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Abstract. We review the role of density dependence in the stochastic extinction of populations
and the role density dependence has played in population viability analysis (PVA) case studies.
In total, 32 approaches have been used to model density regulation in theoretical or applied
extinction models, 29 of them are mathematical functions of density dependence, and one
approach uses empirical relationships between density and survival, reproduction, or growth
rates. In addition, quasi-extinction levels are sometimes applied as a substitute for density
dependence at low population size. Density dependence further has been modelled via explicit
individual spacing behaviour and/or dispersal. We briefly summarise the features of density
dependence available in standard PVA software, provide summary statistics about the use of
density dependence in PVA case studies, and discuss the effects of density dependence on
extinction probability. The introduction of an upper limit for population size has the effect
that the probability of ultimate extinction becomes 1. Mean time to extinction increases with
carrying capacity if populations start at high density, but carrying capacity often does not have
any effect if populations start at low numbers. In contrast, the Allee effect is usually strong
when populations start at low densities but has only a limited influence on persistence when
populations start at high numbers. Contrary to previous opinions, other forms of density de-
pendence may lead to increased or decreased persistence, depending on the type and strength
of density dependence, the degree of environmental variability, and the growth rate. Further-
more, effects may be reversed for different quasi-extinction levels, making the use of arbitrary
quasi-extinction levels problematic. Few systematic comparisons of the effects on persistence
between different models of density dependence are available. These effects can be strikingly
different among models. Our understanding of the effects of density dependence on extinction
of metapopulations is rudimentary, but even opposite effects of density dependence can occur
when metapopulations and single populations are contrasted. We argue that spatially explicit
models hold particular promise for analysing the effects of density dependence on population
viability provided a good knowledge of the biology of the species under consideration exists.
Since the results of PVAs may critically depend on the way density dependence is modelled,
combined efforts to advance statistical methods, field sampling, and modelling are urgently
needed to elucidate the relationships between density, vital rates, and extinction probability.
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Introduction

Extinction of populations is of prime evolutionary and conservation interest
and stochasticity is a decisive factor in the survival or extinction of popula-
tions (e.g., Goel and Richter-Dyn 1974; Goodman 1987a,b). Not surprisingly,
theoretical research on stochastic extinction of populations and the applica-
tion of stochastic models for population viability analysis (PVA) have become
very popular within the last two decades (e.g., Leigh 1981; Soulé 1987; Lande
and Orzack 1988; Hanski and Gilpin 1991; Mace and Lande 1991; Burgman
et al. 1993; Wissel et al. 1994; Settele et al. 1996; Drechsler et al. 1998; Amler
et al. 1999). The popularity of the PVA approach in conservation biology is
reflected in the availability of several software packages and reviews (e.g.,
Goel and Richter-Dyn 1974; Akçakaya and Ferson 1990; Boyce 1992; Lacy
1993; Lindenmayer et al. 1995; Oostermeijer et al. 1996; Reich and Grimm
1996; Groom and Pascual 1997; Beissinger and Westphal 1998). Despite this
attention, PVA as a practical tool for conservation management is not without
its critics and has been the subject of a lively debate in the recent literature
(e.g., Caughley 1994; Doak and Mills 1994; Hedrick et al. 1996; Beissinger
and Westphal 1998; Asquith 2001).

Like stochasticity, density regulation can play a driving role in population
dynamics as has been documented in a vast literature (e.g., May and Oster
1976; Dennis 1989a; Hanski 1990; Burgman et al. 1993; Dennis and Taper
1994). Opinions about the relevance of density regulation still diverge consid-
erably, ranging from those believing that it is a ubiquitous and crucial element
of population growth (e.g., Dennis and Patil 1984; Ferson et al. 1989; Dennis
and Taper 1994; Grant and Benton 2000) to those that doubt its relevance
(e.g., Andrewartha and Birch 1984; Foley 1994). There is similar disagree-
ment about its relevance for PVAs [e.g., Ginzburg et al. (1982, 1990) and
Foley (1994) contra Burgman et al. (1993) and Groom and Pascual (1997)].
Although some authors have compared the effects of different models of
density regulation on population persistence (e.g., Gabriel and Bürger 1992;
Wissel et al. 1994; Mills et al. 1996; Pascual et al. 1997), no comprehensive
comparison or review exists as yet. Our aim is to provide such a review.

Scope and basis of the review

We summarise the types of density dependence included in extinction models
and their availability in generic software. We review the effects of different
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types of density regulation as used in extinction models and PVA case studies.
We restrict our review to stochastic models, since population fluctuations in-
herently contain stochastic components often with significant influence on the
persistence of populations (e.g., Goodman 1987a,b). We specifically include
density regulation by spatial structuring of populations due to social behav-
iour and limited dispersal, since this can be a major mechanism for density
effects (Allee et al. 1949). We do not consider spatial structure in the form of
a metapopulation unless density regulation is explicitly addressed.

We base our review on an extensive reference collection of PVAs, stochas-
tic extinction models, and density dependence. In addition we searched the
1996–2001 issues of the journals Conservation Biology, Journal of Applied
Animal Ecology, Journal of Wildlife Management, and Verhandlungen der
Gesellschaft für Ökologie for relevant publications and conducted a keyword
search with ‘population viability analysis’, ‘extinction’, and ‘stochastic mod-
els’ in the BIOSIS database for the year 2000. We further tried to trace any
citation that appeared to be relevant for our topic.

Density regulation in extinction models and PVAs

Four main approaches to including density dependence in extinction models
can be identified: the use of empirical data, the use of a quasi-extinction
level as a surrogate for an Allee effect, the description of density dependence
by a mathematical function, and the modelling of the spacing behaviour of
individuals. When using empirical data, a value for a demographic parameter
is drawn at random from observed values for a particular density (popula-
tion size) (e.g., Shaffer 1983; Armbruster and Lande 1993; Burgman et al.
1993). Obviously, this approach requires intensive data and can be applied
only in simulation models. Often it has been assumed that the use of a quasi-
extinction level N> 1 will account for an Allee effect (e.g., Ginzburg et al.
1982; Dennis et al. 1991; Akçakaya et al. 1995). Quasi-extinction level means
that a population is considered extinct once it reaches or falls below that level.
However, the use of a quasi-extinction level is dictated by the model structure
(Ginzburg et al. 1982; Dennis et al. 1991) rather than by a consideration of
biological processes, and levels are often set arbitrarily.

Decisions on how to model density dependence by a mathematical func-
tion are complicated. The researcher not only has to specify which function to
use in the first place, but also has to choose whether the total population size
or the size of one or several particular stages control the feedback mechanism
to be modelled. Furthermore, one has to decide whether all or only particu-
lar stages are affected by density regulation and which demographic process
(e.g., birth rate) will be density dependent.
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Description of density dependence by a mathematical function is achieved
by making the population growth rate (r) or any other demographic parameter
a function of density dependence, usually by multiplying the demographic
parameter with a density-dependent term, f (N) (see Appendix A). Many
functions that have been used to describe density regulation are mathematical
generalisations or limiting cases of other functions for particular parameter
values. We consider functions to be separate whenever they had been used
as independent models of density regulation in the analysis of population
extinction. Some authors have replaced the shape parameters of some mod-
els by driving or constraining variables, such as rainfall or food availability.
Here, we do not regard them as separate models. Likewise, some models
combine two different density-dependent terms (e.g., Jacobs 1984; Dennis
1989a). Again, these are not listed as separate models unless they form a
fixed combination in widely available software.

A bewildering range of functions has been used in the literature to describe
density regulation, 29 of them in stochastic extinction models (Table 1). Func-
tions differ greatly in their flexibility and ability to describe density-dependent
population processes (e.g., Bellows 1981; Schnute 1985; Dennis and Taper
1994). Most ideas have been driven more by mathematical tractability than by
a thorough testing of the matching of the models with real data or derivation
from biological processes (Dennis 1989b). Moreover, no statistically rigorous
method exists to test between, and to select among, different models of den-
sity dependence (Dennis 1989a,b; Dennis and Taper 1994; but see Berryman
and Turchin 2001).

In Appendix A, we briefly discuss biological assumptions and mathemat-
ical relationships of the density-dependent terms listed in Table 1. For ease of
cross-referencing among the text and the tables and because several models
lack names and others occasionally are labelled with the same name in the
literature though they differ mathematically, we label different models of
density dependence by numbers (#).

A recent alternative to the use of functions of density dependence is the
explicit modelling of density effects of spatial structure on individuals for
dispersal limited species (e.g., Lamberson et al. 1992; Lecomte et al. 1994;
Ginsberg et al. 1995; Wiegand et al. 2001). Individual-based spatial models
track the fate of each individual based on (empirically derived) bio-
logical rules on spacing behaviour and/or dispersal. Differences in survival,
reproduction, and/or dispersal of different individuals due to local population
structure (e.g., size, location, and occupancy of territories) lead to density
regulation in these models. This approach drops the assumption of ideal mix-
ing of individuals of a population, which is important for reproduction at low
population sizes (Allee et al. 1949; McCarthy 1997; Stephens et al. 1999). In
some metapopulation models the location of the subpopulations is spatially
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Table 1. Summary of density-dependent terms [f (N)] used in stochastic population extinction models (see Appendix A for details).a

# Type f (N) Description Authors

1a TC For N<K: 1; for N =K: 0 Density-independent growth to MacArthur and Wilson (1967),

a ceiling carrying capacity Goel and Richter-Dyn (1974),

Wissel et al. (1994)

1b TD For N<K: 1; for N = K: λ−1 Density-independent growth to Goel and Richter-Dyn (1974),

a ceiling carrying capacity Dennis et al. (1991),

Foley (1994), Wissel et al. (1994)

2 TD For N ≤ K: 1; for N>K: Density independence below K Beier (1993)

1 (for K mature females); and reduced probability

a (0< a< 1) (for N − K of breeding for females in

mature females) excess of female K

3 TD For N<K − d: Model with a step function of Harris et al. (1989)

1 + b

φ
(with −φ ≤ b ≤ 1 − φ); survival; note that negative values

for K − d ≤ N ≤ K + e: 1; of b result in an Allee effect

for N>K + e:

1 − c

φ
(with 0< c ≤φ)

4a TC, TD 1 −
(
N

K

)
Logistic growth model with Strebel (1985), Dennis (1989a,b)

a ceiling carrying capacity

4b TC, TD 1 −
(
N

K

)θ

θ-Logistic growth model Strebel (1985), Dennis (1989a,b)
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# Type f (N) Description Authors

4c TC, TD 1 − f

(
N

K

)θ

(with 0< f ≤ 1) Generalised θ-logistic model Boyce et al. (1994)

for survival or fecundity

5 TD
1

1 + xN

(
with x = λ − 1

K

)
Beverton–Holt model Beverton and Holt (1957),

Schnute (1985), Ferson et al. (1989)

6 TD e−xN

(
with x = λ − 1

K

)
Ricker model Ricker (1975), Ginzburg et al. (1990)

7 TD
1

(1 + xN)β

(
with x = λ1/β − 1

K

)
Classical contest (β = 1)/scramble Hassell et al. (1976),

(β > 1) competition model Gabriel and Bürger (1992)

8 TD
1

1 + (xN)β

(
with x = (λ − 1)1/β

K

)
Maynard-Smith and Slatkin contest/ Maynard-Smith and Slatkin (1973),

scramble competition model Poethke et al. (1996a,b)

9 TD e−a0−a1N Ricker equation (logistic Dennis et al. (1991),

growth model without a Dennis and Taper (1994),

ceiling carrying capacity) Berryman and Turchin (2001)

10 TD e−a0−a1eg/N Double exponential model relating McCarthy (1996b)

population growth to the ratio of the

environmental variable g and N

11a TD For N ≤ Ntr: 1; for N ≥ Ntr: Power model of contest/scramble Stelter (1997, 1998)
(
Ntr

N

)α

(with α > 0) competition above a threshold
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11b TD For N ≤ Ntr: 1; for N ≥ Ntr: Power model of density-dependent Stelter (1997, 1998)

1 + h

DIEP

(
N

Ntr

)α

(with α > 0) emigration probability above

a threshold

12 TD For N ≤ Ntr: 1; for Ntr <N<K: Threshold model of scramble Drechsler et al. (1998)(
1 − 1

φ
γ
(1 − Ntr/N)

(1 − Ntr/K)

)
competition with additional

for N ≥ K :

(
K

N
− 1

φ
γ
(1 − Ntr/N)

(1 − Ntr/K)

)
contest competition above K

13 TD

(
K

N

)δ(
constrained within Power model for survival Beier (1993)

φmin ≤ φ

(
K

N

)δ

≤ φmax

)
with a ‘baseline’ survival at

carrying capacity K

14 TD i + jk

IN + k
Extension of Michaelis– Mills et al. (1996),

Menten model Pascual et al. (1997)

15a TD [m(1 + e−a0−a1N)−1 + q]x Sigmoidal demographic Swart and Lawes (1996)

(with |x| = 1); rates multiplier

15b TD [1 + e−a0−a1N ]−1 Sigmoidal establishment multiplier Chapman et al. (1989)

