior.

The 2SS of 2008 using the allocation applied in 1999 is supe-
rior to simple random sampling for the biggest beeches and pines,
the intermediate pines, and all diameter classes of spruce, but infe-
rior for all oak diameter classes, the intermediate and lowest beech
classes, and the lowest pine class. Compared to the optimized 2SS
it is superior for the spruces and lower pine classes, but inferior
for the biggest and intermediate beech and oaks, and the smallest
beech as well as the biggest pines.

The optimized 2SS is clearly the most favorable design if highest
precision is to be achieved for the highest and intermediate diam-
eter classes of the three dominating tree species if one considers
relative sampling errors and mean ranks. Even over all diameter
classes the optimized version achieves the same mean rank as the
two competing designs. The 1999 allocation is the second most
favorable regarding the highest diameter, as well as regarding the
highest and intermediate classes, according to the mean ranks.

According to Table 7, 733 additional second-phase plots would
be necessary for a simple random sampling design to be superior
or at least equal to the optimized 2SS design. Still about 600 addi-
tional plots were necessary if the precision of 2SS is to be achieved
approximately with simple random sampling at least for the target
populations of spruce and oak, which are the second and third most
important populations; pine > 40 cm is rather rare (0.74 m3/ha).
Since costs per second-phase plots are usually much higher than
expenses for stratification of first-phase units by interpretation
of CIR images, and CIR images can additionally be exploited for
many other purposes, we state a higher efficiency of the optimized
2SS approach, compared to simple random sampling. Regarding
the current costs per unit, the costs for the additional terrestrial
plots (600*35 Euro = 21,000 Euro) are nearly 9 times the costs for
first-phase stratification (6803*0.35 Euro = 2381 Euro).

Enhanced GIS-based digital stand records would further reduce
first-phase costs in future, but may also reduce precision of the
stratification, because stratification will then be based on stand and
no longer on local plot information, making a difference particularly
in mixed or uneven-aged stands.

A crucial point for inventory planning is how to determine the
sampling proportions for the first and following occasions, because
derivation of optimized sampling proportions requires sample plot
data from the different strata in advance. On the first occasion one
might use proportions �h which proved to be optimal in other,
similar districts. As soon as inventory data are provided from the
first occasion, calculation of individual optimum �h for the tar-
get district can be derived and suggested for the second occasion,
assuming that they will still be “nearly” optimal on that occasion.
This is what we did in the case study. If the initial allocation can
be applied again on the second occasion (Table 4), only a negligible
number of plots has to be skipped (111) or established (118) on the
second occasion, compared to the total sample size of 1644. These
numbers become remarkably large (501 skipped, 498 established)
if the optimized allocation replaces that of 1999 (Table 5). More

case studies are necessary to answer the question if a global opti-
mum over several districts exists that can be expected to be a good
choice for an initial allocation in other districts.

In forest inventory practice, m′ = n′ as used in our case study will
often not hold, particularly if forest land is sold or new forest land
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)

x + �
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Substitution of that result in the preceding formula yields

E

L∑
h=1

wh

(
ˆ̄Yh − ˆ̄Y

)2
=
∑ S2

h

n′�h
+
∑

WhȲ2
h − V( ˆ̄Y) − Ȳ2,
J. Saborowski et al. / Forest Ecology

cquired. All first- and second-phase units of sold land are released
rom the analysis, and new first-phase units must be established
nd stratified on acquired land. All those new units belonging to
stratum h form an additional substratum, where second-phase

lots have to be selected according to the inclusion probability �h.
he same procedure is applied with first-phase units considered
s forest land on the second occasion but not stratified on the first
ccasion or vice versa, caused by erroneous interpretation on one
f the two occasions.

On the third and later occasions, the subsampling procedure
s proposed in this paper can be applied accordingly. First-phase
lots in each stratum h of occasion t are again stratified according
o their origin on occasion t − 1 and second-phase plots released or

stablished randomly in order to achieve the proposed sampling
roportion �h.
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ppendix A. Proof of V ( ˆ̄Y ) and V̂ ( ˆ̄Y )

The variance of ˆ̄Y can be derived following the proof of Särndal
t al. (2003) for the so-called �*-estimator using the well-known
ecomposition

( ˆ̄Y) = V1(E2
ˆ̄Y) + E1V2( ˆ̄Y).

