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Abstract: In k-tree sampling, also referred to as point-to-tree distance sampling, the k nearest trees are measured. The
problem associated with k-tree sampling is its lack of unbiased density estimators. The presented density estimator based
on point pattern reconstruction remedies that shortcoming. It requires the coordinates of all k trees. These coordinates are
translated into a simulation window where they remain unchanged. Empirical cumulative distribution functions of intertree
and location-to-tree distances estimated from the sample plots are set as target characteristics. Using the idea of simulated
annealing, an optimal new tree pattern is constructed in the simulation window outside the k-tree samples. The reconstruc-
tion of the point pattern minimizes the contrast between the empirical cumulative distribution functions and their analogs
for the simulated pattern. The density estimator is simply the tree density of the optimum pattern in the simulation win-
dow. The performance of the reconstruction-based density estimator is assessed for k = 6 and k = 4 based on systematic
sampling grids regarding its potential application in forest inventories. Simulations are carried out using real stem maps
(covering different stand densities and different types of spatial point patterns, such as regular, clustered, and random) as
well as completely random patterns. The new density estimator proves to be empirically superior in terms of bias and root
mean squared error compared with commonly used estimators. The reconstruction-based density estimator has biases
smaller than 2%.

Résumé : En échantillonnage de k arbres, aussi appelé échantillonnage de k arbres selon leur distance, on mesure les k ar-
bres les plus proches. Le problème lié à l’échantillonnage de k arbres est son incapacité à fournir des estimateurs de den-
sité sans biais. L’estimateur de densité basé sur la reconstruction du patron des points comble cette lacune. Il requiert les
coordonnées de tous les k arbres. Ces coordonnées sont traduites dans une fenêtre de simulation où elles demeurent in-
changées. Les fonctions empiriques de distribution cumulative de distances entre les arbres et entre un point et les arbres
estimées à partir des placettes échantillons sont les caractéristiques cibles. En utilisant le recuit simulé, un nouveau patron
optimal des arbres est construit dans la fenêtre de simulation en dehors des k arbres échantillons. La reconstruction du pa-
tron de points minimise le contraste entre les fonctions empiriques et leurs analogues dérivés du patron simulé. L’esti-
mateur de densité est tout simplement la densité des arbres de la structure optimale dans la fenêtre de simulation. La
performance de l’estimateur de densité basé sur la reconstruction est évaluée pour k = 6 et k = 4 sur la base des grilles
d’échantillonnage systématique quant à son application potentielle dans les inventaires forestiers. Des simulations sont ef-
fectuées en utilisant les cartes réelles des tiges (couvrant différentes densités de peuplement et différents types de patrons
spatiaux de points, tels que régulier, en grappe et aléatoire) aussi bien que des patrons complètement aléatoires. Le nouvel
estimateur de densité s’avère empiriquement supérieur en termes de biais et d’erreur quadratique moyenne par rapport aux
estimateurs fréquemment utilisés. Son biais est inférieur à 2%.

[Traduit par la Rédaction]

Introduction

In k-tree sampling, also known as point-to-tree distance
sampling, sample points are distributed as random or sys-
tematic samples in the surveyed forest. For each sample
point, exactly k trees, the k nearest, are measured. k-tree
sampling may yield unbiased estimators of forest structural
variables such as tree species mingling indices or tree size

differentiation. However, the statistical properties of k-tree
sampling are known to be poor if applied for tree density
estimation. This is because k-tree sampling leads to variable
sample plot areas, since the plot radius is determined by the
horizontal (slope adjusted) distance to the kth tree (Prodan
1968), with unknown inclusion probabilities for the sampled
trees. This is in contrast with so-called fixed-radius sample
plots with constant radius. k-tree sampling has never been
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applied in national forest inventories, which is mainly be-
cause design-based statistical inference, the condicio sine
qua non for acceptance by governmental agencies, lacks an
unbiased density estimator.

k-tree sampling is nevertheless attractive, since the num-
ber of trees measured per plot is constant and the inventory
costs are, therefore, nearly independent of tree density and
easier to assess in advance. In the studies of Hall (1991),
Lessard et al. (1994), and Lynch and Rusydi (1999), point-
to-tree distance sampling proved to be more time and labor
efficient than fixed-radius sampling. On average and over
the past years, the forest service of the German federal state
of Baden-Württemberg has paid to external contractors 12
euros per six-tree sample plot and 32 euros per sample plot
with three fixed concentric radii. All trees with a diameter at
breast height (DBH) ‡ 10 cm are measured in the innermost
circle having a radius of 3 m whereas in the outer rings (r =
6 m and r = 12 m), trees with DBH ‡ 15 cm and DBH ‡
30 cm, respectively, are surveyed. The considerable differ-
ence in unit costs is mainly due to reduced labor costs for
k-tree sample plots because k-tree sample plots are usually
performed single-handed whereas fixed-radius plots are sur-
veyed by two workers. However, similar to fixed-radius
plots, where additional measurements are often required for
boundary trees, also on k-tree sample plots and especially in
dense forest stands, one has to ensure to catch the true kth
tree by control measurement. Besides its application in for-
est inventories, point-to-object distance sampling is also ap-
plied in ecological studies (Krebs 1998).

Because of its cost-saving nature, k-tree sampling is still
applied in some places and many efforts have been under-
taken to improve its statistical properties. In particular, in
Baden-Württemberg, k-tree sampling is still applied and was
often used in the past in combination with Prodan’s (1968)
classical density estimator (k – 0.5)/F (in number of trees
per hectare), with F = prk

