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Using Choice Experiments to Estimate Consumer Valuation: the Role of Experimental 
Design and Attribute Information Loads 

Introduction 

 In the last 10 years, choice experiments (CEs) have been widely used to elicit consumer 

valuation of nonmarket goods and marketable goods with novel attributes.  A simple search in 

Econlit with the key words “choice experiments” and “valuation” results in 211 studies in total, 

and in 2008 alone, there were 40 studies, about 4 times of that in 2000.  The increasing 

popularity of CEs is partially in response to recognized problems with contingent valuation by a 

NOAA panel in 1990 (Hausman 1993), as well as the ability to easily identify the trade-offs 

among different product attributes relative to other approaches.  In addition, CEs are consistent 

with Lancaster’s theory of utility maximization (Lancaster 1972).   Further, continuous 

development in discrete choice modeling, such as multinomial logit models, generalized extreme 

value models, and mixed logit models, among others, has led to convenient availability in 

commercial software (e.g., Limdep and Stata).  This development provides researchers with a set 

of powerful tools to study consumer choices corresponding to different assumptions of consumer 

preferences.    

However, despite the rapid growth in CE research, design of CEs remains one of the most 

challenging issues.  For instance, in a simple CE that has two alternatives, with each alternative 

having four two-level attributes, the total combination of attribute levels or choice sets is 256 

(24x24).  In most cases it is not feasible to ask respondents to make 256 continuous choice 

decisions, and this is a very simplistic example. The number of choices that respondents face 

grows exponentially as the design of the CE becomes more complicated, and designs often 

become more complicated to reflect real-life choices.  One solution may be randomly choosing 8, 
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16 or 20 choice sets from the 256 sets for respondents to choose from, but this might deteriorate 

the statistical efficiency of data analysis.  Therefore, the major challenge is to design statistically 

efficient experiments to provide enough information for accurately eliciting consumer 

preferences, and at the same time, make the length of choice experiments reasonable, such that 

cognitive burdens on survey participants are minimized.   

Previous research has contributed to the development of design strategy to more precisely 

elicit consumer valuation.  In the contingent valuation framework, Kanninen (1993a) derives the 

optimal experimental designs for double-bounded dichotomous choice models based on D-

optimal, C-optimal and Fiducial Method criteria1.  Kanninen (1993b) further develops the 

sequential C-optimal approach to collect a priori information on true parameters required to 

generate optimal designs.  D-optimal designs for multinomial CEs are derived with the 

assumption that all attributes are quantitative variables. This allows the use of the numerical 

optimization to search over all possible choice designs without restrictions.  Results show this 

approach generates better designs for main-effects, multinomial CEs than traditional designs 

such as main-effects design and shift design (cyclical design) (Kanninen 2002).  Most recently, 

Louviere et al. (2008a) developed an approach to collect additional information using a rank-

order explosion method to estimate models at individual levels.  Other researchers (e.g. Scarpa 

and Rose 2008) developed CE designs that minimize the C-error in CEs as a function of 

willingness-to-pay (WTP), in comparison with the traditional designs that minimize D-error and 

A-error which are both functions of parameters in the consumer utility function.  

                                                             
1 D-optimal design is based on the parameters; C-optimal design and Fiducial Method design are 
based on the WTP.  
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However, despite of the recent development in CE designs, no general agreement has been 

reached on what the “best design” of CEs is.  Chrzan and Orme (2000) argue that each design 

approach has its advantages in capturing certain types of effects and there is no superior design 

for all purposes.  For instance, the D-optimal and C-optimal (by minimizing C-error) designs 

proposed by Kanninen (2002) and Scarpa and Rose (2008) require the knowledge of true 

parameters of consumer preferences.  Although previous study can be used as a source for the 

determination of true consumer preferences, this information is not always readily available.  

Using Monte Carlo simulation, results from studies demonstrate D-optimal design with poor 

quality a priori information is less promising than shift design without any a priori information 

(Ferrini and Scarpa 2007).  With correct a priori information, D-optimal design generates a more 

accurate valuation of products or services (Carlsson and Martinsson 2003; Ferrini and Scarpa 

2007).  At present, the designs that don’t require a priori information proposed by Louviere, 

Hensher and Swait (2000) are still the most popular in empirical studies because of their 

simplicity and availability in commercial software.  In a comparison of six designs that assume 

no a priori information, Lusk and Norwood (2005) demonstrate that random designs perform 

best in WTP estimates.   