16 TD u + v

1 + (N/K)ε
Sigmoidal density dependence Milton and Bélair (1990)

(for u, v > 0 and ε integer) of the growth rate

17a TD a4N
4 + a3N

3 + a2N
2 + a1N + a0 Fourth-order polynomial growth model Lacy (1993)

17b TD a2N
2 + a1N + a0 Quadratic regression model Nolet and Baveco (1996)

17c1 TD a1N + a0 Linear regression model Shaffer (1983)
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# Type f (N) Description Authors

17c2 TD a1N + a0 (for N ≤ K); Linear regression model with Gaona et al. (1998)

a1K + a0 (for N > K) density independence once all

territories are filled

17d TD a0 (with 0 < a0 < 1 for Nt+1 > yK; Reduction of population size by a Den Boer (1981)

a0 = 1 for Nt+1 ≤ yK ; y < 1) constant factor if population

size exceeds a threshold

18 TD 1 + (λ − 1)(1 − N/K) Model of overshooting populations Gabriel and Bürger (1992)

(for N ≤ Kλ/(λ − 1)) that crash to extinction

0 (otherwise)

19 TC 1 − e−ηN Allee model: negative exponential Dennis (1989a)

20 TC, TD
N

z + N
Allee model: rectangular Dennis (1989a),

hyperbola (z is the density Burgman et al. (1994)

at which half of the females mate)

21 TD
〈Amin(BNm, Nf)〉

Nf
(with 0 < A ≤ 1) Male limited reproduction Milner-Gulland (1997),

of females; 〈x〉 means Legendre (1999)

integer value of x

22 TD
Nm

Km
(1 + HRI)Km−Nm (with Nm < Km) Allee effect accounting for a Beier (1993)

compensatory expansion of

male territories

23 TD 1 − x−1 SRO

SRN
Model of disturbed mating systems Milner-Gulland (1997)

(with SRO < SRN; x = µ, φ) in exploited harem species
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24 TD 1 − (1 − sa/st)
ns Mate or territory encounter probability Lande (1987, 1988),

in a polygamous mating system Lamberson et al. (1992),

Stephan and Wissel (1994),

Wissel et al. (1994)

25 TD

(
N

K

)ϕ

Probability of a vacant nest Andersen and Mahato (1995)

site becoming occupied

26 TD 1 + CD

r0

N

D + N
Allee effect: Jacobs’ Jacobs (1984), Wissel et al. (1994)

cooperation model

27 TD

{
1 −

[
(P0 − PK)

P0

(
N

K

)θ]}
N

z + N
VORTEX model of Reed et al. (1998)

breeding probability

28 TD
EN

z + N
(with E < 1) Density-dependent emigration model Reddingius and den Boer (1970)

29 TD
wj/(nj + 1)∑
j wj /(nj + 1)

Density-dependent weighing function Reddingius and den Boer (1970)

for the fraction of immigrants

received by subpopulation j

a # is the model number used for cross-referencing throughout this publication. Type is time continuous (TC) or time discrete model (TD).
DIEP: density-independent component of emigration probability; HRI: % home range increase of territorial males; K: carrying capacity, Km:
carrying capacity for adult males; nj : number of individuals in subpopulation j; ns: number of sites searched; N: population size, Nf/m: number
of (reproducing) females/(harem holding) males, Ntr: threshold population size, Px : probability of breeding at a density close to x individuals
with x either 0 or K, r0: intrinsic rate of increase at a population size close to zero, sa: number of suitable unoccupied sites, st: total number
of sites; SRO: observed sex ratio; SRN: ‘normal’ sex ratio in the absence of selective harvesting; wj : weighing factor for subpopulation j;
C: effectivity of co-operation, D: saturation index, λ: finite rate of increase, µ: recruitment rate, φ: survival rate. The remaining parameters
(a, . . . , m, o, p, q, s, . . . , v, y, z, A,B, E, a0, . . . , a4; α, β, γ, δ, ε, ϕ, η, θ) are shape parameters. The Greek parameters specify strength of density
regulation. See text for further explanations.
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explicit but spatial structure is ignored in the subpopulations. We did not in-
clude them in the tally of models with explicit spatial structure accounting for
density dependency, because the presence of interactions of spatial structure
and density have been ignored in the metapopulation literature so far (see the
Results section on metapopulations).

With the increasing popularity of PVAs, an increasing number of standard
software packages have become available for routine PVA application. Soft-
ware packages can diverge considerably in viability predictions for the same
data set because of different ways in which stochastic variation in breed-
ing structure (Brook et al. 1999) or density dependence (Mills et al. 1996)
are incorporated in the underlying models. Therefore, in Table 2, we briefly
summarise which forms of density dependence can be modelled with these
software packages.

Summary statistics of density dependence used in PVA case studies

We analysed the characteristics of the PVA literature such as taxonomic
groups investigated, or forms of density regulation used based on 219 pub-
lished PVA case studies (see http://www.ufz.de/(en)/spb/nat/ for references
and a comprehensive table). We included any paper that explicitly modelled
population extinction for a particular species based on real data but limited
our analyses to stochastic models. Frequently, authors have published sev-
eral papers on PVAs of the same population/species. These were regarded as
the same case study save for cases where model features changed (different
software, different type of model, density dependence added in later publica-
tions). However, if several models were compared for one population in one
publication, the publication was regarded as one case study but the models
scored separately. The application of the same model to two or more species
within the same publication was treated as two or more case studies.

The majority of case studies were made for mammals (n = 91) and birds
(n = 70), followed by insects (n = 25) and plants (n = 15). PVAs for other
taxonomic groups are rare (reptiles: n = 8, amphibians: n = 4, fish: n = 4,
snails: n = 2). Density regulation has been included in 68% of the 247 mod-
els used in PVA case studies, 25% of them lacked any form of density de-
pendence, and in 7% it is not stated whether density dependence had been
included or not. The percentage of case studies that did not include density
dependence was highest in 1991/1992 and lowest in 1993/1994. However, the
temporal difference in the percentage of publications that incorporated some
form of density dependence is not significant (Figure 1; χ2

6 = 9.06, α = 0.17).
Nevertheless there is a highly significant heterogeneity regarding the fre-
quency of models with density dependence that included only a ceiling K
or a more complex form of density dependence (χ2

6 = 19.30, α = 0.004) with
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Table 2. Types of density dependence incorporated in standard software.a

Name Model type Density model (#) Comments Source

ALEX Matrix; mp; p 1; ddd; probability of No breeding at K; surplus Possingham et al. (1992),

catastrophes can be individuals removed preferen- Lindenmayer et al. (1995),

density dependent tially from younger age classes; Possingham and Davies (1995)

density threshold for dispersal

GAPPS Individual; p User defined functions; models #1, Mills et al. (1996),

25, 28, 29 cannot be implemented Brook et al. (1999)

META-X Markov model; mp Depending on external model Dynamics within sub- Frank et al. (2003)

used for sub-populations; populations not modelled,

models #1, 25, 28, 29, ddd but can use results from any

cannot be implemented external simulation model for

subpopulation dynamics as input

RAMAS Matrix; mp; p 1, 4, 5, 6, 13, 19, ddd, od K can vary stochastically; ddd Akçakaya and Ferson (1990),

only in RAMAS/GIS and Akçakaya and Ginzburg (1991),

RAMAS/space Akçakaya (1992),

Akçakaya et al. (1995)
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Table 2. (continued)

Name Model type Density model (#) Comments Source

ULM Matrix; p User defined functions; Software for matrix projections Legendre and Clobert (1995),

models # 25, 28, 29 in which the matrix entries can Legendre (1999)

cannot be implemented be made functions of density

VORTEX Individual; mp; p User defined functions; K can increase, decrease, and Lacy (1993, 2000),

models # 25, 28, 29 cannot fluctuate stochastically; model Lindenmayer et al. (1995, 2000),

be implemented; ddd # 27 implemented only in recent Reed et al. (1998)

versions; dispersal above a

density threshold but percentage

dispersing density-independent

a Please note that additional options not described in the source cited may be available in more recent releases. Density model refers to the models
listed in Table 1. ddd: threshold or unspecified density-dependent dispersal; K: carrying capacity; mp: metapopulation; od: observed distribution;
p: single population.
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Figure 1. Temporal trend in the incorporation of density dependence in PVA publications. cc:
density regulation in the form of a ceiling carrying capacity; ess: explicit spatial structure caus-
ing density dependence; no density: no form of density dependence included; with density: any
other form of density regulation except for cc, ess, and density-dependent dispersal.

1996/1997 and 1998/1999 showing a strong preponderance of models with
more complex forms of density dependence. These trends tends to indicate
that the suggestion of Ginzburg et al. (1990) that models with density depen-
dence result in conservative estimates of vulnerability, and later publications
(e.g., Burgman et al. 1993; Mills et al. 1996; Groom and Pascual 1997) draw-
ing attention to the importance of including density dependence in modelling
population extinction may have had a mild influence on whether and how
density dependence was included in published PVA models by later authors.

In total, 32 approaches have been used to model density regulation in the-
oretical or applied extinction models; 29 of them are mathematical functions
of density dependence. Eight of the latter have been used only in theoret-
ical extinction models. Model #1 (density-independent growth to a ceiling
carrying capacity) was the most frequently used model in PVA case stud-
ies that incorporated density dependence. It accounted for 44% of the 205
density dependencies used, followed by the logistic growth model (model
#4) with 8% and spatially explicit models with 7% (Table 3). The remaining
approaches have been used only rarely. Only 13% of the 150 models that were
based on mathematical functions of density dependence (density-dependent
dispersal excluded) included an Allee effect. If only PVAs for re-introduction
strategies or captive populations are considered (n = 26), 23% of the case
studies accounted for an Allee effect and in 8% it is not clear.
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Table 3. Summary of the use of different types of density dependence
in PVA case studies.a

Model number (#) No. of case studies

1 91

2 1

3 1

4 17

5 11

6 5

7 1

9 9

10 1

11 3

12 1

14 1

15 3

17 7

20 1

21 9

22 1

23 1

24 3

25 1

27 4

Population extinct at K 2

Unspecified 4

ddd 9

ess 15

od 3

Unclear 17

None 62

a Some case studies used different models for different demographic
parameters. Model number refers to the models listed in Table 1.
K: carrying capacity; ddd: threshold or unspecified density-dependent
dispersal; ess: explicit spatial structure causing density regulation; od:
observed distribution.

When does density dependence matter?

In the following sections we review the effects of density dependence on
extinction probability of single populations and metapopulations and we
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discuss the implications for PVAs. We present the review in the following
order: effects of a ceiling carrying capacity, effects of a decrease of vital
rates with density, Allee effects, effects of spatial structure, and stage-specific
differences in density dependence.

Single populations

Density-independent growth to a ceiling carrying capacity
Introducing an upper limit for population size reduces persistence chances
(Shaffer 1983) and the probability of ultimate extinction becomes 1
(Middleton et al. 1995). A constant ceiling carrying capacity leads to an up-
ward or downward concave increase of mean time to extinction with carrying
capacity (e.g., Belovsky 1987; Gabriel and Bürger 1992; Stephan and Wissel
1994; Wissel et al. 1994; Ginsberg et al. 1995). Shaffer (1987) suggested
that the shape of the curve is indicative of the types of stochastic variability
included in the model. According to Shaffer (1987) demographic stochasti-
city leads to an upward concave, demographic combined with environmental
stochasticity to a linear, and the combination of demographic, environmental,
and catastrophic stochasticity to a downward concave increase of mean time
to extinction (Tm) with carrying capacity (K). Shaffer’s (1987) results are still
frequently cited (cf. Loeschcke 1990; Possingham et al. 2001). However, they
were based on a limited number of studies in Soulé (1987), and Lande (1993)
showed that they are not always correct.

Lande (1993) points out that previously reported differences can be under-
stood based on the mean and the variance of the long-term population growth
rate r. Tm exhibits an upward concave relationship to K if r̄ is larger than
half its variance (σ 2) (Ludwig 1976; Goodman 1987a; Lande 1993; Wissel
et al. 1994). Otherwise, Tm curves downwards with K unless the correla-
tion time of the environment is high. In the latter case, there is an upward
concave relationship even under very high environmental fluctuation (Wissel
et al. 1994). However, with a negative average growth rate, Tm is always
proportional to the logarithm of K independent of the degree of environmental
stochasticity (Ludwig 1976; Lande 1993). Tm scales with the square of ln K
for zero average growth rate (Lande 1993). Thus, different degrees of envi-
ronmental stochasticity and growth rates explain why carrying capacity and
mean time to extinction show different relationships in PVA case studies [e.g.,
compare Hildenbrandt et al. (1995) and Woolfenden and Fitzpatrick (1993)
with Marmontel et al. (1997)].

Qualitatively similar results apply when K fluctuates stochastically (Foley
1994). Small stochastic fluctuations of K may not influence extinction risk
but if the standard deviation of K is >30% of K, there is a rapid reduction
in persistence probability (Reed et al. 1998). This result is not surprising,
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since K is frequently close to zero under this condition. However, cycles
of a deterministically fluctuating carrying capacity can increase population
persistence slightly to considerably, as has been shown by Lindenmayer and
Possingham (1994) for the survival of a metapopulation of Leadbeater’s pos-
sum (Gymnobelideus leadbeateri) under various scenarios for the length of
logging rotation times.