2/10 000 and rk the distance to the
kth tree in metres. Unfortunately, Prodan’s density estimator
is biased, which arises from incorrect tree inclusion probabil-
ities. Therefore, and because of the economic attractiveness
of k-tree sampling, attempts have been made to reduce this
bias. See Magnussen et al. (2008) for an overview. Unbiased
density estimators for k-tree sampling exist only for com-
pletely random point patterns (Sloboda 1976; Jonsson et al.
1992). Recently, a generally unbiased estimator was pre-
sented by Kleinn and Vilčko (2006a), which is based on in-
clusion zones by means of higher (kth)-order tessellations.
To construct these tessellations, a large number of additional
tree position have to be measured for each sample plot. This
approach is no longer based on the original idea of k-tree
sampling and is difficult to apply in the field (Kleinn and
Vilčko 2006a) as well as costly when traditional measure-
ment techniques are used. Kleinn and Vilčko (2006b) also
presented an empirical method in which the sample plot ra-
dius is heuristically defined by the average of the distances
to the kth and (k + 1)th tree. According to Magnussen et al.
(2008), this is superior to other approaches, particularly for a
small number of sample plots. Magnussen et al. (2008) pro-
vided two other parametric approaches for density estima-
tion. The first approach, named ORBIT, constructs the
sample plot area by summing up the areas of annuli of all k
trees centered at the sample point. The inner radius r0 of the

nearest tree’s annulus is chosen as r0 ¼
ffiffiffiffiffiffiffiffiffiffi
log 2

p
� r1, with r1

as distance of the nearest tree from the sample point, while
the outer radius of the kth tree’s annulus is predicted by lin-
ear regression. This estimator proved to be approximately
unbiased for the completely random case in the study of
Magnussen et al. (2008). The second estimator, named
GAMPOI, is based on the assumption that the surveyed pat-
tern arose from a so-called gamma-mixed Poisson process
(Magnussen et al. 2008) and uses regression estimators for
the parameters of the gamma distribution. Finally, Staupen-
dahl (2008) presented a density estimator principally based
on the work of Jonsson et al. (1992) but with an empirical
bias correction that uses angle count indices.

This paper presents a completely different approach. The
spatial structure of the sampled forest stand is reconstructed
in a rectangular simulation window using the available k-
tree sampling data and additional, simulated tree positions
in the space between the sample plots. Finally, the density
of the reconstructed pattern in the simulation window is
used as an estimator of the true tree density. Apart from sta-
tionarity and isotropy, no additional model assumptions are
used. This is an advantage over other more restrictive
model-based approaches, which may easily fail if the actual
pattern deviates considerably from the assumed model.

For the reconstruction, an iterative simulation technique is
applied, which is based on the idea of simulated annealing
(SA) (Kirkpatrick et al. 1983), an algorithm for optimization
purposes. At first, the measured k-tree sample plots are
transfered to the simulation window and additional trees are
placed randomly within the simulation window but outside
the sample plots. The point pattern is then iteratively
changed by alternating between random generations of new
tree locations and random deletions of existing trees. The
criterion of optimality is a minimum contrast of summary
characteristics for tree distances of both, the tree pattern on
the original sample plots and the simulated tree pattern. The
new density estimator for k-tree samples is called the recon-
struction-based density estimator (RDE).

The approach of the present paper is inspired by the
methods in Pommerening and Stoyan (2008) but differs in
two important points: (i) the number of trees in the recon-
struction forest is variable rather than fixed and it is just the
parameter of interest and (ii) instead of reconstructing the
entire forest, only a small fraction composed of small
squares centered at the sample locations is reconstructed.

The departure from the approach of Pommerening and
Stoyan (2008) in point ii facilitates efficient density estima-
tion with respect to computing time. Our method is applica-
ble if tree density estimation is of primary interest. In
contrast, the method of Pommerening and Stoyan (2008)
provides accurate reproductions with respect to tree species
mingling and spatial differentiation of tree sizes.

The presented tree density estimator for k-tree sampling,
which is based on nonparametric point pattern reconstruc-
tions, is applied for k = 6 and k = 4 to real stem maps of var-
ious densities and types of point patterns and to completely
randomly generated tree patterns. The performance of the
RDE is compared in terms of bias and root mean squared er-
ror (RMSE) with Prodan’s (1968) classical density estimator
and with the estimators of Kleinn and Vilčko (2006b), which
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have shown to be the best performing estimators for small
sample plot numbers in Magnussen et al. (2008).

Test data
The proposed RDE was applied to data of real forest

stands as well as to simulated tree patterns. The real tree
patterns were obtained from the data archive associated
with the sampling simulator STIPSI (www.fva-bw.de/
forschung/bui/stipsi_en.html) (Schöpfer 1967). A subset of
six STIPSI stands was selected consisting of forest stands
with the identification numbers 7, 21, 28, 30, 61, and 67
(Fig. 1; Table 1). The areas of the STIPSI stands range
from 3.51 ha (STIPSI 28) to 7.76 ha (STIPSI 30). In addi-
tion, the RDE was applied to the publicly available longleaf
pine (Pinus palustris P. Mill.) data (Platt et al. 1988; Cressie
1991). Following the criterion for merchantable wood in
Germany, only trees with a DBH > 7 cm were analyzed in
this study. Thus, 120 trees from the original 584 trees of
the longleaf pine data were excluded. The selected forest
stands meet three criteria: (1) contrasting stand conditions:
monospecific (STIPSI 21 and longleaf pine) or almost
monospecific (STIPSI 28), mixed species (STIPSI 7,
STIPSI 30, STIPSI 61, and STIPSI 67), nearly even-aged
(STIPSI 28), and uneven-aged (STIPSI 61), (2) a broad
range of tree density: from 116 trees/ha (longleaf pine) to
878 trees/ha (STIPSI 67), and (3) divergent spatial tree pat-
terns: regularity (STIPSI 21), clustering (STIPSI 7,
STIPSI 30, and longleaf pine), and almost complete spatial
randomness (STIPSI 28, STIPSI 61, and STIPSI 67).

With regard to criterion 3, the spatial tree patterns were
characterized by pair correlation functions (Fig. 2). Regard-
ing the estimation of the pair correlation functions shown in
Fig. 2, we followed the recommendations of Illian et al.
(2008). An aggregation is indicated, if the pair correlation
function is above the horizontal reference line g(r) : 1,
whereas function values below suggest repulsion. The pair
correlation functions in Fig. 2 indicate clustered tree patterns
in the longleaf pine stand and in STIPSI 30 and STIPSI 7.
The pair correlation function of STIPSI 21 seems to show
some signs of regularity. STIPSI 21 and STIPSI 61 feature
clearly softcore effects. The tree patterns of STIPSI 28,
STIPSI 61, and STIPSI 67 are close to complete spatial ran-
domness, especially at scales beyond the softcore effect.