Existing literature using simulations to study CE design performance compares different 

design strategies with fixed design dimensionality (e.g., number of alternatives, number of 

attributes and number of attribute levels).  For instance, Carlsson and Martinsson (2003) 

construct pair-wise CEs with 4 attributes; Ferrini and Scarpa (2007) conduct a simulation based 

on pair-wise CEs with 4 attributes, each having 3 levels; and Scarpa and Rose (2008) 

demonstrate their study based on CEs containing three alternatives with four attributes.  With 

recent field studies showing that design dimensionality, especially the number of product 
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attributes in CEs, affects consumer preference and valuation (Hensher 2006, Islam, Louviere, 

and Burke 2007, Rose et al. 2008; Louviere et al. 2008b; Gao and Schroeder 2009), it is 

legitimate and also important to seek answers on the impacts of attribute information on WTP 

estimates in simulation scenarios and investigate the performance of different CE designs under 

various attribute information loads.  This is because the lack of research on performance of 

different CE designs under various attribute information hinders our ability to infer efficiency of 

different CE design strategies.  In addition, determining the influence of attribute information 

loads on WTP estimates will help to determine whether the impacts of additional information 

found in field studies are a result of the changes in respondent cognitive ability or just the 

statistical properties of the CEs when the number of attributes varies.  The identification of the 

sources of the impacts of information loads on consumer is useful for better explanations of 

respondent changing behaviors in CEs. 

The purpose of this article is to determine the performance of different CE designs on 

welfare estimates such as WTP under different attribute information loads. A secondary 

objective is to investigate the effects of information loads on consumer valuation in simulation 

scenarios.  We will compare the most widely used CE designs in empirical works, with the 

assumption that no a priori information on consumer preference is available.  The reason for this 

is the unavailability of high quality information in most cases and the fact that low quality a 

priori information will produce less promising results.  We believe our research will provide 

valuable information to researchers focusing in the application of CEs by helping them to choose 

more appropriate design strategies based on the attribute information determined before 

implementation of CEs.  In addition, identifying the impacts of dimensionality on the statistical 

properties of CEs may help identify the true source of impacts of information loads on consumer 



6 
 

preferences and enhance our understanding of the effects of dimensionality on respondent 

valuation.   

Choice Experiments and Experimental Design 

 In a CE, predetermined attributes that are believed to have the largest impacts on 

consumer choice decisions comprise a series of alternatives (profiles or choices).  Two or more 

alternatives are used to form a choice set, and a sequence of choice sets composes a CE.  

Respondents are asked to choose one alternative from each choice set in a CE.  Based on random 

utility theory, consumers will choose an alternative from each choice set to maximize her/his 

utility.  Consumer preferences for products and product attributes can be elicited from their 

sequential choice decisions.  However, in most cases, enumerating all combinations of product 

attributes is not feasible because the number of combinations of product attributes is grows 

exponentially, resulting in very large number of choice sets.  Too many choice sets may hinder 

the consumer’s ability to make rational choice decisions in a short time.  Therefore, one of the 

major challenges of conducting a CE is to design experiments that are simple enough for 

respondents to make efficient choice decisions, while at the same time providing enough 

information for researchers to accurately elicit consumer preferences.   

Various CE designs have been discussed and used by researchers, including orthogonal 

main effects design, D-optimal design, C-optimal design, fractional factorial design and shifted 

(or cycled) design, etc.  There is a general agreement that CEs generated from the design should 

result in the minimum variance of coefficient estimates.  In a linear model, the variance of 

coefficient estimates does not depend on the true parameters, such that 2 1( ) ( ' )Var X Xβ σ −= , where 

X is the design matrix and 2σ is the variance of the random error in the linear model.  Therefore, 
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the D-optimal design which maximizes the D-efficiency 11

1100
| ( ' ) | AN X X −

⋅ , should be the best 

design in linear models, where N is the number of observations in the design, and A is the 

number of attributes.  Balanced orthogonal designs automatically result in designs with 100% D-

efficiency because 1 1( ' )X X I
N

− = ⋅  where I is an identity matrix.  A design that deviates from 

orthogonal design will have a D-efficiency less than 100%, with the minimum efficiency being 

zero (Kuhfeld, Tobias and Garrat 1994).  The procedures that can generate balanced orthogonal 

design, D-optimal design, etc. for linear models are readily available in SAS and other software 

which make the design of experiments of linear models simple.  However, good designs based 

on the standards in a linear model may not hold for CEs.  This is because the models used in CEs 

are usually nonlinear, and the variance of parameter estimates not only depends on the design 

matrix, but also on the true parameters in the models.   

The variance matrix of the parameter estimates from CEs depends on the assumption of the 

random component in consumer random utility function 'j j jU xβ ε= + , where jU is the consumer 

utility of consuming product j , β is a vector of parameters, jx is a vector of attributes for 

alternative j and jε is the random component with a certain type of probability distribution.   

Consumers will choose an alternative from a choice set to maximize her/his utility and the 

probability of choosing alternative j is Prob( ' ' ,  )j j j i iP x x i jβ ε β ε= + > + ∀ ≠ .  In a multinomial logit 

model (MNL), a prevailing model used to estimate consumer preferences in CEs, jε  has 

identical independent Gumbel distribution with constant variances of 2 / 6π .  The probability that 

a consumer chooses alternative j from a choice set with n choices is 
'

'

1

j

i

x

j n
x

i

eP
e

β

β

=

=

∑
.  The maximum 



8 
 

likelihood estimator is consistent and asymptotically normal distributed with mean β , and the 

asymptotic covariance matrix 1 ' 1

1 1

( ' ) [ ]
M n

jn in jn
n j

Z PZ z P z− −

= =

Ω = = ∑∑  , where 
1

n

jn jn in in
i

z x x P
=

= −∑ , and M is 

the number of choice sets for all respondents (McFadden 1974).  The formula of the variance of 

the parameters in MNL implies that it is not possible to choose a design strategy that minimizes 

the variance of parameter estimates without knowing the true parameters in the consumer utility 

function.  In this case, simulation studies have been used to examine the performance of different 

designs in parameter and WTP estimates (Carlsson and Martinsson 2003; Ferrini and Scarpa 

2007; Lusk and Norwood 2005).   

