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troduction
,--annas are inherently spatially variable regardless of where they occur
::;1air and Fryxell, 1985; feltsch et al., 1997; Wiegand et a1., 2000a; Ward
-':; Figure 14.1). Therefore, models of savanna processes and patterns often
:Jcitly address spatial variation. In this chapter, we will first give an over-
=-,r- of the features of savannas that show spatial variation. We will then

nt evidence for the importance of spatial variation in savannas, because
sence of spatial variation does not necessarily imply importance for
-:nna dynamics. In the main part of the chapter, we will explain the spa-
modeling techniques that have been applied to savannas, give examples

'=eir application, and discuss their strengths and limitations.
S:rall-scale features that affect spatial variation in savanna structure
-ude geology and soil, rainfall, elevation and topography, fire, intra- and
rspecific competition, propagule pressure, and herbivory (Table 14.1)

larding geology and soil features, Brltz andWard (2007) found that there
:e significant differences in the densities of Acacia mellifera on adjacent
<r- and sandy soil substrates less than 100 m apart. McNaughton (1983)

l/,1

ltfil
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FICURE 14.1

(See color insert {ollowing page 320.) Spatial structure in a semiarld savanna.

found that lawn grass patches occur in the Serengeti savanna (Tanza:.-:
and may be associated with sodic soils or fertile locations. Scholes a::
Walker (1993) have shown that termite mounds and areas where p€c: :
have lived and/or livestock corralled are more fertile (due to higher ler-ei. :-
nitrogen there), whichhas led to changes in savanna structure, shiftin:::
Acacia-d,ominated savanna in an area dominated by broad{eaved t:*=

TABLE 14.1

Major Spatial Processes in Savannas and Their Effect on Savanna Plant Mortali:,
Reproduction, and Growth; Their Direction; and the Scaies They May Cover

Effect" on Plant...

Spatial Processes Mortality Reproduction Growth Directionb Scaie

Ahiotic Processes

Rain events

Fire

Nutrient availability

Biotic Processes

Gtazing
Termite mound degradation

Sgls\,\.ground competition

Facilitation via hydraulic lift
Dispersal

h 100 m-- .:
h (+i.) 10 m-i - '-:r
h (+v) 1 mm--, .;

L 1-^ 1_
1t 1 llt-l .

h 10 cm-- -
v+h 1cm-,-:
v 1 cm-,, -
h 1cm-- ,.r

:: tIIy Explicit Modeling o-i S,;.--.;.,..

. --- and Ellis (1995) found iha: ---..' ... trees by 85 times inside ::r:.:
' : --:rals. In the Kruger Park l- S:.:
: :atterns follow variatioi., -: -_
:, 2003). In the western L,a: - s -

. - -:ed by Sarmiento, 7996t ha-, = .:
, - :. arl between 53 and 8{ s:=:_=,
. r.il to water availabilitr.

::1 regard to spatial rarl::..: _
' -- =en mean annual rainfa _ :- _ :,
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"'. as mean annual rainfal- de.:-_:.
:.:= is considered d rldjt\: J:::::

---_:::ure, particularly in n-,€5-a j:.
- *:::alian studies indicate :i.:: ::.

:s 250-300 mm per ann;:: l-l
:' ::-:sed space for trees to :.:::t:
: -- :a rrees to be remOr.ed, resu. . -:- ='-

- - i\ard, 2005). Due to th. l:----
' -.: r- rainfall and soil tr ;. _ .-= -

' : : * -:,ng in considerable r-aria:- -: :
::r regard to interspec:._- _-.:-

1 r a :ho\4/n that Acacia /c.r::,:_. ,.:-;
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: ; ', :rplicit simulation moCe- :-, ,
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r :::ic situations. Hon'er-er. ';-:.:_
,-= !:tes for seedling estabi:s:-::-:
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; -::.i to be the main factor : _t.;:

:. i981; Ward, 2005). Th:s -_. _:
, ::s:ic livestock, creating ga:::::

- ' ::lon (see e.g., Smet ar,; 1,,',.:
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, -r and Ellis (1995) found that livestock increased seed densities of Acncia
..-. irees by 85 times inside corrals compared with similar areas outside

- :::als. In the Kruger Park of South Africa, the dominant savanna vegeta-
- :atterns follow variation in climate, fire, geology, and soils (Scholes
. 2003). In the western Llanos of Venezuelu, Slt ra ut-ra Sarmiento (1976)

- ,:d by Sarmiento, 7996) have shown that species richness per 1000 m:
- -" ary between 53 and 84 species in a single soil catena and is stronglr.