The RDE was applied to the six STIPSI forest stands and
the longleaf pine data based on 250 randomly placed grids
of sample plot locations in each forest stand. While in prac-
tical forest inventory, only one sampling grid is applied,
these 250 grids were used to determine sampling errors in a
design-based approach.

Additionally, 1000 completely random patterns were simu-
lated. Each pattern comprises 1000 trees in a 200 m �
200 m square window (250 trees/ha). These artificial tree
populations serve as a database for a model-based evaluation
of the RDE. This procedure reflects common practice of for-
est inventory where the estimation of tree density in a forest
is based on one fixed sampling grid. The choice of 250 trees/
ha as given tree density is of no relevance, since other tree
densities can be obtained by a rescaling of the stem map.
Thus, for a given location of a sample plot, always the same
k trees are measured, independent of the current density.

Methods

Simulation of k-tree sampling
In accordance with Prodan (1968), k = 6 was chosen,

which is a popular choice and a compromise between the
two conflicting aims of considering a large number of trees
and restricting measurement efforts.

The reconstruction-based density estimates of the STIPSI
stands are obtained from n k-tree sample plots. In conform-
ance with Prodan (1968), who suggested sample sizes of 4–6
sample plots/ha in each forest stand, the k-tree sample plots
are arranged in a 50 m � 50 m sampling grid (Fig. 3). Ap-
plying fixed sampling grids to the relatively small popula-
tions the number of sample plots n may vary among the
250 different grids. Nevertheless, the average sample size
can be expected to be 4 sample plots/ha with the applied
50 m � 50 m sampling grid.

The authors are aware that the sampling intensity of 4
plots/ha is relatively high with respect to inventories at the
enterprise level. This results from the small sizes of all ex-
amined forest stands. If k-tree sampling is applied together
with the RDE at enterprise level, the common grid widths
of 100 or 200 m should be used.

The sample plots are shown in Fig. 3 as circles with a ra-
dius equal to the distances from the sample points to the
corresponding sixth trees. In reality, the sample plots are no
longer circular if their centers are closer to the forest stand
border than to the corresponding sixth tree (see upper left
and upper right sample plot in Fig. 3). For each forest stand,
250 density estimates are derived from 250 resamplings
based on random shifts of the sampling grid, simulating a
systematic sample selection with a random starting point.

In the simulated 1000 completely random tree patterns in
200 m � 200 m square windows, centered fixed sampling
grids are laid out with n = 9, 16, or 25 sample plot locations
(Fig. 4). The sample grid width is 200=

ffiffiffi
n

p
with n being the

number of sample plots. The smallest distance to the border
of the square is 0:5� 200=

ffiffiffi
n

p
.

Additionally to k = 6, k = 4 was examined in the tree pat-
tern of STIPSI 21, having some signs of regularity, in the
longleaf pine stand, which shows the strongest clustering,
and in the completely randomly generated patterns with n =
9 sample plots.

Summary characteristics of point patterns
Our approach is based on the idea of a realistic recon-

struction of the spatial pattern of the trees outside the sam-
ple plot boundaries. A generated pattern is assumed to be an
appropriate reconstruction if the distances between the simu-
lated tree locations show the same distributional behavior as
in the original forest stand. According to Tscheschel and
Stoyan (2006), empirical cumulative distribution functions
(ECDFs) of the distances to trees are used, namely the
spherical contact distribution function and the nearest-neigh-
bor distance distribution function are considered essential
characteristics of spatial point patterns.

The true but unknown point process that generated the
spatial arrangement of trees in an arbitrary forest stand is
denoted by N; N is assumed to be stationary and isotropic.
This is of course a strong and restrictive assumption, which
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Fig. 1. Maps of tree positions and stand boundaries showing trees with DBH ‡ 7 cm; 7, 21, 28, 30, 61, and 67 are STIPSI stands (Schöpfer
1967) and LP is the longleaf pine data set (Platt et al. 1988).
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is, however, often made in point process applications in for-
estry. P(N(B) = 0) denotes the probability that there are no
points (trees) in a specific subset B. If B = b(o,r) is the disk
of radius r centered at the origin o, the location-to-nearest-
point distance distribution function is obtained, which is
often called the spherical contact distribution function (Illian
et al. 2008) or empty-space function (Baddeley and Gill
1997) and is formally defined as

½1� HsðrÞ ¼ 1� PðNðbðo; rÞÞ ¼ 0Þ for r � 0

Under the assumption that edge effects are of no impor-
tance, Hs(r) can be estimated without bias from k-tree sam-
ples by considering only the distance of each sample point
to its nearest trees. In this case and because of the stationar-
ity, P(N(b(o,r)) = 0) is simply estimated by the relative fre-
quency of sample plots having no trees in a circle of radius r
around the sample point.

Since the number n of sample plots was small, and there-
with the number of origins to obtain Hs(r), further distance
measurements were necessary. Therefore, 10 measurement
locations arranged in a regular grid were established in
every sample plot (Fig. 5). From each of these 10 locations,
in each of all n sample plots, the distance to the nearest tree
on the sample plot was measured, and in total, 10n measure-
ments were obtained. For these distances, the ECDF was
calculated. The authors are aware of the fact that this strat-
egy does not yield unbiased estimates of Hs(r). The resulting

ECDF, which is denoted by bHk

sðrÞ, may have some similar-
ity to Hs(r) but in fact estimates a different theoretical func-
tion Hs

k(r); the upper index k refers to the context of k-tree
sampling. The theoretical summary characteristic Hs

k(r) can
be rigorously defined for any stationary point process and is
based on the distances from the 10 test points, as arranged
in Fig. 5 around the origin o of the coordinate system
(shown as a plus sign), to their nearest neighbors in b(o,rk),
where rk is the distance from o to the kth nearest tree. The
sample point (plot center) was not used as a measurement
location.

Tscheschel and Stoyan (2006) showed that point pattern
reconstructions, such as described in the next section, work
well if the location-related summary characteristic Hs(r) is
combined with a point-related summary characteristic. The
natural choice for the latter is the nearest-neighbor distance
distribution function:

½2� DðrÞ ¼ PðNðbðo; rÞ n fogÞ > 0Þ for r � 0

It gives the probability of finding the nearest neighbor of a

tree within a disk of radius r centered at a tree location. The
nearest-neighbor distance distribution function was first de-
noted by Diggle (1979) as G(r). In this paper, the notation
is that of Illian et al. (2008).