Kanninen (1993b, 2002) has demonstrated a sequential procedure to gain information on 

the parameter values in the consumer utility function, which can be used to design D-optimal or 

C-optimal CEs.  However, in empirical studies, the D-optimal and C-optimal designs with a 

priori information have not been used often.  This is because obtaining high-quality prior 

information of the true parameters of utility function may be difficult in most cases and designs 

maximizing D-efficiency in MNL with low quality a priori information usually lead to inferior 

estimations compared to those designs without a priori information (Ferrini and Scarpa 2007).  

Therefore, in this article we design CEs assuming no a priori information on consumer 

preference is available, which is the most common case in empirical studies.  Particularly, we 

extend the work of Lusk and Norwood (2005) by investigating the efficiency of different CE 

designs regarding consumer valuation estimates under various information loads.   

Comparison of Different Experimental Designs under Various Information Loads 

Monte Carlo Simulation 
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To investigate the performance of different CE designs under various attribute information 

loads, we conducted several Monte Carlo simulations where the true consumer utility functions 

are known, such as 'j j jU x Vβ= = .  Pair-wise CEs are designed without a priori information on 

consumer utility functions.  In the pair-wise CEs, respondents are assumed to choose one 

alternative from two choices in a choice set.  For each alternative in the CEs, the utility iV  is 

calculated using the presumed true parameters β and the attribute levels x j .  The random 

variable, iε , following the Gumbel distribution, is independently drawn with the number of 

observations equal the total number of alternatives in a simulation (2 × the number of choice sets 

in a choice experiment × the sample size).  As a result, the assumptions of multinomial logit 

models are strictly satisfied.  The random variable iε , which simulates unobservable consumer 

preferences, is added to jV .   As such, consumer random utilities i i iU V ε= +  are compared across 

alternatives in a choice set, and the alternatives with the highest random utility level are assigned 

a number of one to simulate consumer choices.  MNL models are estimated using simulated 

consumer choices and the attribute levels in CEs.  The WTP estimate for each attribute is 

calculated as the negative value of the ratio of attribute and price coefficients, 
0

k
kWTP

β
β

= − , 

where k indicates the kth attribute of alternatives in CEs and 0 indicates price.  The procedure is 

repeated 500 times to compose a Monte Carlo simulation, resulting in 500 WTP for each 

attribute, for each simulation scenario.  The performance of different CE designs with respect to 

the evaluation of attributes is compared using mean squared error: 2

1

1 ( )
N

k ki kt
i

MSE WTP WTP
N =

= −∑ , 

and mean absolute relative error: 
1

1 ( ) /
N

k ki kt kt
i
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= −∑  , where kiWTP  is the 
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simulated WTP of kth attribute, ktWTP  is the corresponding true WTP, and N is the number of 

simulations.  Because consumer true WTP for different attributes varies in the simulation, the 

kRSE  provides a relative measure such that the impact of different CE designs can be compared 

across attributes.  The CE design that results in the minimum MSEk and RSEk is considered the 

best design for estimating WTP for kth attribute.  In addition, because the best design for 

different attributes may differ, the average mean square error and average mean absolute relative 

error are calculated as 
1

1 M

k
k

MSE MSE
M =

= ∑ and 
1

1 M

k
k

RSE RSE
M =

= ∑ , respectively, where k indicates the 

kth attribute and M indicates the number of attributes in a CE.  The MSE and RSE help determine 

the overall best design when there are multiple attributes in a CE.  In addition, the measure of D-

error is calculated as a function of the determinant of variance of parameter 

estimates 1/

1

1 ( ( ))
N

i A

i

DEF Det
N

β
=

= Ω∑ , where iβ  is the parameter estimates in the ith simulation.  D-

error can be used to evaluate the efficiency of different designs in parameter estimates2. 

Comparison Scenarios 

We employ four types of CE designs and evaluate their performances under four attribute 

information loads, three levels of sample size and two types of utility functions (table 1).  