The effect of a ceiling carrying capacity also depends on the starting con-
ditions. An influence is present for populations starting from values close to
K but not for populations starting from low values (Middleton et al. 1995;
Akçakaya and Baur 1996; Ludwig 1996; Marshall and Edwards-Jones 1998).
Thus, the low starting size can explain why the introduction of a ceiling
carrying capacity did not decrease median persistence time for the acorn
woodpecker (Melanerpes formicivorus) (Stacey and Taper 1992), whereas
such an effect was present in a simulation of the Lord Howe Island wood-
hen (Tricholimnas sylvestris) population that started from high values (Brook
et al. 1997). Similarly, an increase in K did not increase the probability of
survival of the Puerto Rican parrot (Amazona vittata) (Lacy et al. 1989) or
the whooping crane (Grus americana) (Mirande et al. 1991) when popula-
tions were started well below K. When models of re-introduced populations
of wild boar (Sus scrofa) were started at half K and K was small enough to
make most populations go extinct within a short time period, an increase of
K (without increasing the number of released animals) considerably reduced
the probability of extinction (Howells and Edwards-Jones 1997).

The absence of an effect of K when starting from a small population size
can be explained by a high initial extinction risk so that carrying capacity can
exert an effect only on a limited number of population trajectories (cf. Wissel
et al. 1994). For low environmental stochasticity, there is a critical population
size below which the probability of extinction is very high and above which
the probability of reaching K is high. This probability depends on the ratio
of the death and birth rates (Wissel et al. 1994). Under high environmental
stochasticity there is always a considerable risk of extinction before reaching
K (Wissel et al. 1994).

Increasing reduction of vital rates with increasing density
Ferson et al. (1989) and Ginzburg et al. (1990) observed higher extinction
risks in models of density-independent fish recruitment when compared to
the Ricker (#6) and Beverton–Holt (#5) functions of density dependence.
They hypothesised that density-independent models are always conservative.
However, this hypothesis is not generally true. It was supported for the power
model of survival (#18) when applied to cougars (Felis concolor) (Beier
1993), for the Maynard-Smith and Slatkin model (#8) applied to insect
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populations (Poethke et al. 1996b), for the Beverton–Holt model (#5) applied
to the California gnatcatcher (Polioptila californica) (Akçakaya and Atwood
1997), and for the Ricker model (#6) applied to the checkerspot butterfly (Eu-
phydryas editha) (Harrison et al. 1991). However, it was contradicted by an
individual-based model of the territorial gecko Oedura reticulata (Wiegand
et al. 2002) and for the linear logistic when applied to the checkerspot but-
terfly (E. editha) (Harrison et al. 1991). Stacey and Taper (1992), in contrast,
reported supportive results for the linear logistic and the θ-logistic model (#4a
and b) when applied to the acorn woodpecker (M. formicivorus). However,
they used a model code for their ‘density-independent’ model that introduced
inversely density-dependent vital rates (Middleton and Nisbet 1997).

In other PVA case studies density dependence did not influence extinction
probability (e.g., Nolet and Baveco 1996) or only marginally (e.g., Cross and
Beissinger 2001). This is usually the case if a population starts well below
carrying capacity (compare the previous section, but see Allee effects and
extinction probability). Also, other processes may override any effects of
density dependence and drive a population to extinction. This was the case in
a PVA model for the marsh gentian (Gentiana pneumonanthe) (Oostermeijer
2000), which assumed a rapid decline in habitat quality due to succession.

The effect of density dependence on persistence probability depends on
the strength of density dependence and its interaction with effects of the
growth rate, carrying capacity, and stochasticity (Sæther et al. 1998) as well
as on the function used. An increasing strength of density regulation in-
creased the difference in extinction risk to the density-independent model
in the θ-logistic, the Maynard-Smith and Slatkin, and the power function
models (models #4b, 8, and 13: Stacey and Taper 1992; Middleton and Nisbet
1997; Beier 1993; Poethke et al. 1996b). The opposite was the case for the
Beverton–Holt, Ricker, and the vacant territory occupation probability mod-
els (models #5, 6, and 25: Ferson et al. 1989; Ginzburg et al. 1990; Andersen
and Mahato 1995).

If the reproductive rate is high, mean persistence times will be much
shorter under strong compared to weak density dependence in the contest and
scramble models #7 and #11a. The opposite is the case for low reproductive
rates (Wissel et al. 1994; Stelter 1998). In contrast, there is only a small
effect of the strength of density regulation on extinction probability in the
θ-logistic model (#4b) under low growth rates and under growth rates that
produce chaotic behaviour (Philippi et al. 1987).

Differences in persistence probability due to the introduction of density
dependence further decrease with increasing variance in the growth rate in
the linear logistic (#4a), θ-logistic (#4b), and the Maynard-Smith and Slatkin
(#8) models (e.g., Goodman 1987a,b; Buckley and Downer 1992; Stacey
and Taper 1992; Poethke 1996a,b). These observations most likely hold
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generally true for any type of density dependence, because an increasing
variance decreases persistence times and thus there is less opportunity for
density dependence to exert a negative or positive influence on persistence.

A further factor complicating the effects of density dependence is the use
of a quasi-extinction level. For example, in fish populations the extinction
probability was higher for strong density regulation than for density inde-
pendence under high quasi-extinction levels, whereas the opposite was true
for low quasi-extinction levels (Ginzburg et al. 1990). The same relation-
ship occurred for single populations of terns, but neither for metapopula-
tions of terns nor for cormorants or albatrosses (Buckley and Downer 1992).
These results caution against the use of arbitrary quasi-extinction levels for
conservative risk estimation.

Moreover, different approaches to model density dependence can lead to
vastly differing estimates of persistence times and may even result in quali-
tatively different conclusions. The few comparisons of the effects of different
types of density dependence on extinction probabilities currently available
show inconsistent results for some models of density dependence, as de-
scribed below.

Models with density-independent growth to a ceiling carrying capacity
(#1) predict marginally to several orders of magnitude higher persistence
times than models that use the linear (#4a) or the θ-logistic (#4b) model
(Richter-Dyn and Goel 1972; Leigh 1981). The difference increases with
K and decreases with the strength of environmental stochasticity, σ (Wissel
et al. 1994). These results are expected, since an increase in K and a decrease
in σ increases the difference in opportunities for density dependence to act
in the two models. Therefore, lower persistence times compared to density-
independent growth to a ceiling K most likely hold generally for other models
of density regulation that cause a reduction of the growth rate already well
below K and thus keep the population consistently at lower sizes. However,
the more optimistic prediction of model #1 does not hold for decreasing
populations, that is, for populations with a negative growth rate (cf. Mills
et al. 1996). We expect that the differences to model #1 are also small for
models with weak density regulation that acts only once a population is close
to carrying capacity.

Milton and Bélairs (1990) argued that populations in which density reg-
ulation produces a hump with a tail when Nt+1 is plotted against Nt , such
as model #16, have a lower risk of extinction than populations whose density
regulation produces only one extremum, such as the linear logistic (#4a). This
issue needs further exploration across a range of those model parameters that
interact in determining extinction probability, such as growth rate, strength
of environmental stochasticity, and strength of density dependence. For ex-
ample, Gabriel and Bürger (1992) showed for models #4b, 7, and 18 that
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the difference among model predictions depended on the growth rate and the
strength of demographic stochasticity. Furthermore, the strength of density
dependence changed the relationship between growth rate and mean time to
extinction among and within models.

When comparing the Ricker equation (#9) and the double exponential
model (#10) applied to red kangaroos (Macropus rufus) with and without
harvest, McCarthy (1996b) obtained similar extinction risks for both mod-
els. Likewise, the Ricker (#6) and the linear logistic (#4a) model of density
regulation gave similar quasi-extinction profiles for the Serengeti wildebeest
(Connochaetus taurinus) (Pascual et al. 1997). These profiles were much
higher than those resulting from the use of the Beverton–Holt (#5) and the
Michaelis–Menten (#14) form of density regulation. However, Harrison et al.
(1991) and Burgman et al. (1993) reported strikingly different results when
contrasting the Ricker (#6) and the linear logistic (#4a) model for the checker-
spot butterfly (E. editha) and the white-toothed shrew (Crocidura russula), re-
spectively. In both cases, the former model predicted a low risk of extinction,
whereas the latter predicted a high risk. Furthermore, though the Beverton–
Holt (#5) and the Michaelis–Menten (#14) model gave similar predictions
for the case of non-harvest of the Serengeti wildebeest, the former model re-
sulted in a comparably much higher increase of quasi-extinction probabilities
when 6% annual harvest was included. In contrast to these two models, the
linear logistic and the Ricker model suggested only minor changes in extinc-
tion probability with harvest in C. taurinus (Pascual et al. 1997) and in E.
editha (Harrison et al. 1991), respectively. This peculiar result arises because
harvest reduces the likelihood of occurrence of extremely high populations
and thereby mitigates overcompensatory population crashes that are charac-
teristic of the logistic and Ricker model of density dependence. We expect
similar results for other models that can show overcompensatory population
crashes.

To summarise, the strength of environmental variability, the growth rate,
the strength of density dependence as well as the quasi-extinction level used
and, for some models, the starting conditions all interact in determining ex-
tinction probability such that excluding density dependence from a PVA mod-
el may cause an increase, decrease, or no change in extinction probability
compared with models that include density dependence. Furthermore, dif-
ferent types of density dependence may not only produce vast differences
in quantitative predictions but may also lead to qualitatively different ones.
Disturbingly, differences among two types of density regulation are incon-
sistent. Thus, PVA case studies lacking extremely good data must investigate
a series of scenarios of density dependence appropriate to the species under
investigation in order to understand the role of density dependence and to
select an appropriate model in the case investigated (cf. Pascual et al. 1997).
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Allee effects and extinction probability
Comparably few theoretical treatments have addressed an Allee effect in the
study of population extinction (e.g., Lande 1987; Dennis 1989a; Stephan and
Wissel 1994; Wissel et al. 1994). These studies observed the existence of an
extinction threshold – called ‘critical density’ Nc by Dennis (1989a). Above
Nc, populations grow fast towards K. Below Nc, r will become negative and
populations decline rapidly to extinction. In the latter case increasing K might
be a futile conservation strategy for an endangered species. Indeed, Nc even
increased with K in a spatially explicit territorial model of the wall lizard
(Podarcis muralis) (Hildenbrandt et al. 1995). The transition between den-
sities that cause high extinction risks due to an Allee effect and densities
that allow high probability of viability was narrower for high compared to
low K (Bender 1999). Even very low immigration rates (0.5 individuals/year)
can lower Nc and increase the probability of persistence (Hildenbrandt et al.
1995). Once a population is beyond Nc, the probability of establishment
(growth to K) is high except under high environmental variability or low
maximum growth rates (Stephan and Wissel 1994; Wissel et al. 1994).

The theoretical results discussed above also explain discrepancies in the
relative importance of an Allee effect between PVA case studies on small,
introduced populations and those on established populations. Burgman et al.
(1994) and Legendre (1999) obtained a large increase in extinction risk in
small populations of Leadbeater’s possum (G. leadbeateri) and re-introduced
bird populations, respectively, when including an Allee effect (models #20
and #21, respectively). In contrast, the extinction probability of an established
isolated black-footed ferret (Mustela nigripes) population was unaltered by
the inclusion of an Allee effect (model #3) (Harris et al. 1989). Likewise,
Wiegand et al. (2002) found that the Allee effect made only a small contri-
bution to extinction probability in a spatially explicit model of large gecko
populations. They explained this result by suggesting that the Allee effect
comes into play only after a population has drifted to low densities, at which
extinction risk is already high without density effects.

The influence of an Allee effect on persistence probability also depends
on the growth rate. The probability of establishment once the population is
above the critical size is smaller for low than for high growth rates (Wissel
et al. 1994). For example, in a model of the helmeted honeyeater (Lichen-
ostomus melanops cassidix), an Allee effect caused by limited availability
of mates (model #20) considerably reduced persistence probability after ad-
justing demographic parameters downward such that the finite rate of growth
λ= 1 (McCarthy et al. 1994).

In conclusion, Allee effects should always be considered if populations
start from low numbers such as in re-introduction programs, but it may or
may not matter for organisms with a low growth rate whose populations are
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well below K but above Nc. In any case, the Allee effect has only a minor
influence on mean persistence time for large established populations.

Stage-specific differences in density regulation
A considerable number of animal species develop through stages with strik-
ingly different ecologies. It is very likely that such stages show different types
of density regulation (Dempster 1983; Duellman and Trueb 1986). Though
some spatially explicit individual-based age-structured population models in-
corporate differences in density dependence for adults and subadults (e.g.,
Beier 1993; Hildenbrandt et al. 1995; Letcher et al. 1998; Wiegand et al.
2001, 2002), we have found only one study in which the effects of differences
in density regulation during different life stages on persistence probability
are explicitly analysed (Stelter 1997, 1998). Stelter’s (1997, 1998) model of
butterfly populations included density regulation among caterpillars caused
by food plants leading to an increase in mortality, a decreased body condition,
and a reduced fecundity after having metamorphosed into female butterflies.
The model also included density regulation in female butterflies in the form
of a reduced fecundity and increased probability of emigration.

