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Spatially Explicit Modeling
of Savanna Processes

S.ztrin M. Meyer, Kerstin Wiegand, and David Ward

' CONTENTS
O 273
=vidence for the Importance of Space in Savannas ...........ccccccovvvveeeeennnnn. 276
Bpatial Modeling APProaches.........ccceeeeireerenenrieresinsneseese s osssssesssessess e 278
Conceptual MOdeLS ... 279
Remote Sensing, GIS, anid Spatial StatiStos ..usussemsmmmsomsmsomsenerssnserens 281
MOTent BUUaONE sawsssmmssmnmmisnsissmss st 282
DPHEIAL WA NIOEIEES o o nesmssssehamnesmmsmessssenmmimsionsn s bobomessosssmsg 5N 283
Rl S O] oot o st b R RS sos 283
il Bramar] MEBELS . il s b st 284
B L IB VOIS .o s enssons s sesows s S5 EEA 5m mmis ssmesesminns e nm i 286
BT O 110 .o vouesisomssosiseommns TS s SR IR A oo st s s s i s o s s e SR S 287
Lo o)
Introduction

Savannas are inherently spatially variable regardless of where they occur
Sinclair and Fryxell, 1985; Jeltsch et al.,, 1997; Wiegand et al.,, 2000a; Ward
2007, Figure 14.1). Therefore, models of savanna processes and patterns often
@ olicitly address spatial variation. In this chapter, we will first give an over-
W= of the features of savannas that show spatial variation. We will then
sresent evidence for the importance of spatial variation in savannas, because
gresence of spatial variation does not necessarily imply importance for
s&vanna dynamics. In the main part of the chapter, we will explain the spa-
#iz. modeling techniques that have been applied to savannas, give examples
W their application, and discuss their strengths and limitations.
small-scale features that affect spatial variation in savanna structure
wnclude geology and soil, rainfall, elevation and topography, fire, intra- and
‘ncerspecific competition, propagule pressure, and herbivory (Table 14.1).
‘ezarding geology and soil features, Britz and Ward (2007) found that there
were significant differences in the densities of Acacia mellifera on adjacent
mocky and sandy soil substrates less than 100 m apart. McNaughton (1983)
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FIGURE 14.1
(See color insert following page 320.) Spatial structure in a semiarid savanna.

found that lawn grass patches occur in the Serengeti savanna (Tanzan:z
and may be associated with sodic soils or fertile locations. Scholes a=z
Walker (1993) have shown that termite mounds and areas where peor =

have lived and /or livestock corralled are more fertile (due to higher levels

nitrogen there), which has led to changes in savanna structure, shifting =
Acacig-dominated savanna in an area dominated by broad-leaved tress

TABLE 14.1

Major Spatial Processes in Savannas and Their Effect on Savanna Plant Mortalit
Reproduction, and Growth; Their Direction; and the Scales They May Cover

Effect? on Plant ...

Spatial Processes Mortality Reproduction Growth Direction® Scale*
Abiotic Processes

Rain events - + + h 100 m-10 &m
Fire + —/+ 0 h (+v) 10 m-10 &=
Nutrient availability - + + h (+v) 1 mm-10 ks
Biotic Processes

Grazing + - —/+ h 1 m-10 k=
Termite mound degradation 0 0 + h 10 ecm-10 =
Belowground competition + - = v+h lcm-10=
Facilitation via hydraulic lift - + + v 1lem-10m
Dispersal - 0 0 h 1 em-10 km

2 Plants include trees, shrubs, and grasses; 0: neutral effect, — negative effect, +: positive ===
—/+: negative and positive effects.

Predominant direction of spatial variability; h: horizontal, v: vertical.

¢ Approximate scales covered by the process.
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- = and Ellis (1995) found that livestock increased seed densities of Acacia
s trees by 85 times inside corrals compared with similar areas outside
-orrals. In the Kruger Park of South Africa, the dominant savanna vegeta-
-~ patterns follow variation in climate, fire, geology, and soils (Scholes
. 2003). In the western Llanos of Venezuela, Silva and Sarmiento (1976)
~-ted by Sarmiento, 1996) have shown that species richness per 1000 m?
- vary between 53 and 84 species in a single soil catena and is strongly

= =z=d to water availability.