, :::l to water availability.
, -:h regard to spatial variation in rainfall, there is a negative correlation

' : -',, €€fl mean annual rainfall and its coefficient of variation (see e.g., Sharon,
" : - -l\-ard, 2009), leading to large spatial variation in savanna structure and
' - -':;on as mean annual rainfall declines. Although rainfall is often consid-
' .: :s a large-scale feature, rcinfall events can be highly localized, particu-

:s mean annual rainfall declines (Sharon, 1981).
: := is considered a major determinant of spatial variation in savanna
-'-::ure, particularly in mesic savannas (Higgins et al., 2000), although
",::alian studies indicate that fire can be important at rainfall values as

:. 250-300 mm per annum (McKeon et al., 2004). Fires can result in
".:=:'ed space for trees to germinate en masse (Bond,2008) or they can
. -..= irees to be removed, resulting in a more open savanna (McKeon et a1.,

-:r - r\-ard, 2005). Due to the large variation in fuel loads caused by differ-
- -: s rn rainfall and soil type, fire intensity and duration vary considerabiy,

', ',,:-ng in considerable variation in spatial structure (Bond, 2008).

' :: regard to interspecific competiiion, Smith and Goodman (1986)
i = 'hown lhat Acacia tortilis and Euclea dirtinorum compete for space in

" . :..€SiC Mkhuze reserve (South Africa); whereas Schleicher et al. (unpub-
, "=,1 data) have shown that two species (Tarchonanthus camphorntus and
:::.;'nellifera) may compete for space in the semiarid area near Kimberley

-, -:r -\frica). Propagule pressure may also show spatial structure. A spa-
' i , explicit simulation model by Jeltsch et aI. (1996) showed that rooting
' : - separation might be insufficient to allow coexistence under a range of

::iic situations. However, Jeltsch et al. (1998) found that introducing
,-. :ltes for seedling establishment by simulating the effects of various
r'.---scale heterogeneities allowed coexistence. Grazing is widely pur-
' ::=l to be the main factor affecting increases in tree density (Walker

: 1987; Ward, 2005). This is largely ascribed to heavy stocking by
. :=stic iivestock, creating gaps for mass recruitment of trees. Piosphere

-:::tion (see e.g., Smet and Ward, 2006) and fenceline effects (e.g.,
' . ::icks et a1., 2005) are also a major source of the spatial variation in
, jr,r1as, caused largelyby heavy grazing near water holes and differen-
, =:iects of animal densities on either side of a fence.
: =r though savannas are often thought of as a homogeneous grass layer

'-.:.:ersed with trees, the grass component is also expected to be spa-
i .. heterogeneous (e.g., O'-onnor, 1997; Fowler, 2002; Augustine, 20b3;
:::nd et al., 2005). Jurena and Archer (2003) provided evidence that, in
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Texas, there are always gaps in the grass for some ProsoTsis plants to germi-
nate and establish. Spatial heterogeneity of the grass layer may thus facili-
tate woody invasion in grasslands. Such patterns are generally modified br
grazing and fire, both of which are known to be highly patchy and to intei-
act in spatially complex ways (e.g, Archibald et a7,2005; Getzin,2007).

Large-scale spatial variation in savannas may occur too. In some cases.
vast areas are affected. For example, Sinclair and Fryxell (1985) consider the
Sahel, which covers 10 countries immediately south of the Sahara, as being
subject to large changes due to a change from migratory livestock to fixe,r
patterns of livestock controi. Migratory ungulates use nutritious but seasona-
food and probably maintain larger populations as a consequence. In the
1950s and 1960s, pastoralists were forced to settle with their livestock. This
caused heavy grazing near these wells (leading to piosphere formation) anc
has resulted in frequent famines since this time (Sinclair and Fryxell, 1985i.
In North America, Schmitz et al. (2002) found that substrate heterogeneity in
pine savannas in Florida, measured as variation in elevation, may influence
species richness at larger spatial scales.

