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Most forest fires in Korea are spatially concentrated in certain areas and are highly
related to human activities. These site-specific characteristics of forest fires are ana-
lyzed by spatial regression analysis using the R-module generalized linear mixed model
(GLMM), which can consider spatial autocorrelation. We examined the quantitative
effect of topology, human accessibility, and forest cover without and with spatial auto-
correlation. Under the assumption that slope, elevation, aspect, population density,
distance from road, and forest cover are related to forest fire occurrence, the explana-
tory variables of each of these factors were prepared using a Geographic Information
System-based process. First, we tried to test the influence of fixed effects on the occur-
rence of forest fires using a generalized linear model (GLM) with Poisson distribution.
In addition, the overdispersion of the response data was also detected, and variogram
analysis was performed using the standardized residuals of GLM. Second, GLMM was
applied to consider the obvious residual autocorrelation structure. The fitted models
were validated and compared using the multiple correlation and root mean square error
(RMSE). Results showed that slope, elevation, aspect index, population density, and
distance from road were significant factors capable of explaining the forest fire occur-
rence. Positive spatial autocorrelation was estimated up to a distance of 32 km. The
kriging predictions based on GLMM were smoother than those of the GLM. Finally,
a forest fire occurrence map was prepared using the results from both models. The
fire risk decreases with increasing distance to areas with high population densities, and
increasing elevation showed a suppressing effect on fire occurrence. Both variables are
in accordance with the significance tests.

Keywords: word; forest fire; spatial statistics; variogram; GLMM

1. Introduction

Forest fires are a major disaster, damaging both the forest ecosystem and the human society.
Fire threat in Korea is very strong because about 65% of the Korean peninsula is covered
by forest. All Korean forest fires are caused by humans as there are no lightening-induced
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2 H. Kwak et al.

natural fires because of the condition of the Korean meteorology. Because all forest fires
in South Korea are closely related to human activities, fires tend to occur repeatedly in
environments closer to the metropolitan areas according to the pattern of population distri-
bution. The most frequent reason for fires is the accidental fires started by humans, followed
by fires by field incineration (Kwak et al. 2009). To prevent forest fires caused by human
activities, it is important to determine the related factors and the extent of their influence
on the forest fire occurrence.

Many factors influence forest fire occurrence. Previous studies have reported weather,
vegetation types, and topography (elevation, slope, and aspect) to be significant factors in
the occurrence of forest fires (Kushla and Ripple 1997, Diaz-Avalos et al. 2001, Latham
and Williams 2001, An et al. 2004, Wotton and Martell 2005). The moisture content of
fuel was reported to influence forest fire occurrence (Renkin 1992, Chuvieco et al. 2002,
Wotton et al. 2003). Forest fires have also been reported to be related to human residence
and population density (Veblen et al. 1999, Guyette et al. 2002, Bergeron et al. 2004,
Hessburg et al. 2005). Human accessibility is also a main cause for forest fires (Cardille
et al. 2001, Prestemon and Butry 2005). Because almost all forest fires in Korea are started
by human activities (Won et al. 2006, Kwak et al. 2010), the factor of human accessibility
should be included in the analysis of forest fire occurrence.

Spatial count data arise in many situations in epidemiology, ecology, and agriculture
(Zhang 2002). Typical methods of statistics are limited in their ability to detect spe-
cific relationships, including spatial autocorrelations. Therefore, additional techniques are
required, and handling count data with spatial autocorrelation is becoming important for
ecology and forestry. To analyze spatial autocorrelation, geostatistical methods are well
known for point-based data, and hybrid methods such as regression-kriging, which is a
combined approach with ordinary least squares regression and kriging, have recently been
adopted (Oliver 1990, Stein 1999, Hengl et al. 2004, 2007). In statistical research, sev-
eral generalized linear model (GLM) and generalized linear mixed model (GLMM) based
on different assumptions have been proposed to account for spatial autocorrelation (Diggle
et al. 1998, Christensen and Waagepetersen 2002, Venables and Ripley 2002, Zhang 2002).
These methods are used in a variety of research fields, not only forest fires but also epi-
demiology, social geography, and remote sensing (Curran 1988, Anselin 1992, Rezaeian
et al. 2007).