Therefore the total number of simulation scenarios is 4×4×3×2.  The CE designs include 

randomly drawn choice sets from 3N×3N full factorial design (RD), where N indicates the number 

of attributes in a CE, 3 is the level of each attribute; main effects only design drawn from 3N×3N 

full factorial design (ME); main effects design maximizing D-efficiency with a minimum 

                                                             
2 Other criteria to evaluate the performance of different CE designs have been extensively 
discussed in Scarpa and Rose (2008). 
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number of choice sets drawn from 3N×3N full factorial design, without a priori information (MD); 

and the design pairing alternatives generated from 3N full factorial design using the bin method 

(RP).  We excluded designs which incorporate interactions between attributes because consumer 

utility is assumed to be linear in attributes in most empirical studies.  In addition, adding two-

way interactions significantly increases the choice sets in a CE, especially when the attribute 

information loads is high, thus may result in heavy cognitive burden on survey respondents.  

Smaller main effects only designs may be preferable even if larger designs with interactions have 

statistical advantages (Lusk and Norwood 2005).  The number of attributes in CEs, each with 

three levels, is 2, 3, 4 and 5, implying attribute information loads from low to high.  The 

minimum number of attributes is two, because price and another product attribute must be 

included to calculate the WTP estimates.  The maximum number of attributes is five, because 

larger number of attributes typically leads to CEs with more choice sets, which are difficult to 

administer and may quickly result in respondents’ fatigue or information overload.  Similar to 

Lusk and Norwood (2005) both continuous and discrete functions are assumed to be true 

consumer utility functions in simulations.  The sample size measured by the total number of 

choice sets for all respondents are selected to be 250, 500 and 1000, representing the surveys 

with small, middle and large sample sizes, respectively.  The description of different simulation 

scenarios is provided in Table 1.       

The true consumer utility functions employed in our study are: 

(1)  0
1

n
c

ij j k ijk
k

V P xα β β
=

= + ⋅ + ⋅∑ for continuous utility functions and  
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(2)  0
1 1

n n
d

ij j ka ijka kb ijkb
k k

V P x xα β β β
= =

= + ⋅ + ⋅ + ⋅∑ ∑  for discrete utility functions.  Where jα is the 

alternative specified constant, β s are parameters to be estimated, P is product price and n equals 

1, 2, 3 or 4 denoting the number of attributes in a CE.  In equation (1), attributes such as ijkx  

enter the utility function are specified as continuous variables, whereas in equation (2) attributes 

enter the utility function as discreet variables, denoted using dummy variables such as ijkax  and 

ijkbx 3.  The true parameters in continuous utility functions are 1jα = , 0 1β = − , 

1 2β = , 2 3β = , 3 4β = and 4 0.1β = .  The true parameter of dummy variables in discrete utility 

functions are 1 2aβ =  , 1 1bβ =  , 2 3aβ =  , 2 2bβ = , 3 4aβ =  , 3 3bβ = , 4 5aβ =  , 4 4bβ = .  

With the results from different simulation scenarios,  the MSE and RSE can be compared 1) 

across sample size to study the effect of sample size, 2) across different designs to investigate the 

performance of different designs with small, mid and large sample sizes, and 3) across the 

number of attributes to investigate the effect of information loads on WTP estimates. 

Identification of Factors Affecting WTP Estimate 

Pair-wise comparisons across the sample size, design strategy and number of attributes can 

help identify the impact of a single factor on WTP estimates.  However, the effects of different 

factors may be compounded so that the pair-wise comparisons are not sufficient.  Three simple 

models are estimated as: 

(3) 2
1 1 1 1i i i i i iWTP Des Sam Att Attα β δ λ κ ε= + ⋅ + ⋅ + ⋅ + ⋅ +   

(4) 2
2 2 2 2i i i i i iSE Des Sam Att Attα β δ λ κ ε= + ⋅ + ⋅ + ⋅ + ⋅ +  and 

(5) 2
3 3 3 3i i i i i iRE Des Sam Att Attα β δ λ κ ε= + ⋅ + ⋅ + ⋅ + ⋅ +  

                                                             
3 Because each attribute has three levels, two dummy variables are created for each attribute. 
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Where iWTP  is the willingness-to-pay estimate, 2( )i i tSE WTP WTP= − is the squared difference 

between the estimated WTP and the true WTP, | ( ) / |i i t tRE WTP WTP WTP= − is the relative difference 

between the estimated WTP and the true WTP, [   ] 'i i i iDes ME MD RP= is a vector of dummies 

denoting the design strategy,  [  ]'i i iSam M L= is a vector of dummies denoting the sample size, 

iAtt is the number of attributes in CEs. sα , sβ , sδ , sλ and sκ are coefficients to be estimated, and 

iε represents the stochastic errors.  A quadratic term of iAtt  is added in the models because Swait 

and Adamowicz (2001) demonstrated that the consumer preference variance has a quadratic 

relationship with the complexity of the decision environment.  Gao and Schroeder (2009) have 

shown that consumer WTP has a quadratic form with the number of attributes in CEs.  However, 

it is not clear whether the relationship is from changing consumer preference as a result of the 

complexity of decision making, or a statistical property of CEs with the increasing number of 

attributes in designs.  Models (3), (4) and (5) are estimated for both continuous and discrete 

utility functions.  