Evidence for the Importance of Space in Savannas '

Patterns are the outcome of processes that have acted over time and space.
Consequently, patterns are indicators of the processes that have shapec
them, and spatial patterns indicate the presence of spatial processes. Thus.
as a simple rule of thumb for model development, if there is at least one
spatial pattern observed at the range of scales relevant to the question being
studied, one should consider developing a spatial model. Arguably, this
means that one should virtually always consider developing spatial models.
because spatial patterns abound in our spatialworld. The omnipresence oi
spatial patterns also makes it often easier to think spatially than nonspa-
tially and to translate field knowledge into spatial rather than nonspatial
models. Notwithstanding this, once spatial models have been thoroughh
analyzed and have improved our understanding, it may well be possible to
simplify the model and to remove the spatial components (e.g., Adler and
Mosquera, 2000; Wiegand et a1., 2004a). Most spatial savanna models pre-
sume that space is important without having explicitly tested the impor-
tance of space. A few exceptions exist and willbe reviewed in the remainder
of this section, but future research will need to clarify the level of spatiai
detail needed.

A common observation in savannas is the nonrandom spatial distribution
of trees. However, whether the distribution is aggregated, random, or regu-
lar may change with age of savanna trees. This emphasizes the importance
of space for explaining age-related phenomena. For example, smali trees
may be clumped whereas iarge trees are randomiy or even regularly spaced

:.-. tially Explicit Modeling oi S -i: .;.

= 9., Skarpe eta1.,7997;lvler-er e: a_
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.:'.any neighbors. However, oth e: ;
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::ees were clumped, changirq:.- :
.: a1., 2000a). In a spatiallr- e.,:-.:
: rmped pattern wai expla-:-.: -

:.:ition) or relatively high . .:-'\-iegand 
et a1., 2000a). The -e..r:

. rplanation is also true icr :_--_ 
=

."ttt,iq flaua relatle to A. .. ---"-,::.

-:-rshveld (Dean et aI.,7999; ii:;:"
:.spersal by birds and mamr =-: :
=:ogeneity, for example, in si-:_ :...
::.odeling is required to sori ::: :

:::at spatial patterns are ket :,, :,.:
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:sing spatial models.
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. ;., Skarpe et aL,799L; Meyer et a1., 2008). This transition is readily explained
--.,. intraspecific competition leading to increased mortality of trees with

- arv neighbors. However, other explanations may be possible such as in the
-:.e of Acncia raddiana trees in the Negev desert. At the seedling stage, these
:::es were clumped, changing to a random distribution thereafter (Wiegand

=: a1., 2000a). In a spatially explicit simulation model, the breakup of the
:,;nped pattern was explained by both density-dependent mortality (com-
:=:rtion) or relatively high, yet density-independent, seedling mortality
-,",'iegand 

et a1.,2000a). The lesson that one pattern may have more than one

',.:ianation is also true for the example of the clumping of fleshy-fruited

'-..;ia flaoa relative to A. erioloba in the Kalahari und Ki*b"rley Thorn
::shveld (Dean et a7.,7999; Figure 14.2). Both facilitation and directed seed
:,=:ersal by birds and mammals are equally likely explanations. Spatial het-
:.: r'*eneit/, for example, in soil resources, may also play a role, and further
::Jeling is required to sort out these possibilities. These examples show
-::: spatial patterns are key to better understand spatiotemporal processes

-::1e 14.1). The intricate mixture of space and time can be captured only by
--'rg spatial models.

M AA\$da6W a.--.,
" {:%* )

6 @\-/

:r data (m)

: ,- [_ RE 14.2
, ::::le of spatial pattern of savanna plants. Spatial distribution of Acacia eriolobn (open
::.:- . Grewia flaaa (solid circles), and Ziziphus mLLcronatn (triangles) at Pniel Estates (S 28"35',

. -='19'), 30 km north of Kimberley, South Africa. Symbol size is proportional to canopy diam-
-.: ...flaaa is significantly more frequently found beneath A. erioloba than in the open (Jana
- - .'-rher, unpublished data and analyses).