2. Study site

The whole of South Korea was considered as the study site. The eastern part of the Korean
peninsula is highly elevated with many steep mountains, dense forest stands, and high con-
centrations of Pinus densiflora stands that are vulnerable to forest fires. Large forest fires
have recently occurred in this region. The human population density in these mountainous
regions is relatively low. On the other hand, most mega cities with high population densi-
ties are located in the western and southern parts of the peninsula. In this urbanized region,
there are few large forest fires, but the frequency of forest fire occurrence appears higher
than that of the mountainous eastern area (Figure 1)

3. Material and methods

3.1. Forest fire data

The forest fire occurrence history from 1991 to 2008 was collected by the Korea Forest
Service (KFS). This daily fire information contains time and location of fire occurrences.
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Forest fire occurred point

Figure 1. Study area showing the original points of forest fire occurrence in South Korea collected
from the Korea Forest Research Institute.

The location was geo-coded with spatial coordinates using a land registry map from the
Korea Cadastral Survey Corporation. The point data were converted to fire counts per
5 km quadrats (Figure 2). The quadrat size was fixed at 5 km to minimize the error arising
from the conversion of point to quadrat counts because the average of the polygon area
of the land registry map that was used for geo-coding was approximately 25 km2. After
that, the mean values of all external variables consisting of topographical factors, human
accessibility, and vegetation types within the quadrats were also attached to each quadrat.

For the quadrat, forest area is a very important factor affecting forest fires. The ratio
of forest area to quadrat size varies among quadrats. In Poisson regression, it is possible
to consider such ratio data by either space or time unit, which is handled by an ‘offset’
variable (Christiansen and Morris 1997). Here, we used the forest area per quadrat as an
offset term. The forest area map was determined by the forest-type map from KFS. Every
quadrat had some forest area, the smallest of which was 796.261 m2.

Totally, 4474 grids covered the whole study site of South Korea. For model estimation,
half of the grids, 2237, were randomly selected. The others were used for model validation.

3.2. Explanatory variables

We focused on the spatial, not temporal, characteristics of forest fire occurrence. We pre-
sumed that the important factors influencing forest fire occurrence are related to the
following three major sources: topography, forest cover, and human accessibility.

Topographical factors such as elevation, slope, and aspect are known to influence the
original ignition of a forest fire and its subsequent spread speed and direction (Rothermel
1972, Richards et al. 1999, Lee et al. 2004a). We presumed that these factors also can
affect human accessibility. Topographical data were prepared using the digital maps with
a scale of 1:25,000 issued from the National Geographic Information Institute (NGII) of
Korea. The elevation from the DEM (Digital Elevation Model), aspect, and slope maps

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
-A

ug
us

t-
U

ni
ve

rs
ita

et
 G

oe
tti

ng
en

] 
at

 0
3:

31
 2

4 
Fe

br
ua

ry
 2

01
2 



4 H. Kwak et al.

3
3

° N
3
4

° N
3
5

° N
3

6
° N

3
7

° N
3
8

° N

126° E 127° E 128° E 129° E 130° E 131° E

Quadrat fire count

13–31

9–12

7–8

6

5

4

3

2

1

0

Figure 2. Forest fire distribution by 5 km quadrat counts in South Korea. The grey areas indicate
increased fire occurrence.

were derived using the spatial analyst module of ESRI® ArcGISTM. Particularly, the aspect
was converted to the aspect index (AI) with a value ranging from 0 to 2, using the equation
below, where 0 means the southern and 2 the northern aspect (Lee et al. 2004b). In this
research, we assumed that the aspect explains the solar insolation and the human accessi-
bility. In South Korea, there are many tombs with southerly aspect as this is traditionally
favored. Moreover, people access the tombs more in spring season (which is also the main
fire season) to manage them. This situation increases the forest fire occurrence. Thus, we
supposed that the division of north and south aspects is very important. Aspect variables
were not classified by categorical variables in this research; instead, they were converted
to a continuous index. Because the aspect data are originally continuous in the range of
0–360◦, continuous characteristics can be conserved by using this index.