Stelter (1997, 1998) used an unusual form of density regulation (model
#11) which includes a sudden jump of per capita effects on demographic
parameters just above a threshold value where density starts to act. Bio-
logically, this is not the most plausible form of density regulation but his
analyses do provide an important lesson. Effects of density regulation in the
caterpillar and butterfly stages on population persistence can exhibit complex
interactions. For example, there was compensation between density effects
on females and those on caterpillars such that mean time to extinction was
maximal at an intermediate threshold level for density effects on females.
This results in a paradox for the management of butterfly populations: an
increase of female resources (improved habitat quality) will compromise the
viability of a population due to stronger density driven fluctuations in cater-
pillar numbers. The compensatory effect leading to the paradox vanishes
if density effects on caterpillars do not transcend to fecundity in the adult
stage of females. Under weaker (contest-like) competition (α ≤ 1.5), per-
sistence reached a maximum if resources were limiting both for females
and for caterpillars. The stage for which there is strongest (scramble-like; α
largest) competition most strongly reduced mean time to extinction and thus
its resources should be largest to maximise persistence.

Stelter (1998) further analysed the effects of differences in density-
dependent mortality of early and late stages of caterpillars. In this model
competition among females was absent and female fecundity was affected
by density only when older larval stages were concerned. He demonstrated
that if both larval stages show the same strength of density dependence,
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then only the rarer resource needs to be accounted for. However, weak (con-
test) competition among young caterpillars can buffer fluctuations caused by
strong (scramble) competition among older caterpillars and thus considerably
increase mean persistence time.

Metapopulations

Very little is known about the effects of density dependence on the persistence
of metapopulations. Contrary to what one may expect, the effects of density
regulation in single populations on persistence probability do not simply carry
over to metapopulations. The introduction of density dependence often shows
opposite effects for isolated populations compared to metapopulations. In
density-independent models with only demographic stochasticity (Järvinen
1982) there is no difference between a single population and a metapopula-
tion because the fate of individuals is independent of their compatriots and
thus they might as well be isolated from each other. Under the linear logistic
model of density dependence, however, survival will be better for a single
population than for a metapopulation of the same total size (Burkey 1989).
This is caused by a portion of subpopulations being near their local growth
limits and experiencing little or no growth, while the total population is still
well below its carrying capacity.

When environmental stochasticity is introduced, metapopulations slightly
or considerably outperform single populations (Buckley and Downer 1992;
Frank et al. 1994). However, in models of seabirds, the introduction of lo-
gistic density dependence in dispersal, survival, and reproduction (model #4)
eliminated (albatrosses and cormorants) or decreased (terns) the advantage
in persistence chance of metapopulations compared to single populations
(Buckley and Downer 1992). This was caused by a marginally (albatrosses
and cormorants) or dramatically (terns) increased probability of extinction of
metapopulations under density dependence.

In contrast to the above situations in which the introduction of density
dependence increased the probability of extinction of metapopulations, den-
sity dependence has the opposite effect in the logistic model (#4) when the
growth rate is high enough to produce chaos. Although low densities lead to
more frequent extinctions at the local level, the decorrelating effect of chaotic
oscillations reduces the degree of synchrony among subpopulations, allows
effective recolonisation and thus reduces the likelihood that all are simulta-
neously extinguished (Allen et al. 1993). The survival advantage is caused
by the desynchronisation of the dynamics of subpopulations that allow re-
colonisation of frequently extinct subpopulations. The protection afforded by
chaos fails under low level of environmental stochasticity in the reproductive
rate or if the migration rate is high.
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The spatial structure of metapopulations by itself can modify and cause
density effects. The relative size and degree of connectedness determines
the relative influence of a subpopulation on metapopulation persistence (e.g.,
Frank and Wissel 1998; Frank 2004 (this issue)). Therefore density regulation
in ‘important’ subpopulations should be more consequential for metapopu-
lation survival than in less important subpopulations. Furthermore, clusters
of close subpopulations do form density attractors concentrating individuals
within them while releasing individuals more rarely to more isolated periph-
eral subpopulations (Gruber, in preparation) unless density-dependent
dispersal balances this spatial position effect. These interactions of spatial
structure with density regulation have not yet received any attention in the
metapopulation literature.

It is well known that dispersal is density-dependent in a wide range
of animals (reviewed by, e.g., Dobson 1982; Lomnicki 1988; Hansson
1991). However, only very limited information is available about the effects
of density-dependent dispersal on metapopulation persistence. Neither
Reddingius and den Boer (1970) (model #28 for emigration, model #29 for
immigration) nor Stelter (1997, 1998) (model #11b for emigration) observed
any marked effects of density dependence in dispersal on metapopulation
persistence of beetles or butterflies, respectively. In contrast, Amarasekare
(1998) showed that an Allee-like effect of a reduced colonisation probability
at low patch occupancy in a modified Levins’ (1969) metapopulation model
increased the threshold fraction of occupied patches below which the meta-
population goes extinct. However, it is not clear why colonisation probability
of an empty patch should be reduced beyond the effect caused by the lower
availability of dispersing individuals if fewer patches are occupied. In any
case, it remains to be explored how Allee effects in subpopulations translate
into an effect on extinction probability of the metapopulation.

Density regulation by spatial structuring

Exclusive territories, individual spacing behaviour together with limited dis-
persal power are major mechanisms for density regulation in many animal
populations (e.g., Lomnicki 1988; Hansson 1991; Letcher et al. 1998). Mod-
els #24 and #25 are based on such effects and, with recent advances in sim-
ulation techniques, individual-based models are increasingly developed to
explore the relationship between an explicit spatial structure, density-
dependent dispersal, and extinction probability.

Lande (1987, 1988) developed such a model for the survival of the spotted
owl (Strix occidentalis caurina) in fragmented landscapes that was increas-
ingly refined by Doak (1989), Lamberson et al. (1992, 1994), Caroll and
Lamberson (1993), and McKelvey et al. (1993). In these models, unmated
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owls move from site to site until they find an empty territory or a territory
occupied by a single of the opposite sex. There is a maximum number of sites
that a dispersing owl can explore before it dies, thus making dispersal depen-
dent on population structure and density. The model produces an extinction
threshold, that is, a minimum percentage of landscape that must be suitable
to allow population persistence (Lande 1987). This threshold decreased with
search efficiency – an increasing search efficiency means that density starts to
come into play only at increasingly high levels. In the limiting case in which
individuals can search all sites, the threshold vanishes.

The inclusion of survival costs for each dispersal attempt within or among
clusters of suitable habitat did not alter the qualitative results (Carroll and
Lamberson 1993; McKelvy et al. 1993; Lamberson et al. 1994). Size of hab-
itat clusters, the percentage of suitable sites per cluster, the total number
of searches (3–20), and its interaction with cluster sites were significantly
lower for extinct than for persisting model populations. Persisting populations
also had significantly lower dispersal costs than populations that went extinct
(Lamberson et al. 1994). Owls had a higher persistence chance in clustered
habitats than in randomly distributed habitats (McKelvey et al. 1993). Fur-
thermore, clusters with a low ratio of edge to area reduced extinction risk
compared to continuous clusters of identical area but with varying degree of
irregularity. McKelvey et al. (1993) explained the effects of habitat clustering
with the difficulty of finding mates in a highly fragmented landscape. This
difficulty will make positive growth rates at low density unlikely (an Allee
effect). Qualitatively similar beneficial effects of habitat clustering were ob-
tained for the red-cockaded woodpecker (Picoides borealis) by Letcher et al.
(1998) with a spatially explicit model that allowed density-dependent changes
in territory size.

The effect of habitat clustering, however, depends on net lifetime repro-
ductive success (R0), dispersal strategy, and dispersal power (With and King
1999). For species with limited reproductive output (R0 = 1.01) extinction
thresholds occurred sooner in clumped landscapes than in random landscapes
– like for the spotted owl and the red-cockaded woodpecker – save for the
most clumped landscapes, whereas they occurred increasingly later with the
degree of contagion for species with high reproductive output (R0 > 1.1) and
low search efficiency. Increasing net lifetime reproductive success (R0) re-
duced the extinction threshold and it vanished even in highly fragmented
landscapes when combined with moderate search efficiency (numbers of dis-
persal attempts in the order of 10–20).

The effect of density dependence on persistence probability caused by
spatial structure vanishes not only when search efficiency exceeds the scale of
habitat fragmentation. The same holds for very low dispersal that happens on
a scale much finer than that of habitat fragmentation, as in the hermaphroditic
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snail Trochoidea geyeri. In this case, persistence time was also independent of
habitat geometry and carrying capacity but grew rapidly with neighbourhood
size (Pfenninger and Bahl 1997).

The models discussed so far assumed homogeneous habitat quality.
Whereas an effect of spatial structure may or may not be present in these mod-
els depending on reproductive potential and dispersal, spatial structure seems
to matter always in the presence of differences in habitat quality. McKelvey
et al. (1993) suggested that marginal habitat surrounding suitable habitat will
make (spotted owl) populations more extinction prone in spite of an increased
mean population size, because juveniles settle in these marginal habitats in-
stead of continuing to search for optimal habitat. A spatially explicit model
of Bachman’s sparrow (Aimophila aestivalis) supports this hypothesis. Per-
sistence probability increased (marginally, but only 22 simulations were run)
when only high quality habitat was selected for settlement (Pulliam et al.
1992). Nonetheless, even sink populations that cannot persist independently
for much more than 10 years may show a considerable rescue effect for the
source population (spatially explicit model for the grasshopper Stenobothrus
lineatus; Samietz et al. 1996).

Results again change if the suitability of habitat patches does not remain
constant. If two habitats have the same average quality but are marginal,
respectively, optimal in different years, habitat heterogeneity can improve
the survival chances of populations (Krug et al. 1996). Again, the effect of
spatial structure of habitat quality on population persistence depends on the
occupancy strategy used. A beneficial effect of habitat heterogeneity can be
seen if individuals establish territories in the second habitat only once the first
(preferred) habitat is completely filled or if settlement is equally likely in both
habitats. No such effect was obtained when the chance to occupy a territory in
the second habitat linearly increases with occupation density in the preferred
habitat.

The models discussed above removed a spatial effect by changing move-
ment into a scale that no longer matched the scale of habitat structure. How-
ever, this procedure concomitantly reduces mortality so that the effects of
density and those of changes in vital rates are confounded to some degree. In
contrast, Wiegand et al. (2002) maintained matching of scale when testing the
effects of spatial structure on extinction probability for the territorial gecko
O. reticulata. Instead, they removed the mortality costs of movement and
adjusted total mortality such that it was equivalent in the spatial and the non-
spatial model. In the spatially explicit model, the search for empty territories
led to an increase in mortality, pushing down population size. Stochasticity
caused the population trajectories to reach even lower levels, resulting in
considerably lower persistence time than in the non-spatial model without
density dependence.
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In summary, the effects on extinction probability of density dependence
caused by spatial structure depend on reproductive potential, search efficiency,
occupation strategy for empty territories, landscape pattern, fragmentation
scale, and habitat quality. Furthermore, there are interactions among these
factors. These effects vanish if dispersal happens on a scale much finer or
much coarser than that of habitat structure.

Discussion

How to deal with density dependence in PVAs?

Should density dependence be included in PVA models and, if so, how? Since
all models are wrong, scientists should be concerned with what is importantly
wrong (Box 1976). Of critical importance is the robustness of models to
departures from assumptions (Vucetich and Creel 1999). Contrary to previ-
ous suggestions (e.g., Ginzburg et al. 1990), the assumption of density inde-
pendence does not always result in pessimistic predictions about population
persistence. Whether models without density dependence are conservative
depends on the biological details of the species under consideration, particu-
larly the growth rate, the type and strength of density dependence assumed,
the strength of environmental variation, the quasi-extinction level used, and,
in some models, the initial conditions. In addition, these factors may interact
in determining extinction risks. Spatially explicit models further show that re-
productive output, search efficiency and occupation strategy, habitat structure
and quality, and the relative scales of habitat structure and dispersal can all
have important influences on spatially mediated density effects on population
persistence. Moreover, density effects in single populations do not simply
carry over to metapopulations. Indeed, they may act in opposite directions.
Finally, there can be complex interactions of density regulation in different
life-stages of a species.

Because of the potential for widely divergent quantitative and qualitative
predictions, how density regulation is to be modelled in PVAs is a crucial
issue. Models with density-independent growth to a ceiling carrying capacity
tend to produce optimistic predictions compared to most other possibilities of
density regulation, but this is not invariably the case. Similarly, high environ-
mental variability tends to decrease the influence of density dependence on
extinction probability, but does not remove it completely. When populations
start at low numbers, modelling the Allee effect is crucial. The lower the
population growth rate the more important is its inclusion. In contrast, if
populations start at high numbers, the type of density regulation assumed
at high density mainly determines the probability of extinction, and the Allee
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effect has only a mild influence (e.g., Wiegand et al. 2002). Judged by the
few analyses available, density effects seem to operate in opposing directions
in single populations compared to metapopulations. However, this hypothesis
needs testing with systematic comparisons.