A@
\l/,.so^

e.,ert{d7'
,*aA=4r

&

;

E;so

0



278 Ecosystem Function in Saaanna:

Recently, empirical and modeling evidence for explaining savanna tree-
grass coexistence with hierarchical patch dynamics has accumulated (e.g.

Wiegand et aI., 2005; Meyer et a7., 2007b; Moustakas et a1., 2009). Wiegana
et al. (2005) investigated patterns of local tree size distributions across ar-

Acacia ret'iciens savanna landscape in Namibia. Local tree size frequency dis-
tributions indicated that one or two age cohorts were present; whereas, a:

the landscape scale, a multitude of cohorts were detected after a negatir-e
exponential tree size-frequency distribution and reflecting an overall birth-
death equilibrium (Wiegand et a1., 2005). Using paleoecological techniques.
Gillson (2004) found that patterns of vegetation change differed among
micro, local, and landscape spatial scales, with the most rapid changes at the

micro scale. In patch dynamic savannas/ infrequent recruitment events gen-

erate even-aged stands at the local level. Competition at the micro level lead.
via self-thinning (Wiegand et a1., 2008) from dense localized tree patches

to open savanna with a few large trees. If the local recruitment events are

not correlated in space and time, then a stable savanna emerges (Gillson
2004; Wiegand et a1., 2005,2006). Other predictions of patch dynamics are suF-

ported by model results. Models show that mass recruitment driven by over-
lapping localized rain events in combination with self-thinning are the mai::
drivers in arid savannas (Figure 14.3). In humid savannas, recruitment bot-
tlenecks are more often mediated by fire (Higgins et al., 2000), whose spatia-

patchiness can drive patch dynamics as well. Since patch dynamics is a spa-

tial scale-explicit mechanism, its validity in savannas supports the impor-
tance of spatial scales in savannas. Overall, these examples highlight the

importance of including spatial structure in models of savanna dynamics.

Spatial Modeling Approaches

Models can incorporate space in various ways (Table 14.2). Descriptir e

approaches such as conceptual and statistical models or applications o:

remote sensing and GIS contribute to spatial savanna modeling by forma-
izing and quantifying spatial relationships. Equation-based modelini
approaches require mathematical extensions to incorporate space explicith
such as in the case of moment equations and matrix models. Grid-basec
approaches including cellular automata are specially designed to capture
spatial processes. Therefore, grid-based approaches offer probably the great-

est flexibility in describing, understanding, and predicting the impact c:
spatial relationships on savanna patterns and dynamics. Since grid-base;
modeiing has been the most common approach in spatial savanna modelin=-

thus far, we will present this approach in more detail a little later. Each moo-
eling approach has strengths and limitations and should be applied accori-
ingly to the savanna processes involved (Table 14.2).

,.:i,tllA Explicit Modeling o- -i.;: .:-:
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;ICURE 14.3
:.e-grass ratios as a function of precipitation cloud size (length) and mean annual precipita-

-, . r. To test the hypothesis that local recruitment driven by localized rainfall and self-thinning
-:.-. be major drivers of patch dynamic arid savannas, Eisinger, Wiegand, and Ward (in prep.)
::= Jeveloping a simulation model combining self-thinning of 1oca1 shrub cohorts (Wiegand
., "'.1.,2008) with localized rainfall. (Adapted from Eisinger, D., and K. Wiegand 2008. South
-'::.trt Journal of Science I04,37-42.) The shading indicates tree-grass ratio in terms of tree
: -.:r. Values below 0.05 indicate grassland, savanna extends from 0.05 to 0.25, and values
:=: lnd 0.25 indicate open woodland. This preliminary result shows that, given a fixed amount
:: :nean annual precipitatiory tree-grass ratios shift toward greater tree cover if rainfall is

---re patchily distributed in space (smaller precipitation cloud size). Especially in very dry
:::rs, savannas occur under patchy rainfall only. Further preliminary results show that the
. :.:ial distribution of trees of different sizes generated by the model is in agreement with ihe
::::h-dynamics hypothesis (results not shown). Thus, tree-grass coexistence is indeed possi-
:.= rn a framework of hierarchical patch dynamics.