Due to the unequal probability selection of trees in k-tree
sampling, an unbiased estimation of D(r) based on k-tree
samples is not possible. Just as in the case of Hs(r), a new
summary characteristic Dk(r) is introduced, which is adapted
to k-tree sample plots. This Dk(r) is defined as the nearest-
neighbor distance distribution function for the k trees of a
k-tree sample plot. Dk(r) is estimated by the ECDF corre-
sponding to the nearest-neighbor distances of all k � n trees.

Finally, to improve the quality of reconstruction, not only
the distances to the nearest neighbors are considered but also
tree-to-tree distance ECDFs Dl

k(r) corresponding to the dis-
tances from a tree to its lth neighbor with l = 1, ..., k – 1.
Similarly, the location-to-tree distance ECDFs Hs,m

k (r) of the
distances to the mth neighbor with m = 1, ..., k are consid-
ered. Thus, distances are measured from each tree to its
k – 1 neighbors and likewise from each of the 10 test point
locations to all of the k trees. This procedure yields k(k –
1)n tree-to-tree distances and k � 10 � n location-to-tree
distances from all plots of the surveyed forest stand.

Reconstruction of spatial tree patterns
The algorithm to generate reconstruction-based density es-

timates is in the following described sequentially in a step-
by-step manner.

Step 1: Estimate summary characteristics from original
sample plots

A sample of n k-tree plots is selected from the forest
stand of interest. The summary characteristics Dl

k(r) and
Hs,m

k (r) are estimated on the original sample plots.

Step 2: Establish the simulation window
A rectangular simulation window W is constructed as a

union of identical small squares arranged in the plane (see
Figs. 4 and 6). The square side length is twice the size of
the largest radius from the n k-tree sample plots. The centers
of the squares correspond to the original sample points. It
may happen that some squares in W do not contain a sample
plot, such as the two in the upper right corner of Fig. 6. The
sample points can be arranged arbitrarily in W. To minimize
edge effects, the difference of the edge lengths of W in the x
and y directions should be kept as small as possible. If

ffiffiffi
n

p
is an integer, the number of squares in W is equal in both

Table 1. Summary information on the analyzed forest stands.

ID Species (%) Age (range) (years) Area (ha) Trees/ha
7 Fir 60, beech 25, spruce 15 115 (110–120) 4.96 432

21 Beech 100 123 (110–140) 4.05 242
28 Spruce 95, others 5 127 (120–130) 3.51 421
30 Fir 40, spruce 40, pine 10, others 10 57 (50–60) 7.76 838
61 Beech 55, oak 30, hornbeam 10, fir 5 110 (90–120) 4.12 483
67 Oak 50, hornbeam 45, others 5 70 (60–75) 6.51 878
LP Longleaf pine 100 4 116

Note: 7–67 are STIPSI stands (Schöpfer 1967) and LP is the longleaf pine data set (Platt et al. 1988). No
information was available on the age of the trees of the longleaf pine data. From the original 584 trees, only
the trees with DBH ‡ 7 cm were included.
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the x and y directions; for other cases, the number of squares
in the x direction is set to trunc½

ffiffiffi
n

p
� þ 1.

Step 3: Translate the tree locations into the simulation
window

The measured trees are translated from the original sam-
ple plots into the artificial simulation window W. Their orig-
inal locations are kept fixed relative to the sample points.

The sample plot area within each square is defined by the
original shape, meaning that the sample plot areas that are
reduced by intersection with the area of the forest stand are
taken as cut disks; see the last sample plot in the first and
second row in the simulation window of Fig. 6.

Step 4: Generate a point pattern as start configuration
The start configuration of the point pattern in the entire

Fig. 2. Pair correlation functions of all trees having a DBH ‡ 7 cm; 7, 21, 28, 30, 61, and 67 are STIPSI stands and LP is the longleaf pine
data set. Black line, estimated function; white line, theoretical value of the function under the null hypothesis of complete spatial random-
ness; gray area, 95% confidence envelope under the null hypothesis computed by Monte Carlo simulation using the fifth highest/lowest
value of 199 replicates. Values g(r) < 1 suggest inhibition between points and values g(r) > 1 suggest clustering.
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simulation window W is formed by the k � n measured trees
plus newly generated points, which are scattered completely
randomly in W outside the n fixed k-tree sample plots. The
total number of points in W is chosen by means of Prodan’s
(biased) density estimator multiplied by the simulation win-
dow area. One could also choose different initial tree num-
bers, but the estimate used here provides a sufficiently
realistic starting point leading to shorter computation times.

Step 5: Construct a virtual sampling grid
A dense triangle grid of p virtual k-tree sample plots is

constructed in W to estimate the Dl
k(r) and Hs,m

k (r) for the si-
mulated pattern in W. The resulting sample plots are shown
as broken circles in Fig. 7 and the corresponding sample
points are marked as crosses. The minimum distance be-
tween any two of p virtual sample points is twice the mini-
mal radius of the original k-tree sample plots. The grid is
placed centrally in W with equal distances from the outmost
sample points to the nearest border of W. This guarantees a
dense but also homogeneous and efficient coverage of the
simulation window. On each virtual sample plot, the inter-
tree distances and location-to-tree distances are measured
and the same summary characteristics are obtained as for
the actual tree locations on the original sample plots.

Step 6: Perform simulated annealing: accept/reject
iterations

The next five substeps describe the SA algorithm. In an
iterative manner, proposals of deletion and addition of trees
in W are checked. The proposed change in the point pattern
may result either in an improvement or in a degradation.
The change is evaluated by a contrast measure Ct. It is based
on the sum of squared differences between the ECDFs Dl

k(r)
and Hs,m

k (r) corresponding to the original sample plots and
the p virtual k-tree plots in the simulation window; see Step
6.4 for details. If a proposal causes improvement, the new
state of the point pattern is accepted and otherwise rejected.
In the latter case, the point pattern is reset to the prior state.