‘th regard to spatial variation in rainfall, there is a negative correlation
~ween mean annual rainfall and its coefficient of variation (see e.g., Sharon,
2. Ward, 2009), leading to large spatial variation in savanna structure and

.~ction as mean annual rainfall declines. Although rainfall is often consid-
s a large-scale feature, rainfall events can be highly localized, particu-

=s mean annual rainfall declines (Sharon, 1981).
~re is considered a major determinant of spatial variation in savanna
~cture, particularly in mesic savannas (Higgins et al., 2000), although
«usralian studies indicate that fire can be important at rainfall values as
2s 250-300 mm per annum (McKeon et al., 2004). Fires can result in
norzzsed space for trees to germinate en masse (Bond, 2008) or they can

VI SV

2.se trees to be removed, resulting in a more open savanna (McKeon et al.,
1< Ward, 2005). Due to the large variation in fuel loads caused by differ-
nc== in rainfall and soil type, fire intensity and duration vary considerably,

w=ulting in considerable variation in spatial structure (Bond, 2008).
zh regard to interspecific competition, Smith and Goodman (1986)
o= shown that Acacia tortilis and Euclea divinorum compete for space in
= mesic Mkhuze reserve (South Africa); whereas Schleicher et al. (unpub-
~=d data) have shown that two species (Tarchonanthus camphoratus and
«-2 mellifera) may compete for space in the semiarid area near Kimberley
wouth Africa). Propagule pressure may also show spatial structure. A spa-
¢ v explicit simulation model by Jeltsch et al. (1996) showed that rooting
.-~z separation might be insufficient to allow coexistence under a range of
—atic situations. However, Jeltsch et al. (1998) found that introducing
= sites for seedling establishment by simulating the effects of various
mzl-scale heterogeneities allowed coexistence. Grazing is widely pur-
worred to be the main factor affecting increases in tree density (Walker
1981; Ward, 2005). This is largely ascribed to heavy stocking by
1omestic livestock, creating gaps for mass recruitment of trees. Piosphere
~—ation (see e.g, Smet and Ward, 2006) and fenceline effects (e.g.,
“=~dricks et al., 2005) are also a major source of the spatial variation in
=nnas, caused largely by heavy grazing near water holes and differen-

12 ztfects of animal densities on either side of a fence.

= =n though savannas are often thought of as a homogeneous grass layer
n=rspersed with trees, the grass component is also expected to be spa-
 heterogeneous (e.g., O’Connor, 1991; Fowler, 2002; Augustine, 2003;
=zand et al., 2005). Jurena and Archer (2003) provided evidence that, in
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Texas, there are always gaps in the grass for some Prosopis plants to germi-
nate and establish. Spatial heterogeneity of the grass layer may thus facili-
tate woody invasion in grasslands. Such patterns are generally modified by
grazing and fire, both of which are known to be highly patchy and to inter-
act in spatially complex ways (e.g., Archibald et al., 2005; Getzin, 2007).

Large-scale spatial variation in savannas may occur too. In some cases,
vast areas are affected. For example, Sinclair and Fryxell (1985) consider the
Sahel, which covers 10 countries immediately south of the Sahara, as being
subject to large changes due to a change from migratory livestock to fixed
patterns of livestock control. Migratory ungulates use nutritious but seasonal
food and probably maintain larger populations as a consequence. In the
1950s and 1960s, pastoralists were forced to settle with their livestock. This
caused heavy grazing near these wells (leading to piosphere formation) and
has resulted in frequent famines since this time (Sinclair and Fryxell, 1985).
In North America, Schmitz et al. (2002) found that substrate heterogeneity in
pine savannas in Florida, measured as variation in elevation, may influence
species richness at larger spatial scales.