lonceptual Models
^,anceptual models organize information, represent hypotheses and theo-
:--:, and are particularly useful for capturing spatial relationships. For
:-'.ample, Walter's two-layer hypothesis explained tree-grass coexistence in
::-iannas with a spatial segregation of rooting depths to access water (Walter,
:-1), which was originally formulated as a conceptual model. Subsequent

=:lDirical and theoretical tests of Walter's hypothesis were based on this spa-
:r:f conceptual model, yielding equivocal results (e.g., Knoop and Walker,

-:S1; Walker and Noy-Meir, 1982; Wiegand et a1., 2005). In another spatial
:--..ceptual model, patch dynamics were mooted as a spatially explicit mech-
.::sm underlying tree-grass coexistence (Wiegand et a1., 2006; Meyer et al.,

-, -r9). The explicit formulation of a conceptual model facilitated the deriva-
. ' l.i1 of specific predictions from the patch-dynamics mechanism such as the

ill,



Ecosystem Function in Saaannas Sp atially Explicit Mo deling of tuw

occurrence of cyclical successimrs
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Spatially Explicit Modeling of Sazsannq Processes

-rccurrence of cyclical successions of grass and tree dominance at the patch
,evel (Meyer et al., 2009). State-and-transition models comprise a range of
:onceptual models that classify vegetation into multiple stable states and for-
:Lulate probabilities for transitions between states. Transitions can be trig-
Eered by natural disturbances such as fire or by management actions such as

:,razing or wood harvesting. State-and-transition models have, for example,
reen used for the conceptual modeling of range management (Westoby et a1.,

i989) and bush encroachment (Dougill and Trodd, 1999), albeit not dealing
",rith space explicitly. These examples illustrate the usefulness of conceptual
rodels as a first step in the investigation of a new theory and for improving
::1e communication between scientists, range managers, and the public.
F{owever, these models have the disadvantage that the applicability of con-
:eptual models is limited to this early stage, because they are either purely
:escriptive or make only qualitative and not quantitative predictions.

Remote Sensing, GlS, and Spatial Statistics

-\fter the formulation of conceptual models, remote sensing techniques such
:: satellite imagery or aerial photography can provide large-scale informa-
::on on spatial patterns required to parameterize and validate subsequent
::rodeling procedures (see also Section 3). Before this information can serve
:> input or validation for models, it needs to be processed to quantify the

'patial patterns. Therefore, remote sensing is frequently used in combination
-.iith other descriptive techniques such as GIS and spatial statistics. The GIS

-apture spatial data in layers that can be superimposed and related to each
Ither (Wiegand et al., 2000b). Spatial statistics cover a broad spectrum of
:echniques ranging from neighborhood analyses to spatial point pattern
rethods. These techniques are mainly used to describe spatial patterns of
:avanna vegetation and to infer the underlying processes.

Combining series of remotely sensed images, GI$ and spatial statistics can
:ir-e insights into spatiotemporal patterns of savanna tree demography and
:e1p identifying their underlying drivers such as competitive or facilitative
--nteractions. By applying nearest-neighbor and spatial point pattern analy-
;es to remotely sensed data processed by a GIS to identify individual trees,
I'loustakas et al. (2008) found cyclical transitions between clumped, random,
:nd regular tree patterns over time. Smaller nearest-neighbor distances and
-ess clumped spatial point patterns coincided with high mortality, thus indi-
:atir-rg the predominance of competitive interactions (Moustakas et a1., 2008).

-outeron (2002) found remote sensing followed by spectral analysis with
lourier transforms suitable for the description of patterned semiarid vege-
:ation. The suitability of remotely sensed data for spatial savanna studies
:epends on the resolution of the images. To create maps of burned areas in
:avannas, the combined use of high- and low-resolution images seems more
:rpropriate than using either of the two (Maggi and Stropiana,2002).
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Remote sensing, GIS, and spatial statistics have all, either alone or in con.-
bination, fruitfully been coupled with equation- or grid-based modelin:
approaches. To reconstruct land cover distributions in savannas, GIS har e

been combined with predictive land cover models for the analysis of poller.
distributions (Flantua et a1.,2007).In aZambian savanna, land cover change
has been predicted by linking remotely sensed data and a matrix mode1.