Aspectindex = 2

∣∣∣∣1 − (Aspect)

180

∣∣∣∣

Originally, the flat areas were calculated as −1 in the ArcGISTM module. However, this is
not within the range of AI. So, all flat areas were replaced by 1 because the meaning of flat
is between the extremes, northern and southern, in that AI.

Human accessibility is also known to affect forest fire occurrence. Fire ecologists and
historians have found that the fire regimes of many forest ecosystems are anthropogenic and
shaped largely by human settlement and management (Yang et al. 2007). We presumed that
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indirect factors such as population density and distance from road are related to forest fire
occurrence. Because measuring human accessibility quantitatively was very difficult, the
factors of human accessibility were measured indirectly using the distance from roads and
population density as proxy variables (Yang et al. 2007, Romero-Calcerrada et al. 2008).

The average population density from 1991 to 2008, the same period as that of the forest
fire data, was used for the estimation. Population data were collected by the government in
the form of polygon shapes with discontinuities at the edges. To overcome this problem,
the discontinuous population density was smoothed by kernel density estimation (KDE)
(Silverman 1981, Diggle 1985). The centroids of the polygons containing population den-
sity values were used to perform KDE. We used a fixed smoothing parameter (bandwidth)
which was defined as 18,325 m, as determined by visual choice.

The road map was extracted from the digital map of NGII. The complete road network
is very complex with very small spaces between the roads which made measuring from
the main road to each grid cell excessively difficult. Therefore, only the expressways and
city roads were used in the analysis. The distances from the roads were calculated by the
Euclidian distance module of the ArcGISTM spatial analyst with 30 m resolution raster.
Finally, these raster values of distance from road within each 5 km quadrat were averaged
in order to get one representative value for each quadrat as an independent variable.

Vegetation types were extracted from the fourth forest-type map of KFS. We re-
arranged the vegetation types into five dummy variables: needle leaf forest, broad leaf
forest, mixed forest, grassland, and other. Grassland includes cultivated land, pasture, and
fruit garden. In the winter, illegal field incineration is the cause for many fires in Korea.
Other includes all miscellaneous types that cannot be assigned to one of the other four
types. This class was usually distributed near cities and army communities.

3.3. Spatial regression model

Spatial data, particularly those collected on a systematic grid as our fire count data, are
usually assumed to be autocorrelated (Anselin 1988, Legendre 1993). Observations are
often more similar to others located nearby than to more distant observations. This is usu-
ally assumed to be the effect of unobserved covariates. It is expressed in the so-called first
law of geography: ‘Everything is related to everything else, but near things are more related
than distant things’ (Tobler 1979). Therefore, a model aimed at the description of the effects
of covariates on a regionalized dependent variable should take spatial autocorrelation into
account.

Recent statistical approaches to the analysis of forest fire occurrence in Korea (An
et al. 2004, Lee et al. 2004a) have not considered that phenomenon. This is also true for
many other studies using multivariate regression analysis with logistic models to estimate
the effects of drivers of forest fire risk (Martell et al. 1987, Garcia et al. 1995, Pew and
Larsen 2001). Recently, spatial point pattern analysis with a log-linear regression model
was used to explain the pattern of forest fire occurrence (Yang et al. 2007), where the
dependent variables were smoothed using KDE. The study area is relatively small and
spatial autocorrelation is not incorporated.