Evidence for the Importance of Space in Savannas -

Patterns are the outcome of processes that have acted over time and space.
Consequently, patterns are indicators of the processes that have shaped
them, and spatial patterns indicate the presence of spatial processes. Thus,
as a simple rule of thumb for model development, if there is at least one
spatial pattern observed at the range of scales relevant to the question being
studied, one should consider developing a spatial model. Arguably, this
means that one should virtually always consider developing spatial models,
because spatial patterns abound in our spatial world. The omnipresence of
spatial patterns also makes it often easier to think spatially than nonspa-
tially and to translate field knowledge into spatial rather than nonspatial
models. Notwithstanding this, once spatial models have been thoroughly
analyzed and have improved our understanding, it may well be possible to
simplify the model and to remove the spatial components (e.g., Adler and
Mosquera, 2000; Wiegand et al., 2004a). Most spatial savanna models pre-
sume that space is important without having explicitly tested the impor-
tance of space. A few exceptions exist and will be reviewed in the remainder
of this section, but future research will need to clarify the level of spatial
detail needed.

A common observation in savannas is the nonrandom spatial distribution
of trees. However, whether the distribution is aggregated, random, or regu-
lar may change with age of savanna trees. This emphasizes the importance
of space for explaining age-related phenomena. For example, small trees
may be clumped whereas large trees are randomly or even regularly spaced
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= 2., Skarpe et al,, 1991; Meyer et al., 2008). This transition is readily explained
-+ intraspecific competition leading to increased mortality of trees with
—zny neighbors. However, other explanations may be possible such as in the
-zse of Acacia raddiana trees in the Negev desert. At the seedling stage, these
zes were clumped, changing to a random distribution thereafter (Wiegand
== al, 2000a). In a spatially explicit simulation model, the breakup of the
—umped pattern was explained by both density-dependent mortality (com-
c<tition) or relatively high, yet density-independent, seedling mortality
“Wiegand et al, 2000a). The lesson that one pattern may have more than one
=«planation is also true for the example of the clumping of fleshy-fruited
~=wia flava relative to A. erioloba in the Kalahari and Kimberley Thorn
“ushveld (Dean et al., 1999; Figure 14.2). Both facilitation and directed seed
- spersal by birds and mammals are equally likely explanations. Spatial het-
=rogeneity, for example, in soil resources, may also play a role, and further
—odeling is required to sort out these possibilities. These examples show
-zt spatial patterns are key to better understand spatiotemporal processes
Tzble 14.1). The intricate mixture of space and time can be captured only by
sing spatial models.

y data (m)

SIGURE 14.2

==ple of spatial pattern of savanna plants. Spatial distribution of Acacia erioloba (open
~=s), Grewia flava (solid circles), and Ziziphus mucronata (triangles) at Pniel Estates (S 28°35,
1= 29), 30 km north of Kimberley, South Africa. Symbol size is proportional to canopy diam-

== . flava is significantly more frequently found beneath A. erioloba than in the open (Jana
_=cher, unpublished data and analyses).
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Recently, empirical and modeling evidence for explaining savanna tree—
grass coexistence with hierarchical patch dynamics has accumulated (e.g.,
Wiegand et al., 2005; Meyer et al., 2007b; Moustakas et al., 2009). Wiegand
et al. (2005) investigated patterns of local tree size distributions across an
Acacia reficiens savanna landscape in Namibia. Local tree size frequency dis-
tributions indicated that one or two age cohorts were present; whereas, at
the landscape scale, a multitude of cohorts were detected after a negative
exponential tree size—frequency distribution and reflecting an overall birth-
death equilibrium (Wiegand et al., 2005). Using paleoecological techniques,
Gillson (2004) found that patterns of vegetation change differed among
micro, local, and landscape spatial scales, with the most rapid changes at the
micro scale. In patch dynamic savannas, infrequent recruitment events gen-
erate even-aged stands at the local level. Competition at the micro level leads
via self-thinning (Wiegand et al., 2008) from dense localized tree patches
to open savanna with a few large trees. If the local recruitment events are
not correlated in space and time, then a stable savanna emerges (Gillson
2004; Wiegand et al., 2005, 2006). Other predictions of patch dynamics are sup-
ported by model results. Models show that mass recruitment driven by over-
lapping localized rain events in combination with self-thinning are the main
drivers in arid savannas (Figure 14.3). In humid savannas, recruitment bot-
tlenecks are more often mediated by fire (Higgins et al.,, 2000), whose spatia!
patchiness can drive patch dynamics as well. Since patch dynamics is a spa-
tial scale-explicit mechanism, its validity in savannas supports the impor-
tance of spatial scales in savannas. Overall, these examples highlight the
importance of including spatial structure in models of savanna dynamics.