The core algorithm is a loop over Steps 6.1–6.5. The runs
are denoted by t, the index of iteration. The iteration is car-
ried out 10Q times where Q is the initial number of trees in
the simulation window outside the transferred sample plots.
The whole sequence of iterations is given by t = 1, ..., 10Q.

Step 6.1: Propose a deletion or an addition
In each (2t – 1)th iteration, one tree is deleted at random,

and in each (2t)th iteration, one tree is generated at random.
The location of a possible new tree is generated by two

uniformly distributed decimal random numbers for its x-
and y-coordinates within W but outside the n fixed sample
plots.

An existing tree from outside the fixed sample plots is de-
leted if its identification number corresponds to a generated
integer random number, which is uniformly distributed over
the range of all possible tree identification numbers. Since
the number of trees in W outside the fixed sample plots
varies, new tree identification numbers are continuously al-
located after each iteration.

Whereas the addition of a tree follows complete random-
ness, the deletion is performed as simple random sampling
from a list. According to the principle of conditional simula-
tion (Illian et al. 2008), the translated and fixed k-tree sam-
ple plots in the simulation window are not affected by
deletions and generations.

Step 6.2: Perform k-tree sampling in the simulation window
The point pattern is changed by a deletion and an addi-

tion. Therefore, a new k-tree sampling is performed in W
based on the fixed triangle grid of sample points. For each
of the p virtual sample points, the tree locations of the k
nearest trees are recorded.

Step 6.3: Estimate summary characteristics from virtual
sample plots

After each change of the simulated point pattern, caused
by a deletion or an addition, it must be decided to which ex-
tent the summary characteristics of the new pattern in W de-

viate from bDk

l ðrÞ and bHk

s;mðrÞ, which were obtained from the
n original k-tree plots. For this purpose, the summary char-
acteristics Dl

k(r) and Hs,m
k (r) are newly estimated in the re-

construction window W. The k – 1 point-related nearest-
neighbor distribution functions Dl

k(r|t) for l = 1, ..., k – 1
and the k location-related spherical contact distribution func-
tions Hs,m

k (r|t) for m = 1, ..., k are estimated by means of the
grid of the p virtual sample plots, where |t indicates the de-
pendence on the current number t of iterations carried out.

Step 6.4: Measure the contrast
The decision about the acceptance of a deletion or addi-

tion is based on a contrast measure Ct (eq. 3 below), which
is calculated after every iteration t. The first summand of
eq. 3 is the sum of squared deviations between the ECDFs
of the nearest-neighbor distances, where the distribution

functions bDk

l ðidÞ result from the n sample plots in the origi-

nal forest stand and the distribution functions bDk

l ðidjtÞ are
derived after each iteration t from the simulation window
by means of the virtual sample plots. The second summand
in eq. 3 corresponds to the sum of squared distances be-

tween the ECDFs of the location-to-tree distances bHk

s;mðjdÞ

Fig. 3. Positions of trees in a forest stand (STIPSI 28). Fourteen
six-tree sample plots (large circles) are placed in a regular 50 m
grid with a random start. Measured trees are shown as solid circles.
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obtained from the n sample plots and bHk

s;mðjdjtÞ from the p vir-
tual sample plots in W. The ECDFs are based on distance classes

of width d = 0.2 m. The total number of classes for bDk

l is nD and

that for bHk

s;m is nH. Both depend on the sampling geometry.
The contrast function, i.e., the overall sum of squared dif-

ferences between the estimates of the distribution functions, is

½3� Ct ¼
Xk�1

l¼1

XnD

i¼1

�bDk

l ðidÞ � bDk

l ðidjtÞ
�2

þ
Xk

m¼1

XnH

j¼1

�bHk

s;mðjdÞ � bHk

s;mðjdjtÞ
�2

Fig. 4. Original six-tree samples with grids consisting of nine plots (top panels), 16 plots (middle panels), and 25 plots (bottom panels) in a
simulated random point pattern with a density of 250 trees/ha (left panels) and the corresponding reconstructed tree patterns in the virtual
simulation window W (right panels). W is constructed as a union of identical squares (broken lines) with side length of twice the largest
radius from the six-tree sample plots. The panels on the right are rescaled to fill the entire figure region.
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It seems natural to assume that for accurate point pattern re-
constructions, all intertree distances and all location-to-tree
distances are of the same relevance. Therefore, all terms in
eq. 3 are of equal weight.

Step 6.5: Decide: accept or reject
If the contrast measure is reduced in an iteration t, i.e., if

Ct < Ct–1, an improvement is obtained and the new state of
the point pattern is accepted. Otherwise, the new state is re-
jected, and the point pattern in the simulation window is re-
set to the previous configuration.

After the decision is made, the algorithm switches again
to Step 6.1, so long as the number of iterations is smaller
than 10Q. Otherwise, the next step is the final Step 7.

Step 7: Estimate the density from a subset of the
simulation window

It is known from simulation studies for point pattern gen-
eration that a ‘‘drift towards the boundary’’ effect may oc-
cur, meaning point locations at the edge of the simulation
window are preferred (Illian et al. 2008). To eliminate this
effect’s influence on density estimates, the density is esti-
mated from a rectangular subwindow W* within the simula-
tion window (broken square in Fig. 7). The subwindow is
constructed by subtracting an inner frame of width equal to
the maximum radius of the original sample plots from simu-
lation window. With the area of the subwindow |W*| and N*
the final number of trees in W* the density estimator is

½4� bl ¼ N�

jW�j

Additional remarks
The accept/reject algorithm applied here corresponds to

SA (Kirkpatrick et al. 1983). Although, the original SA al-
gorithm allows the acceptance of statuses where Ct > Ct–1
with small probability, we use an improvements-only algo-
rithm, as described in Tscheschel and Stoyan (2006). The
SA algorithm is a global optimization method; the improve-

ments-only algorithm may in some cases only find local op-
tima. Tscheschel and Stoyan (2006) compared the classical
SA algorithm with the faster improvements-only algorithm
and found that the improvements-only algorithm is sufficient
for good point pattern reconstruction.

