Physikorientiertes Profil im Bachelorstudiengang Mathematik (Profil Phy)

Mathematikmodule in den Semestern 1 und 2:

Für alle drei Profile sind diese Module verpflichtend:

- B.Mat.0011: Analysis I (9 C) ("Differenzial- und Integralrechnung I")*
- B.Mat.0021: Analysis II (9 C)) ("Differenzial- und Integralrechnung II")
- B.Mat.0012: Analytische Geometrie und Lineare Algebra I (9 C)
- B.Mat.0022: Analytische Geometrie und Lineare Algebra II (9 C)

B.Mat.0011 und B.Mat.0012 müssen bis zum Ende des vierten Fachsemesters bestanden werden.

Mathematikmodule ab Semester 3:

Im Phy-Profil sind Grundlagenvorlesungen aus den 4 mathematischen Studienschwerpunkten verpflichtend:

- Eins der folgenden drei Module:
 - B.Mat.1100: Analysis auf Mannigfaltigkeiten (9 C) ("Differenzial- und Integralrechnung III")
 - B.Mat.2110: Funktionalanalysis (9 C)
 - B.Mat.2120: Funktionentheorie (9 C)
- B.Mat.1200: Algebra (9 C)
- B.Mat.1300: Numerische lineare Algebra (9 C)
- B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie (9 C)

Mathematikmodule ab Semester 4:

- B.Phy.1203 Quantenmechanik I (8 C) ist verpflichtend vorgeschrieben. (Dieses Modul zählt im physikorientierten Profil formal tatsächlich zu den Mathematikmodulen.)
- 40 C müssen aus weiterführenden mathematischen Modulen gewählt werden.
- Darunter muss mindestens ein Proseminar- oder Seminarmodul im Umfang von mindestens 3 C sein.
- Weiterführende mathematische Module sind:
 - B.Mat.1100: Analysis auf Mannigfaltigkeiten (9 C, 6 SWS)
 - B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)
 - B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)
 - B.Mat.2120: Funktionentheorie (9 C, 6 SWS) B.Mat.2200: Moderne Geometrie (9 C, 6 SWS)

 - B.Mat.2210: Zahlen und Zahlentheorie (9 C, 6 SWS)
 - B.Mat.2220: Diskrete Mathematik (9 C, 6 SWS)
 - B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)
 - B.Mat.0721: Mathematisch orientiertes Programmieren (6 C, 3 SWS)
 - B.Mat.0730: Praktikum Wissenschaftliches Rechnen (9 C, 4 SWS)
 - B.Mat.1310: Methoden zur Numerischen Mathematik (4 C, 2 SWS)
 - B.Mat.2100: Partielle Differenzialgleichungen (9 C, 6 SWS)
 - B.Mat.2110: Funktionalanalysis (9 C, 6 SWS)
 - B.Mat.2300: Numerische Analysis (9 C, 6 SWS)
 - B.Mat.2310: Optimierung (9 C, 6 SWS)
 - B.Mat.0740: Stochastisches Praktikum (9 C, 6 SWS)
 - B.Mat.2410: Stochastik (9 C, 6 SWS)
 - B.Mat.2420: Statistical Data Science (9 C, 6 SWS)
 - Alle Module mit Nummern der Form B.Mat.3*** (Hierunter zählen zum Beispiel alle Proseminare und Seminare.)

Nebenfach (34 C):

Es müssen Module im Gesamtumfang von 26 C nach Maßgabe der folgenden Bestimmungen gewählt werden. Es gibt zwei Alternativen zur Absolvierung dieser 26 C, welche unter den folgenden Punkten (1) und (2) näher ausgeführt sind:

(1)	Es müssen die folg	genden drei Module im Gesamtumfan	y von 26 C erfolgreich absolviert werden:
	D Dby 1101	Even a rim and alphy mile I mit Draktikum	Machanile

	B.Phy.1101	Experimentalphysik I mit Praktikum – Mechanik	(9 C / 9 SWS)
	B.Phy.1102	Experimentalphysik II mit Praktikum – Elektrizitätslehre	(9 C / 9 SWS)
	B.Phy.1201	Analytische Mechanik	(8 C / 6 SWS)
(2)	2) Es müssen die folgenden vier Module im Gesamtumfang von 26 C erfolgreich absolviert werden:		

B.Phy.2101	Experimentalphysik I: Mechanik und Thermodynamik	(6 C / 6 SWS)
B.Phy.2102	Experimentalphysik II: Elektrizität	(6 C / 6 SWS)
B.Phy-NF.7005	Physikalisches Grundpraktikum für Studierende der Mathematik	(6 C / 6 SWS)
B.Phy.1201	Analytische Mechanik	(8 C / 6 SWS)

Ferner ist eines der folgenden Module im Umfang von mindestens 8 C erfolgreich zu absolvieren.

Empfohlen wird B.Phy.1202 "Klassische Feldtheorie"

B.Phy.1103	Experimentalphysik III mit Praktikum – Wellen und Optik	(9 C / 9 SWS)		
B.Phy.1104	Experimentalphysik IV mit Praktikum – Atom- und Quantenphysik	(9 C / 9 SWS)		
B.Phy.1202	Klassische Feldtheorie	(8 C / 6 SWS)		
B.Phv.1204	Statistische Physik	(8 C / 6 SWS)		

Schlüsselkompetenzen (14C):

Im Profil Phy sind im Professionalisierungsbereich "Schlüsselkompetenzen" Module im Gesamtumfang von mindestens 14 C zu absolvieren: www.uni-goettingen.de/de/192579.html

Es wird außerdem empfohlen, einen Programmierkurs zu einer höheren, objektorientierten Programmiersprache zu absolvieren, z.B. eines der nachstehenden Module:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
-	B.Mat.0721	Mathematisch orientiertes Programmieren	(6 C / 3 SWS)	
-	B.Phy.1601	Programmierkurs	(6 C / 3 SWS)	
-	B.Phy.1602	Computergestütztes wissenschaftliches Rechnen	(6 C / 6 SWS)	
-	B.Inf.1801	Programmierkurs	(5 C / 3 SWS)	