Spatial Modeling Approaches

Models can incorporate space in various ways (Table 14.2). Descriptive
approaches such as conceptual and statistical models or applications of
remote sensing and GIS contribute to spatial savanna modeling by formal-
izing and quantifying spatial relationships. Equation-based modeling
approaches require mathematical extensions to incorporate space explicitly
such as in the case of moment equations and matrix models. Grid-based
approaches including cellular automata are specially designed to capture
spatial processes. Therefore, grid-based approaches offer probably the great-
est flexibility in describing, understanding, and predicting the impact of
spatial relationships on savanna patterns and dynamics. Since grid-based
modeling has been the most common approach in spatial savanna modeling
thus far, we will present this approach in more detail a little later. Each mod-
eling approach has strengths and limitations and should be applied accord-
ingly to the savanna processes involved (Table 14.2).
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FICURE 14.3
T-ee—grass ratios as a function of precipitation cloud size (length) and mean annual precipita-
~on. To test the hypothesis that local recruitment driven by localized rainfall and self-thinning
—zv be major drivers of patch dynamic arid savannas, Eisinger, Wiegand, and Ward (in prep.)
:-= developing a simulation model combining self-thinning of local shrub cohorts (Wiegand
- 21, 2008) with localized rainfall. (Adapted from Eisinger, D., and K. Wiegand 2008. South
~ican Journal of Science 104, 37-42.) The shading indicates tree-grass ratio in terms of tree
~~ver. Values below 0.05 indicate grassland, savanna extends from 0.05 to 0.25, and values
-=vond 0.25 indicate open woodland. This preliminary result shows that, given a fixed amount
- mean annual precipitation, tree—grass ratios shift toward greater tree cover if rainfall is
—ore patchily distributed in space (smaller precipitation cloud size). Especially in very dry
, savannas occur under patchy rainfall only. Further preliminary results show that the
<-ztial distribution of trees of different sizes generated by the model is in agreement with the
-~=:ch-dynamics hypothesis (results not shown). Thus, tree—grass coexistence is indeed possi-

- = in a framework of hierarchical patch dynamics.

Conceptual Models

_onceptual models organize information, represent hypotheses and theo-
~es, and are particularly useful for capturing spatial relationships. For
=xample, Walter’s two-layer hypothesis explained tree—grass coexistence in
==vannas with a spatial segregation of rooting depths to access water (Walter, I
=71), which was originally formulated as a conceptual model. Subsequent "
=mpirical and theoretical tests of Walter’s hypothesis were based on this spa-
21 conceptual model, yielding equivocal results (e.g., Knoop and Walker,
~231; Walker and Noy-Meir, 1982; Wiegand et al.,, 2005). In another spatial
-onceptual model, patch dynamics were mooted as a spatially explicit mech-
=nism underlying tree—grass coexistence (Wiegand et al., 2006; Meyer et al.,
2209). The explicit formulation of a conceptual model facilitated the deriva-
—on of specific predictions from the patch-dynamics mechanism such as the
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dccurrence of cyclical successions of grass and tree dominance at the patch
level (Meyer et al., 2009). State-and-transition models comprise a range of
conceptual models that classify vegetation into multiple stable states and for-
mulate probabilities for transitions between states. Transitions can be trig-
zered by natural disturbances such as fire or by management actions such as
zrazing or wood harvesting. State-and-transition models have, for example,
oeen used for the conceptual modeling of range management (Westoby et al.,
1989) and bush encroachment (Dougill and Trodd, 1999), albeit not dealing
with space explicitly. These examples illustrate the usefulness of conceptual
models as a first step in the investigation of a new theory and for improving
the communication between scientists, range managers, and the public.
However, these models have the disadvantage that the applicability of con-
ceptual models is limited to this early stage, because they are either purely
descriptive or make only qualitative and not quantitative predictions.