During the iterations, deletions and additions (Step 6.1)
are proposed in alteration. However, this does not mean
that each deletion that occurred is followed by an addition.
It is possible that a proposed addition is withdrawn after an
accepted deletion because no improvement of the point pat-
tern was achieved, so the next event is again a deletion. The
opposite situation, the withdrawal of a proposed deletion
after an accepted addition, may also occur.

Figure 8 shows the empirical distribution functions of the
summary characteristics that were estimated from the k-tree
sample plots in STIPSI 28 (solid curves) and those obtained
from the dense triangle grid of virtual k-tree sample plots in
the simulation window W (dotted curves) in Step 6.3. The
curves for the ECDFs from the simulation window in the
upper two graphs are obtained from the initial state (t = 1)
of the SA algorithm; the dotted curves in the lower two
graphs are obtained in the final iteration. The differences be-
tween the solid and dotted curves, and therefore the contrast,
is remarkably reduced (see also Fig. 9). The ECDFs from
the original sample plots and those from the virtual sample
plots in W become almost identical.

Comparison of performances
According to the study of Magnussen et al. (2008), the

best performing density estimator in terms of bias for k-tree
sampling with n £ 20 is the estimator of Kleinn and Vilčko
(2006b). Originally, they proposed two density estimators in
which the sample plot radius is calculated by an average of
the distances to the kth tree (rk) and the (k + 1)th tree (rk+1).
The first estimator uses the arithmetic mean of both distan-
ces 0.5(rk + rk+1) and the second uses the quadratic meanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5ðr2
k þ r2

kþ1Þ
p

. The corresponding estimates are hence-
forth referred to as KV1 and KV2. Since these estimators
do not only depend on the distance to the kth tree, but also
to the (k + 1)th tree, they are (k + 1)-tree sampling ap-
proaches. Therefore, the performances of KV1 and KV2
were examined for given k (KV1k,k+1 and KV2k,k+1) and for
k – 1 (KV1k–1,k and KV2k–1,k). In the following, for k = 6
and k = 4, the performance of the RDE is compared with
KV1k,k+1, KV2k,k+1, KV1k–1,k, KV2k–1,k, and Prodan’s estima-
tor.

Results

Real stem maps for k = 6
The biases of the RDE for k = 6 range from 0 trees/ha in

STIPSI 61 to +4.3 trees/ha (+1.8%) in STIPSI 21 (Table 2).
According to the small observed biases, the RDE proved to
be approximately unbiased for all STIPSI stands. In contrast,
the estimator of Prodan (1968) is seriously biased. It overes-
timated the tree density from +12.6 trees/ha (+5.2%) in
STIPSI 21 to +44.1 trees/ha (+10.5%) in STIPSI 28.

Both density estimators of Kleinn and Vilčko (2006b)
also showed considerable biases in all STIPSI stands
(Table 2) and were positively correlated with the biases of
Prodan’s estimator. The KV1 estimator of Kleinn and

Fig. 5. The 10 regularly arranged test point locations (crosses) for
measurement of location-to-tree distances in a six-tree sample plot.
Measured trees are shown as solid circles and the sample point is
depicted as a plus sign.
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Vilčko (2006b) with k = 6 (KV16,7) overestimated the tree
density from +10 trees/ha (+4.1%) in STIPSI 21 to +82.3
trees/ha (+9.8%) in STIPSI 30 and with k = 5 (KV15,6)
from +12.8 trees/ha (+5.3%) to +108.3 trees/ha (+12.9%) in

STIPSI 30. The biases of the KV2 estimator with k = 6
(KV26,7) range from +9.1 trees/ha (+3.8%) in STIPSI 21 to
+78.7 trees/ha (+9.4%) in STIPSI 30 and with k = 5 (KV25,6)
from +11.5 trees/ha (+4.8%) to +103 trees/ha (+12.3%).

Fig. 6. Artificial simulation window W resulting from Fig. 3 with fixed tree locations (small solid circles) within the n = 14 transferred six-
tree sample plots (large circles) and simulated tree positions (small open circles). W is constructed as a union of identical squares (broken
lines) with side length of twice the largest radius from the six-tree sample plots.

Fig. 7. Artificial simulation window W derived from Fig. 3 with fixed tree locations (small solid circles) within the n = 14 transferred six-
tree sample plots (large circles) arranged in a regular grid (plus signs) and with the simulated tree positions (small open circles). The near-
est-neighbor summary characteristics of the simulated tree patterns are obtained from measurements on p = 68 six-tree sample plots (large
broken circles) arranged in a dense triangle grid (crosses). The final density estimate is obtained from the subwindow W* (broken square).
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For the tree pattern of the reduced longleaf pine data set
and with k = 6, the RDE achieved a bias of –0.2 tree/ha
(–0.2%) whereas the other estimators showed much larger
biases: KV16,7, 21.7 trees/ha (+18.7%); KV26,7, 21.1
trees/ha (+18.2%); KV15,6, 22.7 trees/ha (+19.5%); KV25,6,
21.9 trees/ha (+18.8%); Prodan, 17.1 trees/ha (+14.8%).

The RDE’s density estimates of all analyzed real tree pat-
terns have smaller RMSEs than those of Prodan’s estimator
and also smaller than the RMSEs of KV1 and KV2 (Table 2)
for k = 5. Except for STIPSI 21, the RDE also achieved
smaller RMSEs compared with KV1 and KV2 for k = 6.

The general trends show that the RDE reduced the bias by
a factor of at least 3 compared with Prodan’s estimator and
by a factor of at least 2 compared with the KV estimators.
The biases of the RDE were below 2% for all real stem
maps. The largest bias of the RDE (1.8%) can be observed
in the tree pattern of STIPSI 21, which shows some signs of
regularity. And only for this tree pattern did the KV estima-
tors with usage of the distance to the seventh tree show

Fig. 8. Empirical cumulative distribution functions (ECDF) of the nearest-neighbor summary characteristics. The solid curves were obtained
from the 14 original six-tree sample plots in STIPSI 28 and the dotted curves from the 68 virtual six-tree sample plots arranged in a dense
triangle grid in the simulation window. The panels on the left-hand side show the ECDFs of intertree distances. Starting from the left, the
curves correspond to the l = 1, ..., 5th neighbor. The panels on the right-hand side show the ECDFs of location-to-tree distances. From the left
to the right, the curves correspond to the m = 1, ..., 6th tree. The dotted curves in the upper panels were obtained from the initial pattern at the
beginning of the SA iterations and those in the lower panels from the tree pattern in the final state of the SA algorithm. The sum of squared
differences between the solid curves (original sample plots) and the dotted curves (simulation window) was used as a contrast measurement.