indicating the continuation of a trend toward increasing proportions of bare
and cultivated soils under unchanged environmental conditions (Petit et al.,

2001). In contrast a rule-based expert system fed rt'ith remotely sensed ani
GlS-processed data predicted canopy closure betn'een woody clusters for a

mesquite savanna in Texas, in the absence of management (Loh and Hsieh.
1995). Applying spatial point-pattern analysis to the output of various grid-
based simulations of major savanna processes, ]eltsch et al. (1999) determinec
general relationships between patterns and processes that were subsequentlr'
used to infer the most likely processes generating the spatial tree patterns or.
remotely sensed images of the Kalahari in South Africa and Botswana. There
clumped tree patterns were promoted by grass fires, whereas random tree
patterns arose from randomly distributed establishment patches (Jeltsch

et a7.,7999). However, the statistical analyses of the model output also shor,r'ei
that the spatial pattern observed in the aerial photographs from the Kalahari.
that is, regular distributions at small scales and random or clumped distri-
butions at intermediate scales, was diagnostic both for persistent open savan-
nas and open savannas in transition toward woodlands. These combinei
approaches are particularly strong, because they benefit from the quantifica-
tion strength of descriptive techniques and the predictive capabilities o:
equation- or grid-based models. The disadvantage of remote sensing, GIS.
and spatial statistics approaches is their static nature. This could be overcome
by combining them with dynamic approaches or by investigating tempora,
sequences of data (e.g., Moustakas et a1., 2008).

Moment Equations

Incorporating spatial relationships explicitly into equation-based models is

not an easy task, because it aiways requires an extension of the model with
additional equations or matrices. In plant population modeling, deriving
moment equations has been found to be a usefui approach to capture spatia,
processes (Bolker et al., 2003). Moment equations or pair approximations
consist of a pair of equations where one equation represents average popula-
tion dynamics and the other represents the spatial covariance of the popuia-
tion dynamics, that is, the spatial interactions between an individual and its
direct neighbors (Bolker and Pacala, 1997). This technique may be powerfui
but has only very recently been applied to model spatial savanna dynamics
(Calabrese et al. 2010). A problem of moment equations is moment closure.
that is the fact that usually only the effect of the direct neighbors is incorpo-
rated but not the effect of the neighbors' neighbors, to reduce mathematica.
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:omplexity. Another disadvantage is that equation-based models are often
-ess strongly linked to empirical data" because they often contain aggregated
:arameters that are difficult to parameterize. On the other hand, applica-
:rons of moment equations benefit from the small data requirementi, their
:nalytical tractability, and their high potential for generalization. Therefore,
:neir careful application to the spatially explicit modeling of savanna pro-
:esses, probably in combination with other approaches, should be given
:-rore consideration. An example of a question suitable for moment equation
rodeling may be the extent to which local interactions matter for overall
:a\-anna dynamics.

Spatial Matrix Models

-nother mathematical approach to spatiaily explicit savanna modeling is to
:Jd a spatial extension to matrix models. Matrix models often capture age-
-.i stage-structured population dynamics and can be applied to implement
.:ate-and-transition models. Rows and columns of a matrix may refer to pop-
-,ation states such as age or stage class and matrix entries to transition prob-
::ilities between the respective states. Nonhomogeneous matrix models can
-:'clude perturbations to mean states and transitions due to spatial structure
:-i adding an extra perturbation matrix. Another approach would be to cre-
::e a matrix whose entries are submatrices, representing the transitions in
=:.ch cell of a spatially discrete landscape. In savannas, the perturbation
::.atrix approach has been used to predict land cover change (Petit et a1.,

--01), to evaluate individual plant architecture of fire-adapted species
Laventos et al., 2004), and to validate a new stability analysis method for

: -rnhomogeneous Markov models (Li, 1995). The submatrix approach has
:een applied very rarely to savanna dynamics thus far (but see Miriti et a1.,

- 01). In addition to the analytical tractability of an equation-based model,
.:atial matrix models have the additional advantage of capturing popula-
:::n structure when based on populations. Therefore, spatial matrix models
::r be used to investigate questions that focus on the demography of savanna
:-ants as suggested by Sankaran et al. (2004). However, all transition proba-
::,ities need parameterization and are thus "data hungry"; and there is a
::ade-off between the ease with which an analytical solution of a matrix
::.ode1 can be found and the number of influencing factors such as spatial or
.=nporal variation that can be concurrently analyzed.