Although logistic regression is used in many case studies to predict the probability
of fire events assuming binomially distributed binary data, the structure of the Korean fire
count data suggests using a Poisson model approach. The number of fire events, yi, counted
in a quadrat i is explained by the model

yi = exp(xiβ) + εi i = 1, . . . , n (1)
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6 H. Kwak et al.

where n is the total number of quadrats, xi the vector of covariate values attached to quadrat
i (the first component equals 1 if an intercept is to be included in the linear predictor), β the
vector of regression coefficients, and εi a random error term. The number of fire events yi

is assumed to follow a Poisson distribution with local expectation μi = exp(xiβ), variance
v(yi) = μi, and the linear predictor ηi = xiβ. With the Korean fire count data, we used an
additional offset factor log(fi) to multiply the linear predictor, where fi is the forest area
in quadrat i. If the covariance matrix, C(y), equals Vμ, which is an (n,n)-matrix with the
variances v(yi) on the main diagonal and zeroes as off-diagonal elements, we have a clas-
sical log-linear Poisson model, a GLM with independent errors and inhomogeneous error
variances. This can be used as a simplified approach, where we also consider overdisper-
sion by an additional scale factor, and finally compare it to the according model with an
autocorrelated error structure.

Spatial autocorrelation can be introduced into model (1) in two different ways (see
e.g. Schabenberger and Gotway 2005), either by an additive random effect in the linear
predictor ηi leading to a GLMM, called G-side effect in SAS PROC GLIMMIX or by a
modification of the covariance matrix of the residuals, called R-side effect in GLIMMIX.
Using R(θ ) as a correlation matrix, with θ being a low-dimensional parameter vector, σ 2

as an overdispersion parameter, and c0 as a nugget effect parameter, the new covariance
matrix is

C(y) = c0Vμ + σ 2V 1/2
μ R (θ) V 1/2

μ (2)

Thus, R(θ ) is the correlation function of the Pearson residuals

rPi = yi − μi√
μi

Since PROC GLIMMIX failed to estimate a plausible autocovariance structure close to the
empirical variogram of the GLM residuals of the fire count data, we followed the advice
of Dormann et al. (2007, appendix) and used the R-function glmmPQL {MASS} with
a constant grouping variable that assigns all observations (quadrats) to only one group
or subject (abbreviated GLMM in this article). It simultaneously estimates the regression
coefficients of the linear predictor and the variogram parameters of nugget, sill, and range.
Even in cases where a nugget effect can be excluded because of general considerations, it
may still be helpful to include it into the model to avoid numerical instability (Dormann
et al. 2007).

The empirical Pearson residuals

r̂Pi = yi − exp(xiβ̂)√
exp(xiβ̂)

of GLM can be used to estimate an empirical variogram

γ̂ (h) = 1

2Nh

Nh∑
j=1

(r̂(sj) − r̂(sj + h))2
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Model validation

GLMMGLM

Spatial autocorrelationNo spatial autocorrelation

Residual

analysis

Poisson regression (GLM)

Quadrat countTopography

Human accessibility

Forest cover

Spatial

information

Figure 3. Process for predicting forest fire occurrence with GIS-based quadrat count data using
GLM and GLMM.

and fit a variogram model in order to initialize the GLMM estimation procedure and to
compare it to the covariance parameters estimated by the R-module as a plausibility control
(Figure 3).

Here, the linear predictor ηi = log(μi) comprises three groups of covariates

ηi = β0 + β ′
p topography + β ′

q accessability + β ′
r forest cover

in our application to fire count data, with p = 3 topographical (mean AI, elevation, and
slope), q = 2 human accessibility (population density and distance from road) and r =
4 forest cover covariates (broad leaf and mixed forest, grassland, and other; needle leaf
forest serves as a reference category) and a constant at the beginning.

4. Results and discussion

4.1. Parameter estimation in GLM and GLMM

The coefficients of GLM and GLMM were estimated as shown in Table 1. The insignificant
variables such as grassland and other were dropped in the final model. The population
density and elevation were the best explanatory variables with the lowest standard error and
P-value. Population density, distance from road, elevation, and AI showed similar results
as in previous research (Pew and Larsen 2001, Yang et al. 2007). The fact that most of
the forest fires occurrences in South Korea are a result of human impacts explains the
positive relationship between population density and fire occurrence. The distance from
the road was also highly significant. These results demonstrated the strong influence of
human accessibility on forest fire occurrence.