We also noticed an interesting opposing trend between models that use
a mathematical function for density dependence and spatially explicit mod-
els. Whereas density independence tends to result in pessimistic predictions
in the former, the opposite tends to be the case in the latter. Similarly, the
former seem to predict no important effects of density-dependent dispersal
on metapopulation survival, the latter show that dispersal crucially interacts
with density dependence on determining persistence. Unfortunately, there are
no standardised comparisons available for the same species. Therefore, it
is not possible to evaluate whether this tendency results from the different
approaches to modelling density dependence or from the different types of
organisms involved. It could be highly instructive for the understanding of
density processes and for the application of PVAs to set up a series of spatially
explicit population models, analyse the distribution of population persistence,
fit various functions of density dependence to randomly selected population
trajectories, and then compare the ability of these different density models to
predict persistence adequately.

So how to proceed in a PVA without such knowledge? First, biological
knowledge should be carefully screened to identify likely, and to discard
unlikely types of density regulation. For example, empirical data provided
by Fowler (1981) and Stubbs (1977) indicate that most density-dependent
change occurs close to carrying capacity for species with low reproductive
rates, long life expectancy, and with populations that are mainly limited by re-
sources. In contrast, species with high reproductive potential, short life-span,
and with populations frequently below the limits of environmental resources
exhibit most density-dependent change at low population levels. Thus, for
the former type of species, functions of density dependence with a strong
per capita change at high population size may be adequate whereas functions
with a strong per capita change at low density may be more suitable for the
latter group of organisms.

Second, statistical methods should be used to identify biologically pos-
sible types of density regulation that do not fit the data well. Unfortunately,
as yet no test exists to discriminate between different forms of density regu-
lation. Indeed, it has been difficult to demonstrate the presence of any type of
density regulation (Gaston and Lawton 1987; Pollard et al. 1987; Burgman
et al. 1993; but see Dennis and Taper 1994). So far, alternatives are usually
chosen because of familiarity with a particular equation or availability of
software (Burgman et al. 1993). One ad hoc approach is the selection of the
model that explains most of the variance of the data when fitted with non-
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linear regression (e.g., Bellows 1981; Eberhardt 1987). However, this is not
a satisfactory approach and may easily lead to the selection of inadequate
models (Burgman et al. 1993). Modern model selection approaches based on
information theory do not seem to be helpful either, since all functions of
density regulation contain similar numbers of parameters (cf. Pascual et al.
1997). At least a robust method is now available to identify the dimension
of density dependence in time series analyses (Berryman and Turchin 2001),
but this will help only to differentiate between a small number of possible
models.

Groom and Pascual (1997) suggested comparisons among multiple mod-
els to obtain best possible portraits of future outcomes of a management
strategy or a particular disturbance. However, given the wide range of pos-
sible effects of density regulation on persistence, an objective method for
limiting the number of plausible alternatives is important. For example, a
comparison of as wide a range of model output as possible with existing
data that were not part of the model input may allow a further rejection of
some models and increase confidence in the model chosen for inferences
(Wiegand et al. 1998, 2004 (this issue)). The consequences of pessimistic
versus optimistic predictions may further help in model selection.

In the absence of hard field data it is difficult to achieve a realistic rep-
resentation of density dependence in spatially unstructured models. An al-
ternative may be to account for density dependence by modelling individual
behaviour in spatially structured models. In many cases the most natural way
to model density dependence of territorial species will be by imitating the ef-
fects of the inherent causes of density dependence, that is, the spatial structure
of populations (cf. McKelvey et al. 1993; Hildenbrandt et al. 1995; Letcher
et al. 1998; Wiegand et al. 2002). Particularly in the case of sparse data the
explicit consideration of spatial population structure has the following advan-
tages. If data are scarce, it is important to make use of structural knowledge
that cannot be easily incorporated into more abstract models (Wiegand et al.
2004 (this issue)). This requires the matching of the model scale to the scale of
population structure. With similar model and observational scale, one can use
secondary model predictions to test whether the model rules are plausible. For
example, one might look at patterns such as the number of occupied territories
as a function of population size (density) (Wiegand et al. 2002).

Where to from here?

Further systematic comparisons of the effects of different types of density
regulation on persistence probability are of considerable importance to estab-
lish better guidelines for when and which form of density dependence should
be included in a PVA. Systematic comparisons are particularly needed across
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a range of density functions and life history strategies using complete extinc-
tion as a currency. Furthermore, the effect of density dependence on meta-
population persistence and the complex interactions of density regulation in
different stages have hardly been touched. Likewise, very few comparisons
of spatially explicit to non-spatial models exist. It is non-trivial to design
the models in such a way that they are really comparable (Wiegand et al.
2002), and this has not yet been resolved for any functional representation of
density dependence. Also, testing the robustness of predictions from spatially
explicit models to deviations from assumptions about individual behaviour
(and landscape structure) is still in its infancy (Reed 1999, but see Wiegand
et al. 2004 (this issue)).

Although they require considerable effort, carefully planned field exper-
iments to elucidate the relationships of vital rates with density are of para-
mount importance. Advances in field methods and in statistical methods are
also required. Given that most PVAs include a ceiling carrying capacity in
their model assumptions, it is of considerable relevance to have reliable meth-
ods for estimating carrying capacity. Most frequently, the highest observed
population size is used as an estimate of carrying capacity (e.g., Ferrière et al.
1996). Reed et al. (1998) estimated the carrying capacity of a metapopulation
as the sum of the maximum sizes of the discrete subpopulations observed at
any time. This almost certainly is an overestimate, since in equilibrium meta-
populations some suitable patches are always unoccupied (Hanski 1991). An
alternative to the use of observed population sizes is to estimate carrying
capacity in units of ‘lots’ (smallest patch sizes that are able to support an
individual) and modelling the occupancy of empty ‘lots’ by floaters and ter-
ritorial neighbours from observational data of contests (Hildenbrandt et al.
1995; McCarthy 1996a). The resulting distribution of the number of ‘lots’ oc-
cupied by an individual can be transformed into a carrying capacity in terms
of territorial individuals. None of these approaches accounts for (stochastic)
fluctuations in carrying capacity and little is known about the reliability of
any of the methods used so far to estimate carrying capacity. Brook et al.
(1997) showed for the Lord Howe Island woodhen (T. sylvestris) that esti-
mates of carrying capacity based on habitat size alone were incorrect since
habitat requirements were inadequately known. They assumed that for many
endangered species the same applies and concluded that care must be taken to
estimate carrying capacity from habitat size alone (see also Vos et al. 2001).
Further research on this topic is urgently required.

Statistical analyses should address the question of how different sources
of data are best combined to increase our ability to not only detect density
dependence but to select among alternative models. It may be fruitful to
explore the joint development of models and statistical methods that can be
used to test model forecasts with smaller sets of time series (cf. Dennis et al.
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1995). Such analyses may ultimately allow the development of guidelines
for field biologists to optimise their sampling strategies. Combined efforts
to advance statistical methods, field sampling, and modelling will improve
considerably the decision making basis for selecting PVA approaches that
will ensure robust management strategies for the world’s highly endangered
species.
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Appendix A. Biological assumptions of and relationships
among mathematical functions of density dependence used
in extinction models

Description of density dependence by a mathematical function is achieved
by making the population growth rate (r or λ) or any other demographic
parameter a function of density. The most common way to achieve this is
by using a term that is a function of density, f (N), as a multiplier for the
population growth rate. In this case, time continuous (TC) models are of
the form ∂N = f(N)rN∂t + σN∂W , with the second term describing stochastic
noise, and time discrete models (TD) take the form Nt+1 = f(N)λtNt . In TD
models, stochasticity often is introduced by replacing the shape parameters
of the density terms by an environmental variable such as rainfall.

The growth rate can be decomposed into its components: birth rate (b),
death rate (d), immigration rate (i) and emigration rate (e), that is, r = b + i −
d − e in the TC case and λt = (1 + bt + it − dt − et) in the TD case. The term
f (N) can be used as a multiplier to each or only some of these demographic
parameters. Furthermore, different terms may be used for different demo-
graphic rates and only some classes within a population may be affected by
or control the feedback mechanism.

Instead of using multiplicative terms, TD models may use terms that are
added to a baseline value of a demographic parameter, usually its value for
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a population size close to zero or carrying capacity K. For the purpose of
this review, we converted published additive terms into multipliers to al-
low a consistent representation of the term f (N) in Table 1. Please note
that different constraints of the shape parameters of the density terms may
be necessary depending on the demographic parameter to which they are
multiplied and transformations may be necessary if applied to different demo-
graphic parameters, for example, to death rates instead of survival rates. The
density-dependent terms also can be used in individual-based models by in-
terpreting them as probabilities, for example, as the probability of survival of
an individual.

The simplest model of density regulation is a ceiling K (model #1 in
Table 1) that functions as an upper boundary for population size. Under this
model, populations grow without density regulation until they reach K, where
growth stops (Leigh 1981; Caughley and Sinclair 1994). The model assumes
that there are no reproductive or survival costs associated with finding or
competing for the limiting resource until K is reached. Biologically, this is an
unlikely assumption, although it may be approximated in some populations
that are limited only by a non-consumable resource such as nest sites.

A ceiling carrying capacity may affect only the number of reproducing
females in a population through the limited availability of sites for reproduc-
tion (e.g., nesting sites). In this case, surplus individuals may join a pool of
floaters (e.g., Lamberson et al. 1992; Beier 1993; Hildenbrandt et al. 1995)
instead of dying or emigrating. Model #2 extends model #1 to allow some
female floaters to reproduce.

Another straightforward extension of model #1 assumes that survival, re-
production, or growth rate will decrease in a stepwise fashion at specific
values of density (model #3). In the general case of this extension, population
size can grow to infinity. However, an upper boundary is retrieved by setting
the survival rate zero for surplus individuals when a specified density value
beyond K + e is reached. Model #3 can account also for an Allee effect if
survival, birth, or growth rates are reduced instead of increased at low density.
Strictly speaking, the biological assumption of a stepwise change in reproduc-
tion, survival, or growth rate is unrealistic, but the model may be a reasonable
approximation to a steep sigmoidal change of density effects over a limited
range of population sizes (cf. Harris et al. 1989).

A more realistic assumption than a stepwise change is a continuous change
of survival, reproduction, population growth, and/or emigration with density.
Most of the remaining models (#4–28) assume such continuous changes at
least across certain ranges of density. These models use the carrying capacity
K as a descriptor of equilibrium population size and not as a ceiling boundary.

Several of these models (#4–8) are generalisations of the logistic growth
model first introduced by Verhulst (1838). In the basic logistic growth model



40

(model #4a), the per capita growth rate is a linearly declining function of
population size. Therefore, it is often referred to as the linear logistic or
linear density regulation model. Density regulation is symmetric, that is, the
relative importances of density regulation at high and low densities are equal.
In a generalised form (model #4b), the θ-logistic, the parameter θ specifies
the relative importance of density regulation at high versus low densities and
the strength of density regulation. Density regulation decreases in strength
with increasing θ and its importance shifts more towards regulation at high
densities. Model #4c is a further generalisation that allows a scaling of density
effects.

The θ-logistic is generally used in cases where the linear logistic model
does not fit the data well (e.g., Eberhardt 1987; Stacey and Taper 1992).
This is particularly often the case for insect populations (Dempster 1983).
The linear logistic model is strictly applicable only in the special case when
a population’s limiting resources are produced at a rate independent of the
number of individuals using it (Dennis 1978; Caughley and Sinclair 1994).
It is sometimes assumed that the linear logistic may provide a suitable ap-
proximation to many unspecified growth models (Dennis and Patil 1984).
However, the striking differences that different types of density regulation
may exert on population viability warn against using such an assumption in
the modelling of extinction processes. In any case, the model is not suitable
for species whose densities are regulated by successful dispersal to empty
territories (Noon and McKelvey 1996). Model #24 may be suitable in this
case; notwithstanding, the θ-logistic may still be applicable to those species
whose territories are of variable quality, are compressible, or if there is a cost
to territory defence (Stacey and Taper 1992).

Models #5–8 are descendants of a generalised time discrete logistic growth
model. Models #5 (the Beverton–Holt model) and #6 (the Ricker model) are
widely used biologically. They relate total reproductive effort to reproductive
success such that after a peak of success additional effort is actually counter-
productive and causes a decrease in reproductive success. The Beverton–Holt
model always results in contest competition, whereas the Ricker model repre-
sents scramble competition. In contest competition, resources are partitioned
so that an individual obtains a parcel necessary for survival, or not. Contest
competition models may be useful for species in which the survival of young
is limited by the number of territories or the number of nesting sites so that
a more or less fixed number of young will be recruited irrespective of the
number of young produced. If, in contrast, resources are shared more or less
equally among all members of the population, scramble competition results.
Under scramble competition, not all resources available contribute to popula-
tion growth since some are won by individuals that do not survive. Scramble
competition can result in overcompensatory population crashes; that is, if
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some initial density is exceeded, fewer and fewer individuals in a population
survive because the share becomes smaller and smaller.