Cellular Automata

: cellular automat4 space is discretized into grid cells with a finite number of
: -rcrete states, in the narrow definition, only deterministic and synchronous
.::nsition rules between the states (Childress et a!., 7996; Hogeweg, 1988).

-:ansition rules depend on the direct neighborhood of a cell and represent local
::eractions only. The direct neighborhood is defined as the four cells sharing an
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edge with the focal ce1l (von Neumann neighborhood) or all eight cells touch-
ing the focal cell (Moore neighborhood). In the wider definition of cellular
automata, stochastic and asynchronous transitions are also possible. The pat-
terns that cellular automata produce can subsequently be compared with
empirical data for validation. Spatial patterns emerging from cellular automata
that have been successfully validated include the spread of prescribed fires
(Berjak and Hearne, 2002\ the distribution of crown heights and widths (Drake
and Weishampef 2001); and the spread of tree species depending on fire,
demography, and seed dispersal (Hochberg et a7.,1994). Cellular automata can
be used to determine the importance and quality of spatial effects for the simu-
lated patterns. In a sensitivity analysis of their cellular automaton, Drake and
Weishampel (2001) found that spatial crown distributions were highly sensitive
to spatially interactive parameters such as fire ignitiory spread, and competi-
tion. A limitation of cellular automaton models is that they can quickly become
highiy complex, because al1 transitions between all possible combinations of
states need to be described and parameterized from empirical data or expert
guesses. To reduce this complexity, aggregation techniques are available, such
as the voting system. In contrast to a unique neighbor system, in a voting sys-
tem, only the number of cells in each state in a neighborhood is determined and
not their exact location within the neighborhood (Childress et al., 1996). On the
other hand, narrowly defined cellular automaton models are analytically trac-
table and very flexible due to the great range of possible cell identities from
individual plants to pixels of satellite images (Childress et a1.,1996).

Grid-Based Models

Grid-based models consist of a grid of celis simiiar to the grid on which
cellular automata are based, but they can capture interactions between anv
two or more cells. These interactions are not confined to a specific neighbor-
hood such as in cellular automata. Cells of cellular automata can only be in
one of a defined set of states, whereas grid-based models can have complex
and structured dynamics within each cell. Thus, grid-based models can cap-
ture spatial structure of almost any complexity and are, therefore, probablr-
the most flexible spatially explicit modeling approach. The cells of a grid-
based model can represent individual organisms or aggregated information
such as biomass or presence or absence of a species. When cells contain indi-
vidual organisms, agent-based modeling is a common approach in which the
modeled dynamics emerges from individual interactions and depends on
individual properties such as canopy width or spatial location (Grimm and
Railsback, 2005). In ihe grid-, agent-, and rule-based savanna patch model
SATCHMq shrub agents, whose seed output depended on the individual
property of canopy size, competed with other shrub or grass agents (Figure
14.4, Meyer et a1.,2007a). A 10 x 10 cm cell contained either a shrub seedling,
a part of a shrub or grass canopy, a part of the water uptake zone of one oi
eight roots per shrub, or bare ground and a certain amount of daily updatec
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FIGURE 14.4
l-, err.iew of a typical model grid of an agent- and grid-based savanna model (a) and an eniarged
..-tron of the same grid (b). Grld-based models can be used to represent and analyse spatial
:.:eractions such as, in this example, water uptake and competition for soil moisture. The grid
-: i'ers about 500 x 500 m in reality and consists of square cells with a side length of 10 cm. The
:::eracting agents are shrubs and grass tufts. Each shrub is represented by its canopy extent
::oleground (circles) and eight roots [black cells in (b)] below ground. Each root is surrounded
:: an uptake zone (dark gray) to model water uptake and competition for water in overlapping
-:take zones lcells with bold black edges in (b)]. Grass tufts are represented by an uptake zone
.:qht gray) and interact with shrubs when their uptake zones overlap. (Reprinted from K. M.

l.lever et a1., 2007a. Ecological Modelling209,377-397. O 2002 With permission from Elsevier.)