Slope showed a positive sign. Many previous studies have reported that slope affects
fire spread and occurrence (Chuvieco and Salas 1996, Yang et al. 2007, Beaty and Taylor
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2008). High slope increases the risk of ignition. When the degree of slope is too high, fire
risk may be decreased due to low human accessibility. In the study by Yang et al. (2007)
about human-caused forest fire, slope showed a positive relationship with risk on gentle
slopes from 10◦ to 25◦. In our research in South Korea, most values of slope are also in a
range up to 20◦. Therefore, our positive sign coincides with other previous research results.

AI was estimated as negative sign. That means that the south face of a slope is more
vulnerable for forest fire occurrence. As we assumed, the southern part of the slope would
be drier and human accessibility for managing ancestor’s tombs, which are placed on the
south face of slopes, is also increased in the fire season because of the traditional custom.

Distance from road and elevation had a negative effect on forest fire occurrence, mean-
ing that any increase in their values reduces human accessibility. We additionally analyzed
the model substituting distance from (primary) road by distance from primary and sec-
ondary road. Yet the new distance variable was no longer significant, because the number
of extremely short distances to the 25 km2 increased remarkably leading to a much lower
variability of that distance.

The ranking of vegetation type classes in terms of fire occurrence probability was
needle leaf forest + grassland + other > mixed forest > broad leaf forest. The negative
coefficients of broad leaf and mixed forest (Table 1) show that these vegetation type classes
have a lower fire risk than grassland (including crops and pasture), other and needle leaf for-
est. Park proved that the conifer have more possibility of forest fire throughout combustion
experiment in South Korea (2009). The result of our research showed the coincidence.

In GLMM, the standard errors of coefficients were increased in almost all cases com-
pared to the GLM approach, a well-known effect of the spatial autocorrelation. Quite large
differences of coefficients between GLM and GLMM existed in the mixed forest cover
factor, the factor with the highest P-value.

4.2. Empirical variogram

An empirical variogram of the standardized Pearson residuals is shown in Figure 4. It is
fitted with a spherical model with the parameters presented in Table 2. In variogram anal-
ysis, the sill is the value at which the variogram becomes flat, which indicates the variance
of the two separated points of spatial data. The nugget relates to the variance between pairs
of points separated by very small distances, random measurement errors, or both of them
(Western et al. 1998). The range is the distance where the model first flattens out. A partial
sill means the width between the nugget and sill. The variogram analysis revealed a correla-
tion range of about 33 km, which is clearly beyond the size of the quadrats. The parameters
estimated by GLMM were quite similar to those fitted to the empirical variogram. The sill
(nugget plus partial sill) of the GLMM spatial structure was not estimated because it is set
to one in the spatial structure in R (Pinheiro and Bates 2006).

4.3. Spatial prediction and validation of models

The prediction maps of forest fire occurrence (Figure 5b and c) were derived from the
estimated fire counts of the two GLMs. In the GLM approach, we used the estimated model
parameters to estimate fire counts for all quadrats. In the GLMM approach, we simply
added the kriged residuals to the fixed part of the GLMM regression model. First, we
conducted the kriging interpolation using the variogram parameters of the standardized
Pearson residuals in GLMM. We then transformed these kriging predictions to the raw
residuals, which can be reasonably added to the log-linear model. Although only an ad
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Figure 4. Variogram of standardized Pearson residuals of GLM. The x-axis indicates the distance
and the y-axis the semivariance. The solid line is a spherical model which is computed empirically.

Table 2. Estimated coefficients of the random effects (spherical spatial structure).