Results 

WTP Estimates and MSE in Various Scenarios with Continuous Utility Function 

Table 2 reports the mean WTPk and MSEk
4 of each attribute and MSE of different designs 

in different simulation scenarios when the true utility functions are continuous.  Results show 

that most WTP estimates are significantly different from the true values at the 5% level when the 

sample sizes are small.  However, in some cases, larger sample size also results in WTP 

                                                             
4 RSEk was also calculated. However, our study shows that this measure provides similar 
information as MSEk, they are not reported in this article.  
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estimates that are significantly different from the true values.  For instance, with the RD designs, 

when the sample size is large, the WTP estimates of all attributes become significantly different 

from the true values in the CE with four attributes.  The fact that those significant WTP estimates 

are accompanied with smaller MSEs indicates that the insignificance of WTP estimates with 

smaller sample sizes may be the result of larger variance of WTP estimates.  The significance of 

WTP estimates is also related to the number of attributes in CEs.  For instance, when the number 

of attributes in the CEs is four, the WTP estimates are more likely significantly different from 

the true WTP than when the number of attributes is lower.  In addition, the WTP estimates may 

have nonlinear relationships with the number of attributes in the CEs.  This phenomena implies 

that the changing WTP with different attribute information loads in field studies demonstrated by 

previous research may be the result of the statistical property of CE design rather that consumer 

response to new information.     

For all CE designs, the MSEi of individual attribute i, and average MSE of all attributes in 

the CEs decrease with the increase in sample size, implying WTP estimates are improved from 

using larger sample sizes.  The impacts of attribute information on the performance of CEs are 

not clear.  In some cases, with a larger number of attributes in the CEs, the MSEi was larger (e.g. 

attribute X1 with RD design and small sample size), however, in other cases with a larger 

number of attributes, the resulting MSEi was smaller (e.g. attribute X2 with MD design and 

larger sample size).  These results imply the best strategy to improve WTP estimation may not be 

keeping the number of attributes at the minimum level, at least from a statistical perspective.  

The relationship between the MSEi, MSE and CE designs is not clear.  It may depend on the 

attribute information and sample size in the CEs.  For instance, when the number of attributes is 

two, ME design results in the smallest MSE of attribute X1 at all sample size levels.  However, 
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when the number of attributes increases to three, RD design has the smallest MSE for attribute 

X1 at all sample size levels.  These results indicate that comparing the performance of different 

designs with a fixed number of attributes, which is a common practice in previous studies, may 

not provide enough information to evaluate the efficiency of different design strategies. 

WTP Estimates and MSE in Various Scenarios with Discrete Utility Function 

The mean WTPk and MSEk
5 of each attribute and MSE of different designs in different 

simulation scenarios when the true utility functions are discrete are reported in Table 3.  Results 

show that most WTP estimates are not significantly different from the true values at the 5% level.  

Most of the significant WTP estimates are in CEs with small sizes and where the number of 

attributes in the CEs is at its highest level, five.  With middle and larger sample sizes, all except 

one WTP estimate (WTP estimate of X1a with MD design and 4 attributes), are not significant 

from the true WTP.  Similar to that with continuous utility function, the WTP estimates may 

have nonlinear relationship with the number of attributes in the CEs.   

Increased sample sizes result in smaller MSEi and MSE, implying WTP estimates are 

improved with larger sample sizes in the case of the discrete utility function.  The number of 

attributes in CEs may have nonlinear relationships with the MSEs.  For instance, the MSE for 

attribute X1 in the RP design is the smallest when the number of attributes in the CEs is three.  

However, in other designs, such as the RD design, the MSE for attribute X1 increases as the 

number of attributes in the CEs increases, implying worse performance of the CE designs with a 
                                                             
5 With a discrete utility function, there are two WTP estimates for each attribute, corresponding 
to that in the continuous utility function.  We only report the one WTP estimate for each 
attribute, because the second WTP estimate delivers similar information regarding the impact of 
attribute information, sample size and design strategy.  RSEk was also calculated, as that in the 
continuous utility function; but they are not reported in this article.  
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larger number of attributes.  These results indicate that there are no dominant designs with 

regards to information loads in CEs, thus the right design should be chosen based on the number 

attribute determined by researchers.    

Best Designs in Various Scenarios  

The best CE designs under different information loads and sample sizes are shown in Table 

4.  For each individual attribute, the best designs are selected based on the minimum MSEi and 

RSEi. The best overall designs are also selected based on the minimum average MSE and RSE 

rules.  In general, both rules result in the same best design.  However, in some cases, the best 

designs differ between MSE and RSE rules. This may be a result of the fact that the MSE 

punishes extreme values in the sample more severely than the RSE, because it is based on the 

squared difference between WTP estimates and the true WTP compared to RSE which uses the 

absolute value of the ratio of deviation of WTP estimates from the true WTP and the true WTP. 

In addition, the best designs based on minimum DEF are also reported in Table 4, helping us to 

compare different designs based on WTP estimates and parameter estimates. 