Remote Sensing, GIS, and Spatial Statistics

After the formulation of conceptual models, remote sensing techniques such
zs satellite imagery or aerial photography can provide large-scale informa-
Zon on spatial patterns required to parameterize and validate subsequent
modeling procedures (see also Section 3). Before this information can serve
2s input or validation for models, it needs to be processed to quantify the
spatial patterns. Therefore, remote sensing is frequently used in combination
with other descriptive techniques such as GIS and spatial statistics. The GIS
capture spatial data in layers that can be superimposed and related to each
sther (Wiegand et al,, 2000b). Spatial statistics cover a broad spectrum of
rechniques ranging from neighborhood analyses to spatial point pattern
methods. These techniques are mainly used to describe spatial patterns of
savanna vegetation and to infer the underlying processes.

Combining series of remotely sensed images, GIS, and spatial statistics can
zive insights into spatiotemporal patterns of savanna tree demography and
nelp identifying their underlying drivers such as competitive or facilitative
‘nteractions. By applying nearest-neighbor and spatial point pattern analy-
ses to remotely sensed data processed by a GIS to identify individual trees,
“foustakas et al. (2008) found cyclical transitions between clumped, random,
znd regular tree patterns over time. Smaller nearest-neighbor distances and
‘=ss clumped spatial point patterns coincided with high mortality, thus indi-
-ating the predominance of competitive interactions (Moustakas et al., 2008).
Couteron (2002) found remote sensing followed by spectral analysis with
Fourier transforms suitable for the description of patterned semiarid vege-
ation. The suitability of remotely sensed data for spatial savanna studies
Zepends on the resolution of the images. To create maps of burned areas in
savannas, the combined use of high- and low-resolution images seems more
zppropriate than using either of the two (Maggi and Stropiana, 2002).
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Remote sensing, GIS, and spatial statistics have all, either alone or in com-
bination, fruitfully been coupled with equation- or grid-based modeling
approaches. To reconstruct land cover distributions in savannas, GIS have
been combined with predictive land cover models for the analysis of pollen
distributions (Flantua et al., 2007). In a Zambian savanna, land cover change
has been predicted by linking remotely sensed data and a matrix model,
indicating the continuation of a trend toward increasing proportions of bare
and cultivated soils under unchanged environmental conditions (Petit et al.,
2001). In contrast, a rule-based expert system fed with remotely sensed and
GIS-processed data predicted canopy closure between woody clusters for a
mesquite savanna in Texas, in the absence of management (Loh and Hsieh,
1995). Applying spatial point-pattern analysis to the output of various grid-
based simulations of major savanna processes, Jeltsch et al. (1999) determined
general relationships between patterns and processes that were subsequently
used to infer the most likely processes generating the spatial tree patterns on
remotely sensed images of the Kalahariin South Africaand Botswana. There,
clumped tree patterns were promoted by grass fires, whereas random tree
patterns arose from randomly distributed establishment patches (Jeltsch
etal, 1999). However, the statistical analyses of the model output also showed
that the spatial pattern observed in the aerial photographs from the Kalahari,
that is, regular distributions at small scales and random or clumped distri-
butions at intermediate scales, was diagnostic both for persistent open savan-
nas and open savannas in transition toward woodlands. These combined
approaches are particularly strong, because they benefit from the quantifica-
tion strength of descriptive techniques and the predictive capabilities of
equation- or grid-based models. The disadvantage of remote sensing, GIS,
and spatial statistics approaches is their static nature. This could be overcome
by combining them with dynamic approaches or by investigating temporal
sequences of data (e.g., Moustakas et al., 2008).