Fig. 9. Realizations of tree density during the SA algorithm. Density
estimates (solid line, left axis) and contrast measure Ct (broken line,
right axis) over the number of iterations. There were 2940 (=10Q)
iterations (x-axis) carried out, since 294 (=Q) trees were initially
placed in the simulation window between the fixed sample plots.
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slightly smaller RMSEs (RDE, 18.2; KV16,7, 17.7; KV26,7,
17.2).

In comparison with Prodan’s estimator, the RMSEs were
reduced by 13%–37%, and by at least 11%–41% compared
with the different KV estimators, excluding the results in
STIPSI 21. In summary, the RDE approach not only pro-
vides nearly unbiased estimates but also its RMSEs are
mostly smaller than those obtained from the other estima-
tors.

Random patterns for k = 6
The biases of the RDE in 1000 random point patterns

were +1.7 trees/ha (+0.7%) for the nine-sample plots, +1.1
trees/ha (+0.4%) for the 16-sample plots, and +0.3 tree/ha
(+0.1%) for the 25-sample plots (Table 3). Prodan’s estima-
tor, in contrast, showed serious biases for the random pattern
of +23.0 trees/ha (+9.2%) for the nine-sample plots, +25.6
trees/ha (+10.3%) for the 16-sample plots, and +23.8 trees/
ha (+9.5%) for the 25-sample plots.

Regarding the STIPSI stands, the KV1 and KV2 density
estimators also proved to be biased, where the biases were
positively correlated with those from Prodan’s estimator.
The KV1 estimator with k = 6 (KV16,7) showed a bias of
+21.6 trees/ha (+8.6%) for the nine-sample plots, +22.7
trees/ha (+9.1%) for the 16-sample plots, and +21.7 trees/ha
(+8.7%) for the 25-sample plots. The biases of the KV2 es-
timator with k = 6 (KV26,7) were slightly smaller: +20.5
trees/ha (+8.2%) for nine-sample plots, +21.6 trees/ha
(+8.6%) for 16-sample plots, and +20.6 trees/ha (+8.3%) for
25-sample plots. The bias increased for all applied sample
sizes when the KV estimators were applied with k = 5 in-
stead of k = 6.

For the three sampling grids with nine-, 16-, and 25-sam-
ple plots, the RDE showed smaller RMSEs than the other
estimators in this comparison (Table 3).

Compared with the other estimators, the bias was reduced
by a factor of at least 12 by the RDE for random patterns.
The biases of the RDE were below 1% for all three sample
sizes. Applying the RDE to nine-sample plots, the RMSE
was lowered by about 9% in comparison with Prodan’s esti-
mator and by at least 2% compared with the KV estimators.
With 16-sample plots, the RMSE was reduced by 27% in
comparison with Prodan’s estimator and by at least 17%
compared with the KV estimators. Using 25-sample plots,
the RMSE of the RDE was 31% smaller than the RMSE of
Prodan’s estimator and at least 21% smaller than those ob-
tained by the KV estimators.

The bias of all estimators did not vary remarkably for dif-
ferent sample sizes of nine, 16, and 25 plots, but the RMSEs
were significantly reduced by larger sample sizes.

Subset of real stem maps and random patterns for k = 4
For k = 4 in the random tree patterns, the bias of the RDE

was 2.9% and the biases of the KV estimators were 12.4%
(KV14,5), 11.5% (KV24,5), 17.3% (KV13,4), and 15.3%
(KV23,4) (see Table 4). Prodan’s estimator showed a bias of
17.9% for k = 4 in the random patterns. In the random tree
patterns, the RMSE of the RDE (59.2) was 5% smaller com-
pared with KV14,5 (62.7), 2% smaller compared with KV24,5
(60.7), 31% smaller compared with KV13,4 (85.4), 27%T
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smaller compared with KV23,4 (81.0), and 28% smaller com-
pared with Prodan’s estimator (82.6).

In STIPSI 21, the RDE showed a bias of 3.1% and the
biases of the KV estimators were 7.0% (KV14,5), 6.2%
(KV24,5), 7.0% (KV13,4), and 5.6% (KV23,4). The bias of
Prodan’s estimator for k = 4 in STIPSI 21 was 8.5%. The
RMSE of the RDE in STIPSI 21 (26.8) was 3% larger than
the RMSE of KV14,5 (26.0), 9% larger than the RMSE of
KV24,5 (24.6), 3% smaller than the RMSE of KV13,4 (27.7),
6% larger than the RMSE of KV23,4 (25.4), and 17%
smaller than the RMSE of Prodan’s estimator (32.3).

For k = 4 in the longleaf pine stand, the bias of the RDE
was –0.2% and the KV estimators achieved biases of 23.2%
(KV14,5), 22.2% (KV24,5), 26.0% (KV13,4), and 23.9%
(KV23,4). Prodan’s estimator showed a bias of 22.0% for k
= 4 in the longleaf pine stand. The RMSE of the RDE
(31.1) for the longleaf pine data was 43% smaller compared
with KV14,5 (54.9), 42% smaller compared with KV24,5
(54.0), 44% smaller compared with KV13,4 (55.8), 42%
smaller compared with KV23,4 (53.6), and 38% smaller com-
pared with Prodan’s estimator (50.1).

The application of k = 4 in the completely randomly gen-
erated tree patterns increased the bias of the RDE by a fac-
tor of 4.2 compared with k = 6. The choice of k = 4 instead
of k = 6 increased the bias for the KV estimators by at least
40% (KV2k,k+1) and by maximal 70% (KV1k–1,k) in the ran-
dom tree patterns. The bias of Prodan’s estimator was 95%
larger for k = 4 compared with k = 6. In STIPSI 21, the bias
of the RDE was increased by 72% for k = 4 compared with
k = 6 and the increase in bias for the KV estimators was be-
tween 17% (KV2k–1,k) and 69% (KV1k,k+1). The bias of Pro-
dan’s estimator was increased by 63% when using k = 4
instead of k = 6. In the longleaf pine data, the bias of the
RDE was increased by 6% for k = 4 compared with k = 6.
The bias increase of the KV estimators was between 22%
(KV2k,k+1) and 33% (KV1k–1,k) and was 56% for Prodan’s
estimator.