Results in table 4 show that except for two cases (when the number of attributes in CEs is 5, 

with a large sample size and continuous utility function; and with a small sample size and 

discrete utility function) the best designs based on minimum MSE and RSE are the same.  The 

best designs depend on the number of attributes in CEs.  For instance, when the number of 

attributes is two, ME design is the best design with the continuous utility function, while RD 

design is the best for attributes X1 when the number of attributes is three.  The best designs also 

depend on the sample size.  For example, with the continuous utility function, RP design is the 

best design for attributes X1 when the sample size is small and large, while RD design is the best 
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when the sample size is middle.  The best designs are significantly different between continuous 

and discrete utility functions.  For instance, when the number of attributes in the CEs is two, the 

best design is ME for continuous utility functions, but MD for discrete utility functions.  

However, when the number of attributes in the CEs is five, the best design for both continuous 

and discrete utility functions tends to be the same – RD design is the best design.  There is no 

clear relationship between the best designs based on MSE and DEF measures.  In some cases, 

MSE and DEF result in the same best designs (e.g. when the number of attributes is two), and in 

other cases, they result in different best designs (e.g. when the number of attributes is three).  

Because the DEF is based on the parameter estimates, and MSE is based on WTP estimates, a 

function of parameters of attributes and price, it is reasonable to have the inconsistence between 

the best designs resulted from MSE and DEF measures.  This inconsistency also indicates that 

the best design based on maximum D-efficiency may not be the best design focusing on WTP 

estimates.  In this case, the C-efficiency developed by Scarpa and Rose (2008) should be used to 

search the best CEs if high quality a priori information on consumer preferences is available. 

Factors Affecting WTP Estimates 

Results of model (3) for continuous utility functions are reported in table 5.  Most of the 

coefficients are significantly different from zero at the 5% level.  The positive coefficients of 

design strategy indicated that RD, ME and RP designs tend to result in higher WTP estimates for 

attributes X1, X2 and X3, compared with the MD design.  The statistical tests demonstrate that 

for attributes X1, X2 and X3, ME design results in statistically significant larger WTP estimates 

than RD and RP design at the 5% level.  However, for the WTP for X4, those 4 design strategies 

are equivalent with regard to the WTP estimate.  One potential reason for this phenomenon may 

be that the true WTP for attribute X4 has a much smaller scale compared with the WTP for other 
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attributes (0.1 vs. 2, 3 and 4).  Another reason may be that X4 is only presented in the CEs with 

five product attributes, and performance of design strategies are significantly affected by the 

number of attributes in the CEs.  Additional models for attributes X1, X2, and X3 with the WTP 

estimates from CEs with 5 attributes also show that all the three design strategies (RD, ME, and 

RP) are equivalent.   

For attributes X1 and X4, the significant negative coefficients of the sample size imply that 

middle and large sample sizes result in smaller WTP estimates.  The insignificant coefficients of 

Middle for attributes X2 and X3 indicate that a larger sample size does not have significant 

impacts on WTP estimates.  The impacts of attribute information on WTP estimates depend on 

the particular attribute of interest.  For instance, the insignificance of coefficients of # of 

Attributes and # of Attributes Squared for attribute X1, indicate that attribute information does 

not have significant impacts on the WTP estimates.  However, those coefficients are statistically 

significant from zero at the 10% level for attribute X2, indicating a quadratic relationship 

between the number of attributes and the WTP estimates for X2.  

Results of model (4) and (5) for continuous utility functions (reported in table 5) show that 

RD, ME and RP designs result in significant lower squared difference between true and 

estimated WTP (SE) and relative difference between true and estimated WTP (RE) than MD 

design, indicating the overall better performance of RD, ME and RP design in WTP estimates.  

The statistical tests of the equivalence of different designs show that RD and RP result in 

significantly smaller SE and RE, indicating the overall better performance of RD and RP designs.  

RD and RP designs are not statistically significantly different based on SE measures, however, 

based on the RE measure, the RD design is better with regards to the WTP estimates of X1.  The 

significant positive coefficient of # of Attributes for attribute X1 indicates that increasing the 
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number of attributes in the CE significantly reduces the performance of CEs in WTP estimates of 

attributes X1 and X2.  However, the significant negative coefficient of # of Attributes Squared 

(in the equation of SE for Xi) for attribute X2 implies the quadratic relationship between the 

performance of CEs and the number of attributes in CEs.  The SE increases with an increasing 

number of attributes and then decreases after the number of attributes reaches a certain level.  

The results of model (5) indicates that for both attributes X1 and X2, there is a quadratic 

relationship between the performance of CEs and the number of attributes in CEs, if the 

divergence between the true and estimated WTP is measured in relative measures.  The 

significant negative coefficients of Middle and Large indicate that increasing sample size for 

CEs significantly improves the performance of CEs with regards to WTP estimates.   

  Results of model (3) (table 6) for a discrete consumer utility function provide similar 

information compared with the results for the continuous utility function.  First, RD, ME and RP 

result in statistically significant (5% level) and larger WTP estimates for all attributes than the 

MD design.  Middle and large sample sizes do not result in statistically significant WTP 

estimates compared to small sample sizes.  The number of attributes in CEs does not have a 

significant impact on WTP estimates for attribute X1a, X3a and X4a, however, it has a quadratic 

relationship with the WTP estimates for attribute X2a at the10%  level. 