Primitive estimation by
standardized residuals of GLM

Estimated GLMM spatial
structure

Model Parameter Value Parameter Value

Spherical Range 34,184 Range 32, 301
Sill 0.93 Sill 1
Nugget 0.48 Nugget 0.47

The spatial model of GLM is computed using residuals of GLM and that of GLMM is integrated with the model.

hoc method at the moment, it will be justified later with the results of the validation. This
method was also discussed on the basis of results from more sophisticated approaches in
the study of Dormann et al. (2007).

The spatial characteristics of forest fire occurrence which are expressed in the predic-
tion map revealed again the strong relationship between forest fires and the population
factor, as already shown by the model. The cities, such as Seoul (1), Daejeon (2), Daegu
(3), and Busan (4), have high forest fire occurrence, whereas the western coastal part of
the peninsula, with low forest coverage, showed relatively low fire occurrence. The highly
elevated area through the Taebaek and Sobaek Mountains in the eastern part had a low
level of fire risk. These results reflect the topographical factors very well and reveal the
high similarity to the observed fire distribution.

The GLM map shows an irregular scattering of high occurrence regions (Figure 5b).
On the other hand, the predicted counts by GLMM show a more clustered pattern which
is similar to the real distribution of forest fire occurrence (Figure 5a). The tendency to be
concentrated at hot spots was increased on GLMM, indicating that GLMM reflects the
spatial correlation quite well.

This technique is very important to establish the management plan and strategy for
forest fire prevention. It can be applied as an enhanced technique to predict ‘hot spots’ of
fire ignition. The risk map (expected fire counts) can be useful for the positioning of fire-
observing agents and for zoning restricted areas in the mountains. Thereby, a fire prevention
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Table 3. The result of RMSE and Pearson correlation for model validation.

RMSE Pearson correlation

GLM 1.4398 0.4088
GLMM 1.2595 0.6267

The lowest value is the best in RMSE. Pearson correlation is improved with increasing proximity to 1.
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Figure 6. Scatter plots of observed and predicted fire counts using (a) GLM and (b) GLMM.
A point cluster arranged from lower left to upper right indicates a positive relationship between
the predictions and observations.

unit could efficiently make use of limited resources. Currently, the Korea Forest Research
Institute is developing a forest fire risk map using a logistic regression model with static
factors such as topographical variance and population density (Lee 2011). Compared to
that risk map, which does not consider spatial autocorrelation, the result of our research
gives more accurate predictions.

Validation was carried out for the other half of the data. The GLMM predictions for
the validation quadrats showed a remarkably lower root mean square error (RMSE) than
the estimates using GLM and also a higher correlation between predictions and observed
values (Table 3). The resulting scatter plots of observed vs. predicted fire counts (Figure 6)
show that GLMM had less extreme outliers than GLM and produced a scatter which was
more tightly concentrated around the diagonal.

5. Conclusion

This study aimed to predict the forest fire occurrence in Korea using spatial data. The accu-
racy and precision of the prediction were clearly improved by using the GLMM approach,
compared to the GLM approach. GLMM accounts for the spatial dependence of residuals,
whereas GLM assumes stochastically independent residuals. Spatially predicted counts of
fire remarkably increased after adding the interpolated residuals by kriging, whereas each
estimated parameter and P-value were similar in both the approaches. In both models, the
population density and elevation showed the clearest effect on fire occurrence according to
their P-values, followed by slope, AI, and distance from the road. Two of the forest cover
classes, broad leaf and mixed forest, were also significant compared to the reference class
comprising needle leaf forest, grassland, and others.
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Spatial autocorrelation of the standardized Pearson residuals of GLM was obvious in
the empirical variogram. Fitting a spherical variogram model yielded nugget and range
values quite similar to the nugget and range estimated by the GLMM.

Spatial autocorrelation is an important factor for estimation and prediction in regres-
sion modeling. Since most fires are caused by humans in South Korea, spatial autocorrela-
tion may be understood as an indicator of other unknown factors of accessibility.
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