Models #7 and #8 are different generalisations of the Beverton–Holt model.
Both models assume that the strongest per capita effect of density occurs at
low density. With increasing strength of density dependence (β), the models
shift along the continuum from contest towards scramble competition. Model
#8 has a very flexible shape and Bellows (1981) showed that this model is
better able to describe a wide range of data than a set of alternative mod-
els tested, including model #5. It should be kept in mind that, as shown by
Burgman et al. (1993), a density regulation model with a better fit does not
necessarily mean that such a model is more suitable for predicting changes
in population size. This can happen because the census data are too short to
extract the underlying density regulation correctly.

Model #9 is known as the Ricker equation because of its similarity with
the Ricker model of recruitment (model #6). Instead of a reflecting boundary
at carrying capacity, this model uses an exponentially decreasing population
growth at high densities. The behaviour of this model is very similar to the
TD Verhulst model: the first-order Taylor series expansion of the exponential
function in this model yields the Verhulst model for a1 = r/K.

Model #10, a modification of model #9, is derived from the theory of
ratio-dependent consumer–resource interaction (Arditi and Ginzburg 1989)
relating population growth to the ratio of the environmental variable g and
population size. Density effects usually are slightly weaker than in model
#9.

Another contest–scramble competition model is #11 (Stelter 1998). It is
based on a power function and assumes that density effects come into play
only above a threshold value of population size (Ntr). At this threshold value
the per capita effects of density are highest and then decrease with density
as in the classical contest–scramble model. Whereas it may be biologically
reasonable that density effects appear only above a threshold value, it is very
unlikely that the per capita effects are suddenly very strong and then decrease
again.

Drechsler et al. (1998) suggested another threshold contest–scramble
model (#12). In this model contest competition comes into play at K and
reduces mortality such that K is a ceiling limit. Additionally, scramble com-
petition sets in above a threshold value of population size but less abruptly
than in model #11.

Beier (1993) introduced another power function (model #13) to model
density effects on survival, with survival being constrained between fixed
maximum and minimum values. The function was chosen for its compu-
tational simplicity. The biological implication of the function is a rapidly
declining survival with increasing density at low densities and a slow
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approach to the minimum survival rate, which is reached at a population size
beyond carrying capacity.

The next four functions have been used in PVAs also mainly because
of their flexibility. Model #14 relates the density-dependent demographic
parameter to the ratio of the environmental parameter k (e.g., rainfall) and
population size (cf. Pascual et al. 1997), as is the case in model #10. Model
#14 can display a wide range of behaviours. If the shape parameter i = 0, the
function passes through the origin, becoming the Michaelis–Menten equa-
tion. By constraining the remaining shape parameters as well, the model
can be converted into the Beverton–Holt model. The model further includes
density independence (for j = 0).

Models #15 and #16 allow a flexible modelling of a sigmoidal change
in demographic parameters with density. Models #15a and #15b have been
suggested independently, but model #15b is a special case of model #15a.
In model #15a, the density effects are scaled by m and the curve is shifted
upwards by q compared to model #15b. In model #15a, the exponent x is + 1
and −1 depending on whether the demographic rate increases (e.g., mortality)
or decreases (e.g., reproduction), respectively, with density. The parameters
in these two models may be re-scaled such that N is replaced by N/K. Model
#16 shows similar properties as model #15a and has been used instead of
model #15a because it is better suited for analytical studies.

The fourth-order polynomial (model #17a) allows a close fit to most plaus-
ible density dependence curves. Both positive and negative (Allee effect)
responses, or more complex relationships can be modelled (Lacy 1993) but
there is no underlying biological process assumed that produces a fourth-
order polynomial relationship of demographic parameters with density.
Quadratic functions (model #17b: e.g., Nolet and Baveco 1996), linear re-
gression models (#17c: e.g., Shaffer 1983), or the use of a constant multipli-
cator (model #17d) are special cases of model #17a. These special cases are
also used mainly because of mathematical convenience. Sometimes different
functions are applied to particular ranges of density.

The next model (#18) has been introduced mainly for theoretical reasons
with assumptions that are unlikely for the majority of (endangered) species.
In this type of density regulation overshooting of the carrying capacity can
occur and is followed by a crash to extinction.

The models of density dependence discussed so far assume that increas-
ing density will result in decreased survival or reproduction. However, it is
well known that at low density the effects may be reversed and survival or
reproduction will decline with decreasing density. This Allee effect has been
observed in many taxa (reviewed, e.g., by Allee et al. 1949; Dennis 1989a).
Many functions have been used to describe an Allee effect (Jacobs 1984;
Dennis 1989a; McCarthy 1997) and eight (#19–27) of them in the context of
modelling population extinction. As an alternative, Swart and Lawes (1996)
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treated the occurrence of the Allee effect probabilistically by specifying a
probability value that very small troops will go extinct. Furthermore, the
inclusion of inbreeding effects in extinction models could be considered as
a kind of Allee effect (cf. Burgman and Lamont 1992; Lacy 1993; McCarthy
1996a); however, genetic effects are not considered in this review.

The Allee effect has been modelled mainly for reproduction, most
frequently using various assumptions on the mating system and encounter
probabilities of individuals. If the mating system is promiscuous and the re-
productive rate increases with the encounter rate, models #19 or #20 result.
Whereas model #19 assumes that all females have the same effective search
area (= area searched × proportion of males in the population), model #20
results if the effective search area varies among females.

In contrast to the two previous models, model #21 assumes that search
area is not limited and that the number of reproducing females depends only
on the number of available males. In a monogamous mating system B = 1,
whereas in polygamous species B is the average harem size. The competition
coefficient A in the model accounts for females remaining unpaired for any
reason in the presence of unpaired males. Note that the expected percent-
age of females breeding increases with density in this model. Model #22
assumes that monogamy is the result of matching male and female territories
(instead of pair bonding) and that males expand their territories when some
male territories are unoccupied. In this model, a larger percentage of females
breed than under model #21. Model #23 is a male limited model developed
for exploited harem species in which hunters harvest males preferentially,
leading to a disturbance of the natural mating system. It assumes that juvenile
survivorship or female fecundity decline as a linear function of the degree of
disturbance of the natural sex ratio.

Model #24 has been used for modelling the mating probability of a par-
ticular female in a polygamous mating system and for the probability of
successful dispersal to a suitable empty territory. It assumes that individuals
search a number of sites for unoccupied territories or territories with a suit-
able partner. Individuals that fail to find a suitable territory perish. Likewise,
individuals that do not encounter a mate have no mating success. Implicitly,
the model also assumes that there are no other costs involved with searching
for territories or mates. Consequently, survival during dispersal or mating
success increase with the percentage of sites that are suitable or occupied by
a single of the opposite sex. Likewise, dispersal survival and mating success
increase with search efficiency (the number of sites searched). If applied to
non-territorial species, the number of sites searched is replaced by the number
of adult males and the ratio of suitable available to total sites is replaced by
the probability that a particular female finds a particular male.

Whereas the previous model takes the perspective of a searching indi-
vidual, model #25 addresses the probability that a vacant nesting site will
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become occupied. Please note that here the dynamics of site occupation is
modelled instead of the demography of the population. The model allows
a rapid increase of colonisation with density at either low or high density
depending on the exponent (ϕ). No other biological or mathematical justific-
ation for the model was presented.

The co-operation model of Jacobs (1984) (model #26) assumes that there
is a minimal growth rate at very small population sizes, r0, that may be pos-
itive or negative. Co-operation in the widest sense, that is, any increase in
natality or survival by virtue of the interaction of two or more individuals, in-
creases this minimal growth rate. The magnitude of this increase depends on
the efficiency of co-operation, C, and an index of sociality, D. Asymptotically,
the product CD is the maximum per capita growth rate. The model does not
make any assumption about encounter probabilities, though mathematically
it is similar to, but not a generalisation of, model #20.

Model #27, the VORTEX model of breeding probability, combines the
rectangular hyperbolic model of an Allee effect (model #20) with the gener-
alised θ-logistic model (model #4c with f = (P0 − PK )/P0) applied to breeding
probability. In this model, the breeding probability of females varies between
a maximum of P0 ≤ 1 when population size is close to 0 and a minimum of
Pk ≥ 0 when the breeding size is at carrying capacity.

The final two models have been suggested for density-dependent emig-
ration, respectively, immigration. (In addition, model #11b and a threshold
density for dispersal with no dispersal below and density-independent dis-
persal beyond the threshold have been suggested.) Though model #28 is a
mathematical extension of the rectangular hyperbola function used for Allee
effects, it is not a generalisation of this model and lacks a mechanistic basis.
Indeed, it assumes that emigration probability increases with density, which
is opposite to an Allee effect. The only biological justification was that the
model results in an increase of dispersal mortality with density if a fraction
of the dispersing individuals do not find a new subpopulation. However, any
other function of an increase in emigration probability with density would
achieve the same effect. Model #29 distributes the pool of surviving migrating
individuals across subpopulations such that each receives a fraction inversely
proportional to its density.

References

Akçakaya H.R. 1992. Population viability analysis and risk assessment. In: McCullough D.R.
and Barrett R.H. (eds), Wildlife 2001: Populations. Elsevier Applied Science, London,
pp. 148–157.

Akçakaya H.R. and Atwood J.L. 1997. A habitat-based metapopulation model of the
California gnatcatcher. Conservation Biology 11: 422–434.



45

Akçakaya H.R. and Baur B. 1996. Effects of population subdivision and catastrophes on the
persistence of a land snail metapopulation. Oecologia 105: 475–483.

Akçakaya H.R. and Ferson S. 1990. RAMAS/Space User Manual: Spatially Structured Popu-
lation Models for Conservation Biology, Exeter Software. Applied Biomathematics, New
York.

Akçakaya H.R. and Ginzburg L.R. 1991. Ecological risk analysis for single and multiple
populations. In: Seitz A. and Loeschcke V. (eds), Species Conservation: A Population
Biological Approach. Birkhäuser, Basel, Switzerland, pp. 73–87.

Akçakaya H.R., McCarthy M.A. and Pearce J.L. 1995. Linking landscape data with popula-
tion viability analysis: management options for the helmeted honeyeater Lichenostomus
melanops cassidix. Biological Conservation 73: 169–176.

Allee W.C., Emerson A.E., Park O., Park T. and Schmidt K.P. 1949. Principles of Animal
Ecology. Saunders, Philadelphia, Pennsylvania.

Allen J.C., Schaffer W.M. and Rosko D. 1993. Chaos reduces species extinction by amplifying
local population noise. Nature 364: 229–232.

Amarasekare P. 1998. Allee effects in metapopulation dynamics. The American Naturalist
152: 298–302.

Amler K., Bahl A., Henle K., Kaule G., Poschlod P. and Settele J. 1999. Populationsbiologie
in der Naturschutzpraxis. Isolation, Flächenbedarf und Biotopansprüche von Pflanzen und
Tieren. Ulmer, Stuttgart, Germany.

Andersen M.C. and Mahato D. 1995. Demographic models and reserve designs for the
California spotted owl. Ecological Applications 5: 539–647.

Andrewartha H.G. and Birch L.C. 1984. The Ecological Web. University of Chicago Press,
Chicago, Illinois.

Arditi R. and Ginzburg L.R. 1989. Coupling in predator–prey dynamics: ratio dependence.
Journal of Theoretical Biology 139: 311–326.

Armbruster P. and Lande R. 1993. A population viability analysis for African elephant
(Loxodonta africana): How big should reserves be? Conservation Biology 7: 602–610.

Asquith N.M. 2001. Misdirections in conservation biology. Conservation Biology 15:
345–352.

Beier P. 1993. Determining minimum habitat areas and habitat corridors for cougars.
Conservation Biology 7: 94–108.

Beissinger S.R. and Westphal M.I. 1998. On the use of demographic models of popula-
tion viability in endangered species management. Journal of Wildlife Management 62:
821–841.

Bellows T.S. 1981. The descriptive properties of some models for density dependence. Journal
of Animal Ecology 50: 139–156.

Belovsky G.E. 1987. Extinction models and mammalian persistence. In: Soulé M.E.
(ed), Viable Populations for Conservation. Cambridge University Press, New York,
pp. 35–57.

Bender C. 1999. Populationsgefährdungsanalyse der Mauereidechse (Podarcis muralis):
demographische und genetische Grundlagen. Ph.D. Thesis (on microfiche), Universität
Frankfurt, Germany.

Berryman A. and Turchin P. 2001. Identifying the density-dependent structure underlying
ecological time series. Oikos 92: 265–270.

Beverton R.J.H. and Holt S. 1957. On the dynamics of exploited fish populations. Fisheries
and Food, Fishery Investigations (Series 2) 19: 5–533.

Box G.E.P. 1976. Science and statistics. Journal of the American Statistical Association 71:
791–799.