Results of models (4) and (5) for discrete utility functions (table 6) imply that RD, ME and 

RP design significantly improve the WTP estimates with smaller SE and RE than MD design.  

Based on the scale of the absolute value of coefficient estimates of design strategy, RD design 

has the best overall performance, followed by the RP design, which is the same result found in 

the case of continuous utility functions.  For attributes X1a and X2a, the SE and RE measures 

have statistically significant and convex relationships with the number of attributes in CEs.  Both 
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SE and RE first decrease, then increase as the number of attributes in the CEs increases.  This 

result implies that keeping the number of attributes at either the minimum (2 in our case) or the 

maximum (5 in our case) may not be the best strategy for WTP estimates.   

The positive coefficients for the # of Attributes for attribute X3a indicate that increasing 

the number of attributes in the CEs significantly increases both SE and RE measures (5% level).  

This is different from the case of continuous utility functions, in which increasing the number of 

attributes resulted in decreased SE and RE for attribute X3.  In addition, middle and large sample 

sizes of the CEs result in significantly smaller SE and RE, however, there is no significant 

difference in SE when the sample sizes of CEs change from middle to large, indicating that large 

sample sizes may not always result in better WTP estimates with the discrete consumer utility 

function. 

Conclusion 

The increasing application of CEs in consumer valuation reflects the comparative 

advantage of this technique in valuation of multiple product attributes and in estimation of 

tradeoffs between different attributes.  On the other hand, the popularity of CEs demands more 

research in this area to study the impact of design parameters on consumer valuation estimates.  

Although used by many researchers, the effort to address the second issue is not adequate.  

Carlsson and Martinsson (2003), Lusk and Norwood (2005), and Ferrini and Scarpa (2007), 

among others are the few to study the impacts of design strategies on consumer valuation 

estimates using Monte Carlo simulation.  However, in those studies, the impacts of CE design 

are evaluated with fixed attribute information loads.  With the current field studies finding that 

attribute information loads affect consumer WTP estimates (e.g. Rose et al. 2009; Islam, 
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Louviere, and Burke. 2007), it is worthwhile to investigate the performance of different design 

strategies under different information loads using simulation techniques.  This helps to identify 

the sources that affect consumer valuation in field studies—are the impacts of information loads 

due to the change in consumer cognitive ability to make choice decisions, the substitute and 

complement effects between product attributes, or the pure statistical properties of CEs?  In this 

paper we extend previous research by investigating the change in consumer WTP estimates 

under different attribute information loads, design strategies, sample sizes and utility function 

types to address those questions. 

Results in this article delivered similar information with previous studies that larger 

sample size can significantly improve the WTP estimates with a continuous consumer utility 

function.  If all other design parameters such as information loads and sample size are controlled, 

RD design is the overall best design; however, this design is not significantly better than RP 

design in some cases.  The performance of design strategies may also depend on the information 

loads in the CEs — when the number of attributes is five, RD design is the best with both 

continuous and discrete cases; when the number of attributes is three, RP and MD are the best 

with continuous and discrete utility functions, respectively.  

 The fact that the WTP estimates of some attributes have a quadratic relationship with the 

number of attributes in CEs calls for further research to investigate the impacts of attribute 

information on consumer valuation—how much of the changes in consumer valuation 

demonstrated by the previous research is due to the changes in consumer cognitive ability to 

processing information, or because of the statistical property of the CEs with different number of 

attributes?  For some attributes, the quadratic relationships between the performance and the 

number of attributes in the CEs indicates that keeping the attribute information as small as 
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possible may not be the best design strategy to improve consumer valuation estimates.  In our 

case, the optimal attribute number in the CEs is three in the discrete case.  This conclusion 

depends on the particular attributes studied.   

Choosing the best design strategy is only a small step toward conduction a successful CE.  

Many factors are correlated so that tradeoffs must be made between statistical performance, 

feasibility to administer the CEs, the potential problem of omitted variables in consumer utility 

functions, and budget constraints of the researchers.  For example, the number of attributes in a 

CE determines the minimum choice set in ME and MD designs.  ME design may be an overall 

better design than MD design, but the choice sets in ME design is always equal to or larger than 

that in an MD design. The increased number of choice sets in an ME design may increase the 

cognitive burden on respondents, which may result in less accurate estimation.  Restricting 

information loads in a CE may reduce cognitive burden on respondents and improve the 

statistical property of choice experiments.  However, if the omitted information includes 

important variables determining consumer preference in real-world purchases, less attribute 

information may result in biased estimation of consumer preference.  All those factors should be 

carefully evaluated before conducting a CE.  Further research may add more design parameters 

such as the number of choices in choice sets and the number of levels of attributes in CEs to 

study the performance of various design strategies.  Further, it is worthwhile expressing the 

deviation of WTP estimates from the true WTP as a function of major factors that may affect 

consumer valuation subject to research budget, and seek the optimal strategies regarding CE 

design, attribute information loads, sample size, and other design parameters.   
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Table 1 Description of Simulation Scenarios   