The subscripts 1 and 2 denote averaging over all first-phase
nd all second-phase samples given the first-phase sample, respec-
ively. For the first term we get

2
ˆ̄Y =

L∑
h=1

wh
ˆ̄Y

′
h = 1

n′
∑
x ∈ �′

Y(x),

herein the prime at ˆ̄Yh indicates that the mean of local densi-
ies Y(x) is calculated over all n′

h
second-phase units of stratum

, measured as well as unmeasured. That yields, according to the
ne-phase one-stage scheme in Mandallaz (2008),

1(E2
ˆ̄Y) = 1

n′
1

�(F)

∫
F

(
Y(x) − Ȳ

)2
dx =:

1
n′ S2.

For the second term of the variance decomposition, Särndal et
l. (2003, equation (9.4.11)) particularly proved that

ˆ̄
L∑

2 ˆ̄

(
L∑w2

h
s′2

h

(
nh

)) (
L∑

S2 = 1
�(F)

L∑
h=1

∫
Fh

(
Y(x) − Ȳh + Ȳh

= 1
�(F)

L∑
h=1

(∫
Fh

(
Y(x) − Ȳh

)2

d

=
L∑

h=1

�(Fh)
�(F)

S2
h +

L∑
h=1

�(Fh)
�(F)

(
Ȳh
E1V2(Y) = E1

h=1

whV2(Yh) = E1

h=1
nh

1 −
n′

h

= E1

h=1
n

s′2
h = 1

n′
h

− 1

∑
x ∈ Fh∩�′

(
Y(x) − ˆ̄Y

′
h

)2
anagement 260 (2010) 1886–1895 1893

Thus, we have

V( ˆ̄Y) = 1
n′ S2 + E1

(
L∑

h=1

whs′2
h

n′

(
1
�h

− 1
))

. (A.1)

This result can also be expressed in the form

V( ˆ̄Y) = 1
n′

(
L∑

h=1

WhS2
h

+
L∑

h=1

Wh

(
Ȳh − Ȳ

)2
+ E1

(
L∑

h=1

whs′2
h

(
1
�h

− 1

)))
.

(A.2)

because

2

dx

(Fh)
(

Ȳh − Ȳ
)2 + 2

(
Ȳh − Ȳ

)∫
Fh

(
Y(x) − Ȳh

)
dx

)

2

.

Cochran (1977, Theorem 12.3) states, by conditioning on the wh,
that Ewhs2

h
= WhS2

h
, and the same argument leads to

E1

(
L∑

h=1

whs′2
h

n′

(
1
�h

− 1
))

=
L∑

h=1

WhS2
h

n′

(
1
�h

− 1
)

. (A.3)

Substituting this expression in Eq. (A.2) finally yields

V( ˆ̄Y) = 1
n′

(
L∑

h=1

WhS2
h

�h
+

L∑
h=1

Wh

(
Ȳh − Ȳ

)2

)
.

For the proof of V̂( ˆ̄Y) we use (Cochran, 1977, (12.27))

L∑
h=1

wh

(
ˆ̄Yh − ˆ̄Y

)2
=

L∑
h=1

wh
ˆ̄Y

2

h − ˆ̄Y
2
,

and by conditioning on the wh ( 	w = (w1, . . . , wL)′) we find here

E

(∑
wh

ˆ̄Y
2

h

∣∣ 	w) =
∑

wh

[
V( ˆ̄Yh

∣∣ 	w ) +
(

E( ˆ̄Yh

∣∣ 	w )
)2
]

=
∑

wh

[
1
nh

S2
h + Ȳ2

h

]
=∑ S2

h

n′�h
+
∑

whȲ2
h

E

(∑
wh

ˆ̄Y
2

h

)
=
∑ S2

h

n′�h
+
∑

WhȲ2
h .