For k = 4 compared with k = 6 in the completely ran-
domly generated tree patterns, the RMSE of the RDE was
increased by 34% and the KV estimators showed increases
in RMSE between 35% (KV2k,k+1) and 64% (KV1k–1,k). The
RMSE of Prodan’s estimator was increased by 70% in the
random patterns. In STIPSI 21, the RMSE of the RDE was
increased by 47% when applying k = 4 instead of k = 6.
The increase in RMSE for the KV estimators in STIPSI 21
was between 33% (KV2k–1,k) and 47% (KV1k,k+1) and was
55% for Prodan’s estimator. In the longleaf pine data, the
RMSE of RDE was 14% larger for k = 4 compared with k
= 6. The RMSE of the KV estimators was increased by at
least 17% (KV2k–1,k) and by maximal 28% (KV1k,k+1). The
RMSE of Prodan’s estimator was 30% larger for k = 4 than
for k = 6.

In summary, for all types of tree patterns, such as ran-
domness, regularity (STIPSI 21), and clustering (longleaf
pine stand), the biases and the RMSEs of all examined esti-
mators were increased for k = 4 compared with k = 6.
Although the RDE proved to be superior in terms of bias
and RMSE for the randomly distributed and clustered tree
patterns, the KV2 estimators showed slightly smaller
RMSEs for k = 4 in the regular tree pattern of STIPSI 21.T
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Discussion and conclusions
The proposed RDE approach requires that the positions of

all k trees of each sample plot are recorded during the field
measurements. The original estimator of Prodan (1968) re-
quires only one distance measurement from the sample point
to the kth tree and the estimators of Kleinn and Vilčko
(2006b) involve additional knowledge about the distance to
the (k + 1)th tree. As the application of RDE requires addi-
tional measurement of the tree coordinates, the utilization of
traditional measuring instruments, such as tapes and goni-
ometers, would lead to an increase in survey costs. To mini-
mize these additional costs, a laser distance measuring
device should be attached to the existing electronic caliper
and a software interface should be available for transferring
the data.

The RDE estimator exploits new information from k-tree
sample plots that has not been used so far on the intertree
and location-to-tree distances. The nearest-neighbor sum-
mary characteristics derived from the relatively small sam-
ple plot areas appear to give sufficient information to
reconstruct tree patterns. Obviously, it does not matter that

the estimators bDk

l ðrÞ and bHk

s:mðrÞ obtained from k-tree sam-
ples are biased for Dl(r) and Hs,m(r).

The reader should note that the SA algorithm used in the
present paper is not related to Gibbs process simulation as
carried out in other applications of point process statistics
(see Illian et al. 2008). In Gibbs process simulation using
the Metropolis–Hastings algorithm (Metropolis et al. 1953)
or the ‘‘birth-and-death’’ algorithm (Ripley 1987), a station-
ary Markov chain is simulated, the states of which are point
patterns. They aim at simulating an equilibrium state. In con-
trast, in this paper, an optimal point pattern is determined
that minimizes the contrast measure given by eq. 3.

Experience has shown that the most relevant changes in
density of the simulated tree pattern occur in the initial
phase of the SA (see Fig. 9 for an example). Thus, one can
assume to be on the safe side with the conservative choice
of 10Q iterations, with Q being the initial number of trees
affected by possible deletions. A further in-depth analysis
should aim at finding an optimum for the required number
of iterations, as this would reduce the computational costs.

The allocation of the 10 measurement locations for the es-
timation of Hs,m

k (r) on each sample plot, as shown in Fig. 5,
is a successful choice. The use of less than 10 measurement
locations was also tested but proved to be inappropriate: the
estimated ECDFs became rather discontinuous and showed
implausible jumps because of the small amount of distance
measurements included.

The application of the RDE method (the algorithm was
implemented in R and is available from the corresponding
authors upon request) is straightforward regardless of the
choice of k. The method proved to be successful for the com-
monly applied choice of k = 6. The RDE works also for k =
4 but with a larger bias and RMSE. Obviously, for k = 4 in
regular tree patterns, the sample plots become too small and
the information on intertree and location-to-tree distances is
not sufficient for accurate reconstructions. The competing es-
timators suffer likewise under the reduction to k = 4 neigh-
bors. Therefore, it is recommended to use the RDE for
density estimation by means of k-tree sampling with k = 6.T
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In this study, the RDE was applied with regard to its po-
tential application in forest inventories. Therefore, the sam-
pling simulations are based on systematic sampling grids
instead of a fixed number of sample plots.

The tree density is of course not the only variable of in-
terest in forest inventories. In traditional forest inventories
based on simple random sampling, a mean of ratios estima-
tor is usually applied for estimates of most forest stand vari-
ables. The global density estimate is then provided by the
mean of ratios, each of which is a local density estimate cal-
culated by a fraction with the number of trees on the sample
plot in the numerator and the specific plot area in the de-
nominator. To yield global estimates of mean basal area (or
volume) per hectare, a mean of products of the local density
estimates and the mean basal areas (volume) per tree is cal-
culated. Using biased density estimates in k-tree sampling,
e.g., through Prodan’s estimator, it can be safely assumed
that the bias in the density estimate will propagate to biased
estimates for the basal area (volume) per hectare.

The RDE density estimate is obtained by dividing the fi-
nal number of trees in the reduced simulation window by its
area. Estimates for the mean basal area per hectare and vol-
ume per hectare are then obtained, as previously described,
by multiplying the RDE density estimate (trees per hectare)
by estimates for mean basal area per tree (square metres per
tree) or mean volume per tree (cubic metres per tree) ob-
tained from the original k-tree sampling plots.

Assuming that unbiased estimates per tree can be derived
from original k-tree sample plots, one would also yield un-
biased estimates for the mean basal area per hectare and the
mean volume per hectare in conjunction with the RDE den-
sity estimates.
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