46

Boyce M.S. 1992. Population viability analysis. Annual Review of Ecology and Systematics
23: 481–506.

Boyce M.S., Meyer J.S. and Irwin L. 1994. Habitat-based PVA for the northern spotted owl. In:
Fletcher D.J. and Manly B.F.J. (eds), Statistics in Ecology and Environmental Monitoring.
University of Otago Press, Dunedin, New Zealand, pp. 63–85.

Brook B.W., Lim L., Harden R. and Frankham R. 1997. Does population viability anal-
ysis software predict behaviour of real populations? A retrospective study on the Lord
Howe Island woodhen Tricholimnas sylvestris (Sclater). Biological Conservation 82:
119–128.

Brook B.W., Cannon J.R., Lacy R.C., Mirande C. and Frankham R. 1999. Comparison of the
population viability analysis packages GAPPS, INMAT, RAMAS and VORTEX for the
whooping crane (Grus americana). Animal Conservation 2: 23–31.

Buckley P.A. and Downer R. 1992. Modelling metapopulation dynamics for single species
of seabirds. In: McCullough D.R. and Barrett R.H. (eds), Wildlife 2001: Populations.
Elsevier Applied Science, London, pp. 563–585.

Burgman M.A., Ferson S. and Akçakaya H.R. 1993. Risk Assessment in Conservation
Biology. Chapman & Hall, London.

Burgman M.A., Ferson S. and Lindenmayer D. 1994. The effect of initial age-class distribution
on extinction risks: implications for the reintroduction of Leadbeater’s possum. In: Serena
M. (ed), Reintroduction Biology of Australian and New Zealand Fauna. Surrey Beatty,
Sydney, Australia, pp. 15–19.

Burkey T.V. 1989. Extinction in nature reserves: the effect of fragmentation and the importance
of migration between reserve fragments. Oikos 55: 75–81.

Carroll J.E. and Lamberson R.H. 1993. The owl’s odyssey. A continuous model for the
dispersal of territorial species. SIAM Journal of Applied Mathematics 53: 205–218.

Caughley G. 1994. Direction in conservation biology. Journal of Animal Ecology 63:
215–244.

Caughley G. and Sinclair A.R.E. 1994. Wildlife Ecology and Management. Blackwell
Science, Cambridge, UK.

Chapman S.B., Rose R.J. and Clarke R.T. 1989. The behaviour of populations of the marsh
gentian (Gentiana pneumonanthe): a modelling approach. Journal of Applied Ecology 26:
1059–1072.

Cross P.C. and Beissinger S.R. 2001. Using logistic regression to analyze the sensitivity of
PVA models: a comparison of methods based on African wild dog models. Conservation
Biology 15: 1335–1346.

Dempster J.P. 1983. The natural control of populations of butterflies and moths. Biological
Revue 58: 461–481.

Den Boer P.J. 1981. On the survival of populations in a heterogeneous and variable
environment. Oecologia 50: 39–53.

Dennis B. 1978. Analytical solution to an open-system model of population-growth. Mathe-
matical Biosciences 40: 167–169.

Dennis B. 1989a. Allee effects: population growth, critical density, and the chance of
extinction. Natural Resource Modeling 3: 481–538.

Dennis B. 1989b. Stochastic differential equations as insect population models. In:
McDonald L., Manly B., Lockwood J. and Logan J. (eds), Estimation and Analysis of
Insect Populations. Lecture Notes in Statistics 55: 219–238.

Dennis B. and Patil G.P. 1984. The gamma distribution and weighted multimodel
gamma distributions as models of population abundance. Mathematical Biosciences 68:
187–212.



47

Dennis B. and Taper M.L. 1994. Density dependence in time series observations of natural
populations: estimation and testing. Ecological Monographs 64: 205–224.

Dennis B., Munholland P.L. and Scott J.M. 1991. Estimation of growth and extinction
parameters for endangered species. Ecological Monographs 61: 115–143.

Dennis B., Desharnais R.A., Cushing J.M. and Costantino R.F. 1995. Nonlinear demo-
graphic dynamics: mathematical models, statistical methods, and biological experiments.
Ecological Monographs 65: 261–281.

Doak D. 1989. Spotted owls and old growth logging in the Pacific Northwest. Conservation
Biology 3: 389–396.

Doak D.F. and Mills L.S. 1994. A useful role for theory in conservation. Ecology 75: 615–626.
Dobson F.S. 1982. Competition for mates and predominant juvenile male dispersal in

mammals. Animal Behavior 30: 1183–1192.
Drechsler M., Burgman M.A. and Menkhorst P.W. 1998. Uncertainty in population dynam-

ics and its consequences for the management of the orange-bellied parrot Neophema
chrysogaster. Biological Conservation 84: 269–281.

Duellman W.E. and Trueb L. 1986. Biology of Amphibia. McGraw-Hill, New York.
Eberhardt L.L. 1987. Population projections from simple models. Journal of Applied Ecology

24: 103–118.
Ferrière R., Sarrazin F., Legendre S. and Baron J.-P. 1996. Matrix population models applied

to viability analysis and conservation: theory and practice using the ULM software. Acta
Ecologica 17: 629–656.

Ferson S., Ginzburg L. and Silvers A.A. 1989. Extreme event risk analysis for age-structured
populations. Ecological Modelling 47: 175–187.

Foley P. 1994. Predicting extinction times from environmental stochasticity and carrying
capacity. Conservation Biology 8: 124–137.

Fowler C.W. 1981. Density dependence as related to life history strategy. Ecology 62:
602–610.

Frank K. 2004. Ecologically differentiated rules of thumb for habitat network design – lessons
from a formula. Biodiversity and Conservation 13: 189–206 (this issue).

Frank K. and Wissel C. 1998. Spatial aspects of metapopulation survival – from model results
to rules of thumb for landscape management. Landscape Ecology 13: 363–379.

Frank K., Drechsler M. and Wissel C. 1994. Überleben in fragmentierten Lebensräumen –
Stochastische Modelle zu Metapopulationen. Zeitschrift für Ökologie und Naturschutz 3:
167–178.

Frank K., Lorek H., Köster M., Sonnenschein M., Wissel C. and Grimm V. 2003. Meta-X:
Software for Metapopulation Viability Analysis. Springer, Berlin, Germany.

Gabriel W. and Bürger R. 1992. Survival of small populations under demographic stochasti-
city. Theoretical Population Biology 41: 44–71.

Gaona P., Ferreras P. and Delibes M. 1998. Dynamics and viability of a metapopulation of the
endangered Iberian lynx (Lynx pardinus). Ecological Monographs 68: 349–370.

Gaston K.J. and Lawton J.H. 1987. A test of statistical techniques for detecting density
dependence in sequential censuses of animal populations. Oecologia 74: 404–410.

Ginsberg J.R., Mace G.M. and Albon S. 1995. Local extinction in a small and declining pop-
ulation: wild dogs in the Serengeti. Proceedings of the Royal Society of London, Series B
262: 221–228.

Ginzburg L.R., Slobodkin L.B. and Bindman A.G. 1982. Quasiextinction probabilities as a
measure of impact on population growth. Risk Analysis 2: 171–181.

Ginzburg L.R., Ferson S. and Akçakaya H.R. 1990. Reconstructibility of density dependence
and the conservative assessment of extinction risks. Conservation Biology 4: 63–70.



48

Goel N.S. and Richter-Dyn N. 1974. Population growth and extinction. In: Goel N.S.
and Richter-Dyn N. (eds), Stochastic Models in Biology. Academic Press, New York,
pp. 73–91.

Goodman D. 1987a. The demography of chance extinction. In: Soulé M.E. (ed), Vi-
able Populations for Conservation. Cambridge University Press, Cambridge, UK,
pp. 11–34.

Goodman D. 1987b. Consideration of stochastic demography in the design and management
of biological reserves. Natural Resource Modeling 1: 205–234.

Grant A. and Benton T.G. 2000. Elasticity analysis for density-dependent populations in
stochastic environments. Ecology 81: 680–693.

Groom M.J. and Pascual M.A. 1997. The analysis of population persistence: an outlook on
the practice of viability analysis. In: Fiedler P.L. and Kareiva P.M. (eds), Conservation
Biology for the Coming Decade. Chapman & Hall, New York, pp. 4–27.

Hanski I.A. 1990. Density dependence, regulation and variability in animal populations.
Philosophical Transactions of the Royal Society of London 330: 141–150.

Hanski I.A. 1991. Single-species metapopulation dynamics: concepts, models and observa-
tions. Biological Journal of the Linnean Society 42: 17–38.

Hanski I.A. and Gilpin M. 1991. Metapopulation dynamics: brief history and conceptual
domain. Biological Journal of the Linnean Society 42: 3–16.

Hansson L. 1991. Dispersal and connectivity in metapopulations. Biological Journal of the
Linnean Society 42: 89–103.

Harris R.B., Clark T.W. and Shaffer M.L. 1989. Extinction probabilities for isolated black-
footed ferret populations. In: Seal U.S. and Thome E.T. (eds), Conservation Bio-
logy and the Black Footed Ferret. Yale University Press, New Haven, Connecticut,
pp. 69–82.

Harrison S., Quinn J.F., Baughman J.F., Murphy D.D. and Ehrlich P.R. 1991. Estimating the
effects of scientific study on two butterfly populations. The American Naturalist 137:
227–243.

Hassell M.P., Lawton J.H. and May R.M. 1976. Patterns of dynamical behaviour in single-
species populations. Journal of Animal Ecology 45: 471–486.

Hedrick P.W., Lacy R.C., Allendorf F.W. and Soulé M.E. 1996. Directions in conservation
biology: comments on Caughley. Conservation Biology 10: 1312–1320.

Hildenbrandt H., Bender C., Grimm V. and Henle K. 1995. Ein individuenbasiertes Modell zur
Beurteilung der Überlebenschancen kleiner Populationen der Mauereidechse (Podarcis
muralis). Verhandlungen der Gesellschaft für Ökologie 24: 207–214.

Howells O. and Edwards-Jones G. 1997. A feasibility study of reintroducing wild boar Sus
scrofa to Scotland: Are existing woodlands large enough to support minimum viable
populations. Biological Conservation 81: 77–89.

Jacobs J. 1984. Cooperation, optimal density and low density thresholds: yet another
modification of the logistic model. Oecologia 64: 389–395.

Järvinen O. 1982. Conservation of endangered plant populations: single large or several small
reserves. Oikos 38: 301–307.

Krug R.M., Johst K., Wissel C. and Märtens B. 1996. Wirkung der räumlichen
Heterogenität innerhalb eines Habitats auf die mittlere Überlebensdauer einer
Zauneidechsen-Population. Verhandlungen der Gesellschaft für Ökologie 26:
447–453.

Lacy R.C. 1993. VORTEX: a computer simulation model for population viability analysis.
Wildlife Research 20: 45–65.

Lacy R.C. 2000. Structure of the VORTEX simulation model for population viability analysis.
Ecological Bulletins 48: 191–203.



49

Lacy R.C., Flesness N.R. and Seal U.S. 1989. Puerto Rican Parrot Amazona vittata Population
Viability Analysis and Recommendations. Captive Breeding Specialist Group, Species
Survival Commission, IUCN, Apple Valley, Minnesota.

Lamberson R.H., McKelvey R., Noon B.R. and Voss C. 1992. A dynamic analysis of northern
spotted owl viability in a fragmented forest landscape. Conservation Biology 6: 505–512.

Lamberson R.H., Noon B.R., Voss C. and McKelvey K.S. 1994. Reserve design for territorial
species: the effects of patch size and spacing on the viability of the northern spotted owl.
Conservation Biology 8: 185–195.

Lande R. 1987. Extinction thresholds in demographic models of territorial populations. The
American Naturalist 130: 624–635.

Lande R. 1988. Demographic models of the northern spotted owl (Strix occidentalis caurina).
Oecologia 75: 601–607.

Lande R. 1993. Risks of population extinction from demographic and environmental stochasti-
city and random catastrophes. The American Naturalist 142: 911–927.

Lande R. and Orzack S.H. 1988. Extinction dynamics of age-structured populations in a
fluctuating environment. Proceedings of the National Academy of Science USA 85:
7418–7421.

Lecomte J., Clobert J., Massot M. and Barbault R. 1994. Spatial and behavioural consequences
of a density manipulation in the common lizard. Écoscience 1: 300–310.

Legendre S. 1999. Demographic stochasticity: a case study using the ULM software. Bird
Study Supplement 46: S140–S147.

Legendre S. and Clobert J. 1995. ULM, a software for conservation and evolutionary
biologists. Journal of Applied Statistics 22: 817–834.

Leigh E.G. 1981. The average lifetime of a population in a varying environment. Journal of
Theoretical Biology 90: 213–239.

Letcher B.H., Priddy J.A., Walters J.R. and Crowder L.B. 1998. An individual-based,
spatially-explicit simulation model of the population dynamics of the endangered red-
cockaded woodpecker, Picoides borealis. Biological Conservation 86: 1–14.

Levins R. 1969. The effect of random variations of different types on population growth.
Proceedings of the National Academy of Science USA 62: 1061–1065.