:,,.i1 moisture. Spatial processes such as seed dispersal and shrub-shrub and
:..rub-grass competition were modeled by distributing seeds according to
-.i1 empirical distribution around their parent and distributing soil moisture
r;cording to the number of individual shrubs and grass tufts overlapping in
: certain cell, respectively (Meyer et ai., 2007a). Since simulations were ini-
.',ahzed with one shrub individual and 10 randomly distributed grass tufts,

'hrub and grass population and cover dynamics and spatial patterns were
::uly emergent from the simulations. These patterns were then used in a
'.'alidaiion procedure and analyzed to yield conciusions about the question at
:and. Parameterized with field data and a few expert guesses and success-

:-;11y validated against several observed patterns, SATCHMO showed that
:,-;1ical successions between grassy and woody dominance can emerge from
r setting typical of a semiarid sunir-rt-ra (Meyei et a1.,2007b), corroboiating a

:entrai prediction of patch-dynamics theory (Wiegand et al., 2006; Meyer
.. d..,2009, Chapter 16).

Grid-based modeling is one of the most common approaches in spatially

=\plicit savanna modeling, addressing a large spectrum of questions such as

-:,e prediction of NPP, water fluxes, radiation absorption (Simioni et a1., 2003),
:j.,e impact of shrub encroachment on small mammals (Popp et aI.,2007), the
iirnulation of spatial rain cloud patterns (Eisinger and Wiegand, 2008), the
:elationship between the fragmentation of a grazed area and herbivore
::ocking rate in the SAVANNA model (Boone and Hobbs, 2004), or the

285 tlilill
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ecological-socioeconomic assessment of management strategies in pastoral
systems (Mtiller et a1.,2007). Grid-based approaches are particularly useful
in modeling spatial processes that range further than to the nearest plant
neighbor, such as in the case of seed dispersal, fire, or grazing. Special
emphasis has been placed on the role of grazing and herbivory for generat-
ing savanna dynamics and patterns (e.9, de Knegt et a1.,2008). With a grid-
based model whose grid cells were linked by seed dispersal and fire, Baxter
and Getz (2005) showed that woody plant persistence was promoted by high
tolerance to browsing by elephants, browsing-induced increase in germina-
tion success, and faster growth of woody plants. On the other hand, Jeltsch
et al. (1996) found that persistence of tree clumps was promoted by interme-
diate values of grazing, fire, and moisture in their savanna modeling system.
In an extension of this model, the effect of grazing on shrub encroachment
depended on the time frame and became apparent at a century scale only
(Jeltsch et aI., 1997). Moreover, Weber et al. (2000) identified a threshold
behavior of shrub cover response to grazing in their grid-based model, com-
plicating predictions of grazing effects. However, predicting the effects of
grazing is of major importance. For instance, grazing had a greater impact
on shrub cover than climate change in a grid-based model of a southern
African savanna (Tews et a1..,2006, Chapter 15).

When compared with equation-based models, grid-based approaches do
not have to make compromises with regard to complexity to ensure mathe-
matical feasibility and are driven by and tightly linked to empirical data.
Therefore, grid-based models are often structurally realistic (Wiegand et al.,
2004b), which facilitates model parameterization and validation using quali-
tative expert knowledge that can sometimes be the only type of knowledge
available in savannas. On the downside, they are very data hungry, which is
alleviated by their great flexibility to adapt the level of modeled detail to data
availability. Grid-based modeling is resource intensive regarding develop-
ing and computing time, and predictions are often difficult to generalize due
to the lack of analytical solutions. First attempts to approximate the output of
grid-based simulation models with analytical expressions (Calabrese et a1.,

2010) benefit from the full flexibility of one approach and the analytical trac-
tability and general conclusions of the second.

Conclusions

Spatially explicit savanna modeling has focused on processes with strong
spatial structure such as rainfall, fire spread, moisture fluxes, seed dispersal,
competition, and grazing. This pool of spatial processes also provides the
drivers of savanna tree-grass coexistence. Therefore, spatially explicit
approaches, be they empirical or theoretical, are crucial to elucidate the
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