Moment Equations

Incorporating spatial relationships explicitly into equation-based models is
not an easy task, because it always requires an extension of the model with
additional equations or matrices. In plant population modeling, deriving
moment equations has been found to be a useful approach to capture spatial
processes (Bolker et al., 2003). Moment equations or pair approximations
consist of a pair of equations where one equation represents average popula-
tion dynamics and the other represents the spatial covariance of the popula-
tion dynamics, that is, the spatial interactions between an individual and its
direct neighbors (Bolker and Pacala, 1997). This technique may be powerful
but has only very recently been applied to model spatial savanna dynamics
(Calabrese et al. 2010). A problem of moment equations is moment closure,
that is the fact that usually only the effect of the direct neighbors is incorpo-
rated but not the effect of the neighbors’ neighbors, to reduce mathematical
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complexity. Another disadvantage is that equation-based models are often
less strongly linked to empirical data, because they often contain aggregated
parameters that are difficult to parameterize. On the other hand, applica-
fions of moment equations benefit from the small data requirements, their
znalytical tractability, and their high potential for generalization. Therefore,
their careful application to the spatially explicit modeling of savanna pro-
cesses, probably in combination with other approaches, should be given
more consideration. An example of a question suitable for moment equation
modeling may be the extent to which local interactions matter for overall
savanna dynamics.

Spatial Matrix Models

Another mathematical approach to spatially explicit savanna modeling is to
zdd a spatial extension to matrix models. Matrix models often capture age-
or stage-structured population dynamics and can be applied to implement
state-and-transition models. Rows and columns of a matrix may refer to pop-
slation states such as age or stage class and matrix entries to transition prob-
=bilities between the respective states. Nonhomogeneous matrix models can
‘nclude perturbations to mean states and transitions due to spatial structure
ov adding an extra perturbation matrix. Another approach would be to cre-
=te a matrix whose entries are submatrices, representing the transitions in
cach cell of a spatially discrete landscape. In savannas, the perturbation
matrix approach has been used to predict land cover change (Petit et al,
2001), to evaluate individual plant architecture of fire-adapted species
Raventos et al., 2004), and to validate a new stability analysis method for
~onhomogeneous Markov models (Li, 1995). The submatrix approach has
oeen applied very rarely to savanna dynamics thus far (but see Miriti et al.,
2001). In addition to the analytical tractability of an equation-based model,
spatial matrix models have the additional advantage of capturing popula-
—on structure when based on populations. Therefore, spatial matrix models
-znbe used to investigate questions that focus on the demography of savanna
olants as suggested by Sankaran et al. (2004). However, all transition proba-
~lities need parameterization and are thus “data hungry”; and there is a
-rade-off between the ease with which an analytical solution of a matrix
model can be found and the number of influencing factors such as spatial or
:=mporal variation that can be concurrently analyzed.

Cellular Automata

n cellular automata, space is discretized into grid cells with a finite number of
Ziscrete states, in the narrow definition, only deterministic and synchronous
—ansition rules between the states (Childress et al, 1996; Hogeweg, 1988).
Transition rules depend on the direct neighborhood of a cell and represent local
teractions only. The direct neighborhood is defined as the four cells sharing an
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edge with the focal cell (von Neumann neighborhood) or all eight cells touch-
ing the focal cell (Moore neighborhood). In the wider definition of cellular
automata, stochastic and asynchronous transitions are also possible. The pat-
terns that cellular automata produce can subsequently be compared with
empirical data for validation. Spatial patterns emerging from cellular automata
that have been successfully validated include the spread of prescribed fires
(Berjak and Hearne, 2002); the distribution of crown heights and widths (Drake
and Weishampel, 2001); and the spread of tree species depending on fire,
demography, and seed dispersal (Hochberg et al.,, 1994). Cellular automata can
be used to determine the importance and quality of spatial effects for the simu-
lated patterns. In a sensitivity analysis of their cellular automaton, Drake and
Weishampel (2001) found that spatial crown distributions were highly sensitive
to spatially interactive parameters such as fire ignition, spread, and competi-
tion. A limitation of cellular automaton models is that they can quickly become
highly complex, because all transitions between all possible combinations of
states need to be described and parameterized from empirical data or expert
guesses. To reduce this complexity, aggregation techniques are available, such
as the voting system. In contrast to a unique neighbor system, in a voting sys-
tem, only the number of cells in each state in a neighborhood is determined and
not their exact location within the neighborhood (Childress et al., 1996). On the
other hand, narrowly defined cellular automaton models are analytically trac-
table and very flexible due to the great range of possible cell identities from
individual plants to pixels of satellite images (Childress et al., 1996).