Lindenmayer D.B. and Possingham H.P. 1994. The Risk of Extinction – Ranking Management
Options for Leadbeater’s Possum using Population Viability Analysis. Australian National
University, Canberra, Australia.

Lindenmayer D.B., Burgman M.A., Akçakaya H.R., Lacy R.C. and Possingham H.P. 1995.
A review of the generic computer programs ALEX, RAMAS/space and VORTEX for
modelling the viability of wildlife metapopulations. Ecological Modelling 82: 161–174.

Lindenmayer D.B., Lacy R.C. and Pope M.L. 2000. Testing a simulation model for population
viability analysis. Ecological Applications 10: 580–597.

Loeschcke V. 1990. Evolution und Artenschutz. In: Streit B. (ed), Evolutionsprozesse im
Tierreich. Birkhäuser, Basel, Switzerland, pp. 239–254.

Lomnicki A. 1988. Population Ecology of Individuals. Princeton University Press, Princeton,
New Jersey.

Ludwig D. 1976. A singular perturbation problem in the theory of population extinction.
SIAM-AMS Proceedings 10: 87–104.

Ludwig D. 1996. The distribution of population survival times. The American Naturalist 147:
506–526.

MacArthur R.H. and Wilson E.O. 1967. The Theory of Island Biogeography. Princeton
University Press, Princeton, New Jersey.

Mace G.M. and Lande R. 1991. Assessing extinction threats: towards a reevaluation of IUCN
threatened species categories. Conservation Biology 5: 148–157.



50

Marmontel M., Humphrey S.R. and O’Shea T.J. 1997. Population viability analysis of the
Florida manatee (Trichechus manatus latirostris), 1976–1991. Conservation Biology 11:
467–481.

Marshall K. and Edwards-Jones G. 1998. Reintroducing capercaillie (Tetrao urogallus) into
southern Scotland: identification of minimum viable populations at potential release sites.
Biodiversity and Conservation 7: 275–296.

May R.M. and Oster G.F. 1976. Bifurcations and dynamic complexity in simple ecological
models. The American Naturalist 110: 573–599.

Maynard-Smith J. and Slatkin M. 1973. The stability of predator–prey systems. Ecology 54:
384–391.

McCarthy M.A. 1996a. Extinction dynamics of the helmeted honeyeater: effects of demo-
graphy, stochasticity, inbreeding and spatial structure. Ecological Modelling 85: 151–163.

McCarthy M.A. 1996b. Red kangaroo (Macropus rufus) dynamics: effects of rainfall, density
dependence, harvesting and environmental stochasticity. Journal of Applied Ecology 33:
45–53.

McCarthy M.A. 1997. The Allee effect, finding mates and theoretical models. Ecological
Modelling 103: 99–102.

McCarthy M.A., Franklin D.C. and Burgman M.A. 1994. The importance of demographic
uncertainty: an example from the helmeted honeyeater Lichenostomus melanops cassidix.
Biological Conservation 67: 135–142.

McKelvey K., Noon B.R. and Lamberson R.H. 1993. Conservation planning for species
occupying fragmented landscapes – the case of the northern spotted owl. In: Kareiva
P.M., Ingsolver J.G. and Huey R.B. (eds), Biotic Interactions and Global Change. Sinauer,
Sunderland, Massachusetts, pp. 424–450.

Middleton D.A.J. and Nisbet R.M. 1997. Population persistence time; estimates, models, and
mechanisms. Ecological Applications 7: 107–117.

Middleton D.A.J., Veitch A.R. and Nisbet R.M. 1995. The effect of an upper limit to
population size on persistence time. Theoretical Population Biology 48: 277–305.

Mills L.S., Hayes S.G., Baldwin C., Wisdom M.J., Citta J., Mattson D.J. and Murphy K.
(1996) Factors leading to different viability predictions for grizzly bear data set. Conser-
vation Biology 10: 863–873.

Milner-Gulland E.J. 1997. A stochastic dynamic programming model for the management of
the saiga antelope. Ecological Applications 7: 130–142.

Milton J.G. and Bélair J. 1990. Chaos, noise, and extinction in models of population growth.
Theoretical Population Biology 37: 273–290.

Mirande C., Lacy R.C. and Seal U.S. 1991. Grus americana Whooping Crane Conserva-
tion Viability Assessment Workshop Report. Captive Breeding Specialist Group, Species
Survival Commission, IUCN, Glen Rose, Texas.

Nolet B.A. and Baveco J.M. 1996. Development and viability of a translocated beaver Castor
fiber population in the Netherlands. Biological Conservation 75: 125–137.

Noon B.R. and McKelvey K.S. 1996. A common framework for conservation planning: link-
ing individual and metapopulation models. In: McCullough D.R. (ed), Metapopulations
and Wildlife Conservation. Island Press, Washington, DC, pp. 139–165.

Oostermeijer J.G.B. 2000. Population viability analysis of the rare Gentiana pneumonanthe:
the importance of genetics, demography and reproductive biology. In: Young A.G. and
Clarke G.M. (eds), Genetics, Demography and Viability of Fragmented Populations.
Cambridge University Press, Cambridge, UK, pp. 313–334.

Oostermeijer J.G.B., Berholz A. and Poschlod P. 1996. Genetical aspects of fragmented plant
populations. In: Settele J., Margules C.R., Poschlod P. and Henle K. (eds), Species Survival
in Fragmented Landscapes. Kluwer Academic Publishers, Dordrecht, The Netherlands,
pp. 93–101.



51

Pascual M.A., Kareiva P. and Hilborn R. 1997. The influence of model structure on conclu-
sions about the viability and harvesting of Serengeti wildebeest. Conservation Biology 11:
966–976.

Pfenninger M. and Bahl A. 1997. Influence of habitat size on the viability of spatially struc-
tured populations of the landsnail Trochoidea geyeri. Verhandlungen der Gesellschaft für
Ökologie 27: 469–473.

Philippi T.E., Carpenter M.P., Case T.J. and Gilpin M.E. 1987. Drosophila population
dynamics: chaos and extinction. Ecology 68: 154–159.

Poethke H.J., Gottschalk E. and Seitz A. 1996a. Gefährdungsgradanalyse einer räumlich
strukturierten Population der Westlichen Beißschrecke (Platycleis albopunctata): Ein
Beispiel für den Einsatz des Metapopulationskonzeptes im Artenschutz. Zeitschrift für
Ökologie und Naturschutz 5: 229–242.

Poethke H.J., Seitz A. and Wissel C. 1996b. Species survival and metapopulations: con-
servation implications from ecological theory. In: Settele J., Margules C.R., Poschlod
P. and Henle K. (eds), Species Survival in Fragmented Landscapes. Kluwer Academic
Publishers, Dordrecht, The Netherlands, pp. 81–92.

Pollard E., Lakhani K.H. and Rothery P. 1987. The detection of density-dependence from a
series of annual censuses. Ecology 68: 2046–2055.

Possingham H.P. and Davies I. 1995. ALEX: a model for the viability analysis of spatially
structured populations. Biological Conservation 73: 143–150.

Possingham H.P., Davies I., Noble I.R. and Norton T.W. 1992. A metapopulation simula-
tion model for assessing the likelihood of plant and animal extinctions. Mathematics and
Computers in Simulation 33: 367–372.

Possingham H.P., Lindenmayer D.B. and McCarthy M.A. 2001. Population viability ana-
lysis. In: Levin S.A. (ed), Encyclopedia of Biodiversity. Academic Press, London,
pp. 831–843.

Pulliam H.R., Dunning J.B. and Liu J. 1992. Population dynamics in complex landscapes: a
case study. Ecological Applications 2: 165–177.

Reddingius J. and den Boer P.J. 1970. Simulation experiments illustrating stabilization of
animal numbers by spreading of risk. Oecologia 5: 240–284.

Reed J.M. 1999. The role of behaviour in recent avian extinctions and endangerments.
Conservation Biology 13: 232–241.

Reed J.M., Elphick C.S. and Oring L.W. 1998. Life-history and viability analysis of the
endangered Hawaiian stilt. Biological Conservation 84: 35–45.

Reich M. and Grimm V. 1996. Das Metapopulationskonzept in Ökologie und Naturschutz:
Eine kritische Bestandsaufnahme. Zeitschrift für Ökologie und Naturschutz 5: 123–139.

Richter-Dyn N. and Goel N.S. 1972. On the extinction of a colonizing species. Theoretical
Population Biology 3: 406–433.

Ricker W.E. 1975. Computation and Interpretation of Biological Statistics of Fish Populations.
Fisheries Research Board of Canada Bulletin 191.

Sæther B.E., Engen S., Islam A., McCleery R. and Perrins C. 1998. Environmental stochasti-
city and extinction risk in a population of a small songbird, the great tit. The American
Naturalist 151: 441–450.

Samietz J., Berger U. and Köhler G. 1996. A population vulnerability analysis of the stripe-
winged grasshopper, Stenobothrus lineatus (Caelifera: Acrididae). In: Settele J., Margules
C.R., Poschlod P. and Henle K. (eds), Species Survival in Fragmented Landscapes. Kluwer
Academic Publishers, Dordrecht, The Netherlands, pp. 299–311.

Schnute J. 1985. A general theory for analysis of catch and effort data. Canadian Journal of
Fisheries and Aquatic Sciences 42: 414–429.

Settele J., Margules C., Poschlod P. and Henle K. 1996. Species Survival in Fragmented
Landscapes. Kluwer Academic Publishers, Dordrecht, The Netherlands.



52

Shaffer M.L. 1983. Determining minimum viable population sizes for the grizzly bear.
International Conference on Bear Research and Management 5: 133–139.

Shaffer M.L. 1987. Minimum viable populations: coping with uncertainty. In: Soulé M.E.
(ed), Viable Populations for Conservation. Cambridge University Press, Cambridge, UK,
pp. 69–86.

Soulé M.E. 1987. Viable Populations for Conservation. Cambridge University Press,
Cambridge, UK.

Stacey P.B. and Taper M. 1992. Environmental variation and the persistence of small
populations. Ecological Applications 2: 18–29.

Stelter C. 1997. Persistenz von kleinen Schmetterlingspopulationen in dynamischer
Landschaft – ein Populationsdynamik-Modell. Cullivier, Göttingen, Germany.

Stelter C. 1998. Genügt die Modellierung der Habitatqualität durch eine einzige Kapazität,
um die Populationsdynamik von Schmetterlingen zu verstehen? Verhandlungen der
Gesellschaft für Ökologie 28: 161–168.

Stephan T. and Wissel C. 1994. Auslöschung von Populationen: Ein Modell mit Berücksich-
tigung einer Ressource. Verhandlungen der Gesellschaft für Ökologie 23: 391–397.

Stephens P.A., Sutherland W.J. and Freckleton R.P. 1999. What is the Allee effect? Oikos 87:
185–190.

Strebel D.E. 1985. Environmental fluctuations and extinction – single species. Theoretical
Population Biology 27: 1–26.

Stubbs M. 1977. Density dependence in life-cycles of animals and its importance in
k-strategies and r-strategies. Journal of Animal Ecology 46: 677–688.

Swart J. and Lawes M.J. 1996. The effect of habitat patch connectivity on samango monkey
(Cercopithecus mitis) metapopulation persistence. Ecological Modelling 93: 57–74.

Verhulst J.H. 1838. Notice sur la loi que population suit dans son accroissement. Correspond-
ences mathematiques et physiques 10: 113–121.

Vos C.C., Verboom J., Opdam P.F.M. and Ter Braak C.J.F. 2001. Toward ecologically scaled
landscape indices. The American Naturalist 157: 24–41.

Vucetich J.A. and Creel S. 1999. Ecological interactions, social organization, and extinction
risk in African wild dogs. Conservation Biology 13: 1172–1182.

Wiegand T., Naves J., Stephan T. and Fernandez A. 1998. Assessing the risk of extinction for
the brown bear (Ursus arctos) in the Cordillera Cantabrica, Spain. Ecological Monographs
68: 539–570.

Wiegand K., Sarre S., Henle K., Stephan T., Wissel C. and Brandl R. 2001. Demographic
stochasticity does not predict persistence of gecko populations. Ecological Applications
11: 1738–1749.

Wiegand K., Henle K. and Sarre S. 2002. Extinction and spatial structure in simulation models.
Conservation Biology 16: 117–128.

Wiegand T., Revilla E. and Knauer F. 2004. Dealing with uncertainty in spatially explicit
population models. Biodiversity and Conservation 13: 53–78 (this issue).

Wissel C., Stephan T. and Zaschke S. 1994. Modelling extinction and survival of small popula-
tions. In: Remmert H. (ed), Minimum Viable Populations. Springer, Heidelberg, Germany,
pp. 67–103.

With K.A. and King A.W. 1999. Extinction thresholds for species in fractal landscapes.
Conservation Biology 13: 314–326.

Woolfenden G.E. and Fitzpatric J.W. 1993. Florida scrub jay ecology and conservation. In:
Perrins C.M., Lebreton J.-D. and Hirons G.J.M. (eds), Bird Population Studies. Oxford
University Press, Oxford, UK, pp. 542–565.