It holds V( ˆ̄Yh

∣∣ 	w ) = S2
h
/nh, because with the wh fixed and the

first-phase sample still varying, the nh second-phase plots are
selected from the infinite population Fh, and the result coincides
with Cochran’s equation (12.29) for large N.
′ �h
− 1
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nd we get

V̂( ˆ̄Y) = 1
n′ − 1

(∑ WhS2
h

�h
+
∑

WhȲ2
h − V( ˆ̄Y) − Ȳ2

)

= 1
n′ − 1

(
n′V( ˆ̄Y) − V( ˆ̄Y)

)
= V( ˆ̄Y).

ppendix B. Proof of V ( ˆ̄Zprop) and V̂ ( ˆ̄Zprop)

As in Appendix A, we find

( ˆ̄Z) = S2
z

m′ + E1

L∑
h=1

(
m′

h

m′

)2

V2

(
ˆ̄Zh,prop

)
.

Substituting the conditional variance by the well-known vari-
nce formula of stratified random sampling with proportional
llocation (Cochran, 1977), we obtain

1

L∑
h=1

(
m′

h

m′

)2

V2

(
ˆ̄Zh,prop

)
=E1

L∑
h=1

(
m′

h

m′

)2
1−mh/m′

h

mh

L∑
l=1

m′
hl

m′
h

s′2
zhl

= E1
1

m′

L∑
h=1

m′
h

m′

(
1

�h
− 1
) L∑

l=1

m′
hl

m′
h

s′2
zhl

ith

′2
zhl = 1

m′
hl

m′
hl∑

j=1

(
zhlj − z̄′

hl

)2
.

Considering now the ANOVA decomposition already used in
ppendix A

2
z =

L∑
h=1

WhS2
zh +

L∑
h=1

Wh

(
Z̄h − Z̄

)2
,

he variance of ˆ̄Zprop is

( ˆ̄Zprop) = 1
m′

L∑
h=1

WhS2
zh + 1

m′

L∑
h=1

Wh

(
Z̄h − Z̄

)2

+ E1
1

m′

L∑
h=1

m′
h

m′

(
1

�h
− 1
) L∑

l=1

m′
hl

m′
h

s′2
zhl.

This yields immediately the sample copy variance estimator

ˆ ( ˆ̄Zprop) = 1
m′

L∑
h=1

m′
h

m′ Ŝ2
zh + 1

m′

L∑
h=1

m′
h

m′

(
ˆ̄Zh,prop − ˆ̄Zprop

)2

+ 1
m′

L∑
h=1

m′
h

m′

(
1

�h
− 1
) L∑

l=1

m′
hl

m′
h

s2
zhl.

Again, from the ANOVA decomposition follows accordingly
2
zh =

L∑
l=1

WhlS
2
zhl +

L∑
l=1

Whl

(
Z̄hl − Z̄h

)2
,

hat directly leads to the proposed estimator Ŝ2
zh

of S2
zh

.
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Appendix C. Proof of optimum �h

In order to optimize the �h we use (A.1) and (A.3) yielding

V( ˆ̄Y) = S2

n′ +
L∑

h=1

WhS2
h

n′

(
1
�h

− 1
)

so that minimization of V(ȳ) for predefined n′ is equivalent to min-
imization of

∑
WhS2

h
/�h. If n is given in advance, we have for the

costs C and the expected costs

C = c′
0n′ +

L∑
h=1

chnh Enh = n′�hWh

EC = c′
0n′ + n′

L∑
h=1

ch�hWh.

According to the Cauchy-Schwarz inequality for the product of

expected costs and V( ˆ̄Y) or equivalently for their essential com-
partments(

L∑
h=1

ch�hWh

)(
L∑

h=1

WhS2
h

�h

)
≥
(

L∑
h=1

Wh

√
chSh

)2

,

V( ˆ̄Y) is minimal if �h
√

ch/Sh = const (h = 1, . . . , L). It implies that

�h
√

ch

Sh
=

L∑
h=1

ch�hWh

L∑
h=1

ch�hWh

· �h
√

ch

Sh
=

L∑
h=1

ch(nh/n′
h
)Wh

L∑
h=1

√
chWhSh

and

�h = Sh√
ch

L∑
h=1

ch(nh/n′
h
)Wh

L∑
h=1

√
chWhSh

.

Using ch = c and estimating the relative strata sizes Wh by n′
h
/n′,

and Sh by sh, one finally obtains the proposed formula.
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