Grid-Based Models

Grid-based models consist of a grid of cells similar to the grid on which
cellular automata are based, but they can capture interactions between any
two or more cells. These interactions are not confined to a specific neighbor-
hood such as in cellular automata. Cells of cellular automata can only be in
one of a defined set of states, whereas grid-based models can have complex
and structured dynamics within each cell. Thus, grid-based models can cap-
ture spatial structure of almost any complexity and are, therefore, probably
the most flexible spatially explicit modeling approach. The cells of a grid-
based model can represent individual organisms or aggregated information
such as biomass or presence or absence of a species. When cells contain indi-
vidual organisms, agent-based modeling is a common approach in which the
modeled dynamics emerges from individual interactions and depends on
individual properties such as canopy width or spatial location (Grimm and
Railsback, 2005). In the grid-, agent-, and rule-based savanna patch model
SATCHMO, shrub agents, whose seed output depended on the individual
property of canopy size, competed with other shrub or grass agents (Figure
14.4, Meyer et al,, 2007a). A 10 x 10 cm cell contained either a shrub seedling,
a part of a shrub or grass canopy, a part of the water uptake zone of one of
eight roots per shrub, or bare ground and a certain amount of daily updated
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FIGURE 14.4

Jverview of a typical model grid of an agent- and grid-based savanna model (a) and an enlarged
s=ction of the same grid (b). Grid-based models can be used to represent and analyse spatial
‘nteractions such as, in this example, water uptake and competition for soil moisture. The grid
covers about 500 x 500 m in reality and consists of square cells with a side length of 10 cm. The
‘nteracting agents are shrubs and grass tufts. Each shrub is represented by its canopy extent
=boveground (circles) and eight roots [black cells in (b)] below ground. Each root is surrounded
o7 an uptake zone (dark gray) to model water uptake and competition for water in overlapping
uptake zones [cells with bold black edges in (b)]. Grass tufts are represented by an uptake zone
light gray) and interact with shrubs when their uptake zones overlap. (Reprinted from K. M.

\fever et al.,, 2007a. Ecological Modelling 209, 377-391. © 2007. With permission from Elsevier.)

soil moisture. Spatial processes such as seed dispersal and shrub-shrub and
shrub-grass competition were modeled by distributing seeds according to
zn empirical distribution around their parent and distributing soil moisture
zccording to the number of individual shrubs and grass tufts overlapping in
= certain cell, respectively (Meyer et al., 2007a). Since simulations were ini-
sialized with one shrub individual and 10 randomly distributed grass tufts,
shrub and grass population and cover dynamics and spatial patterns were
cruly emergent from the simulations. These patterns were then used in a
validation procedure and analyzed to yield conclusions about the question at
nand. Parameterized with field data and a few expert guesses and success-
-ully validated against several observed patterns, SATCHMO showed that
cwclical successions between grassy and woody dominance can emerge from
z setting typical of a semiarid savanna (Meyer et al., 2007b), corroborating a
central prediction of patch-dynamics theory (Wiegand et al., 2006; Meyer
=t al, 2009, Chapter 16).

Grid-based modeling is one of the most common approaches in spatially
=xplicit savanna modeling, addressing a large spectrum of questions such as
che prediction of NPPE, water fluxes, radiation absorption (Simioni et al., 2003),
he impact of shrub encroachment on small mammals (Popp et al,, 2007), the
simulation of spatial rain cloud patterns (Eisinger and Wiegand, 2008), the
relationship between the fragmentation of a grazed area and herbivore
stocking rate in the SAVANNA model (Boone and Hobbs, 2004), or the
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ecological-socioeconomic assessment of management strategies in pastoral
systems (Miller et al.,, 2007). Grid-based approaches are particularly useful
in modeling spatial processes that range further than to the nearest plant
neighbor, such as in the case of seed dispersal, fire, or grazing. Special
emphasis has been placed on the role of grazing and herbivory for generat-
ing savanna dynamics and patterns (e.g., de Knegt et al., 2008). With a grid-
based model whose grid cells were linked by seed dispersal and fire, Baxter
and Getz (2005) showed that woody plant persistence was promoted by high
tolerance to browsing by elephants, browsing-induced increase in germina-
tion success, and faster growth of woody plants. On the other hand, Jeltsch
et al. (1996) found that persistence of tree clumps was promoted by interme-
diate values of grazing, fire, and moisture in their savanna modeling system.
In an extension of this model, the effect of grazing on shrub encroachment
depended on the time frame and became apparent at a century scale only
(Jeltsch et al., 1997). Moreover, Weber et al. (2000) identified a threshold
behavior of shrub cover response to grazing in their grid-based model, com-
plicating predictions of grazing effects. However, predicting the effects of
grazing is of major importance. For instance, grazing had a greater impact
on shrub cover than climate change in a grid-based model of a southern
African savanna (Tews et al., 2006, Chapter 15).

When compared with equation-based models, grid-based approaches do
not have to make compromises with regard to complexity to ensure mathe-
matical feasibility and are driven by and tightly linked to empirical data.
Therefore, grid-based models are often structurally realistic (Wiegand et al,
2004b), which facilitates model parameterization and validation using quali-
tative expert knowledge that can sometimes be the only type of knowledge
available in savannas. On the downside, they are very data hungry, which is
alleviated by their great flexibility to adapt the level of modeled detail to data
availability. Grid-based modeling is resource intensive regarding develop-
ing and computing time, and predictions are often difficult to generalize due
to the lack of analytical solutions. First attempts to approximate the output of
grid-based simulation models with analytical expressions (Calabrese et al.,,
2010) benefit from the full flexibility of one approach and the analytical trac-
tability and general conclusions of the second.

Conclusions

Spatially explicit savanna modeling has focused on processes with strong
spatial structure such as rainfall, fire spread, moisture fluxes, seed dispersal,
competition, and grazing. This pool of spatial processes also provides the
drivers of savanna tree—grass coexistence. Therefore, spatially explicit
approaches, be they empirical or theoretical, are crucial to elucidate the
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underlying mechanisms of tree-grass coexistence. The few existing spatially
explicit theories of tree-grass coexistence emphasize the importance of spa-
tial structure such as small-scale heterogeneities (Jeltsch et al,, 1998) and the
scale explicitness of patch dynamics (Wiegand et al,, 2006; Meyer et al., 2009).
These examples share another characteristic, that is, the combination of dif-
ferent approaches such as grid-based modeling and spatial statistics. Future
studies will greatly benefit from placing more emphasis on combining dif-
ferent approaches. Moreover, since savannas span a great range of spatial
scales, more scale-explicit approaches are needed in future spatial savanna
modeling. For example, among the grid-based approaches, agent-based mod-
els can cover several spatial scales by predicting large-scale population
dynamics from local interactions between plant and animal individuals.
Given that many people depend on savannas for a living, ultimately, the
challenge will be to apply the modeling results to develop management
strategies that sustain savanna ecosystems and improve people’s living. For
example, management may gain from applying the principles of patch
dynamics, which indicates that there is no single appropriate scale and that
changes are “normal” within any given savanna (Wiegand et al., 2006).

This will further enlighten the importance of spatially explicit savanna
modeling for describing, understanding, and predicting savanna processes,
patterns, dynamics, and management.
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