CE Design Description # of 

Attribute 

(N) 

# of Choice 

Sets in 

Experiment 

Utility 

Function 

Sample Size 

2 N/A 243/486/972 

3 N/A 250/500/1000 

4 N/A 250/500/1000 

RD Random drew choice 

set from 3Nx3N full 

factorial design 

5 N/A 

Continuous

/Discrete 

250/500/1000 

2 9 252/504/1008 

3 27 270/513/1026 

4 27 270/513/1026 

ME Main effects only 

design drawn from 

3Nx3N full factorial 

design 5 27 

Continuous

/Discrete 

270/513/1026 

2 9 252/504/1008 

3 13 260/507/1001 

4 17 255/510/1003 

MD Main effects minimum 

design with maximized 

D-efficiency 

5 21 

Continuous

/Discrete 

252/504/1008 

2 9 243/495/999 

3 27 243/486/999 

4 81 243/486/972 

RP Random pair 

alternatives generated 

from full factorial 

design  5 243 

Continuous

/Discrete 

243/486/972 
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Table 2 WTP Estimates and MSE is Different Simulation Scenarios (Continuous Utility Function) 

 RD   ME   MD  RP  
# of 

Attribute Attribute s=S s=M s=H s=S s=M s=H s=S s=M s=H s=S s=M s=H 
2.01a 1.96* 1.98 1.95* 1.97* 1.98 2.01 1.98 1.97* 2.18* 2.05 1.99 

2 X1 (0.31)b (0.13) (0.08) (0.15) (0.08) (0.05) (0.31) (0.16) (0.07) (0.89) (0.30) (0.12) 

2.08* 1.98 1.97 2.16* 2.03 2.01 2.09* 2.02 2.00 2.02 1.97 1.97* 
X1 (0.57) (0.21) (0.10) (1.02) (0.39) (0.19) (0.72) (0.33) (0.19) (0.49) (0.22) (0.10) 

3.14* 2.98 2.97 3.25* 3.06 3.02 3.15* 3.02 3.01 3.03 2.97 2.96 
X2 (1.33) (0.47) (0.23) (2.07) (0.79) (0.38) (2.02) (0.96) (0.53) (0.93) (0.42) (0.20) 3 

MSE {0.95}
c 

{0.34} {0.17} {1.55} {0.59} {0.28} {1.37} {0.64} {0.36} {0.71} {0.32} {0.15} 

2.02 2.00 1.94* 2.93* 2.13* 2.04* 1.37* 1.78* 2.25* 2.13* 2.03 1.97 
X1 (0.58) (0.32) (0.14) (4.55) (0.52) (0.14) (4.91) (2.79) (1.30) (0.72) (0.36) (0.17) 

3.03 2.99 2.91* 3.98* 3.17* 3.04 1.70* 2.59* 3.47* 3.22* 3.05 2.98 
X2 (1.25) (0.68) (0.31) (5.37) (0.89) (0.24) (13.45) (8.66) (4.52) (1.60) (0.72) (0.33) 

4.04 3.98 3.87* 5.87* 4.26* 4.07* 2.25* 3.42* 4.64* 4.30* 4.09 3.95 
X3 (2.25) (1.23) (0.57) (18.26) (1.97) (0.49) (27.97) (16.35) (8.46) (2.85) (1.31) (0.62) 

4 

MSE {1.36} {0.74} {0.34} {9.40} {1.12} {0.29} {15.44} {9.27} {4.76} {1.72} {0.80} {0.37} 

2.22* 2.10* 2.01 2.27* 2.08* 2.04 1.46* 2.13 2.06 2.28* 2.07 2.01 
X1 (1.59) (0.54) (0.24) (2.23) (0.53) (0.26) (6.94) (4.98) (0.65) (1.85) (0.55) (0.25) 

3.29* 3.13* 3.02 3.46* 3.14* 3.06 2.05* 3.17 3.11 3.39* 3.08 3.02 
X2 (2.91) (1.04) (0.44) (5.56) (1.31) (0.65) (19.54) (13.71) (1.87) (3.86) (1.24) (0.57) 

4.42* 4.21* 4.03 4.60* 4.19* 4.09 3.05* 4.24 4.12 4.55* 4.12 4.03 
X3 (5.55) (1.94) (0.83) (9.70)  (2.23) (1.10) (22.34) (16.61) (2.19) (7.31) (2.16) (1.00) 

0.12 0.10 0.10 0.11 0.09 0.10 0.15* 0.08 0.10 0.11 0.10 0.10 
X4 (0.06) (0.02) (0.01) (0.08) (0.02) (0.01) (0.13) (0.08) (0.01) (0.07) (0.02) (0.01) 

5 

MSE {2.53} {0.88} {0.38} {4.39} {1.02} {0.50} {12.24} {8.84} {1.18} {3.27} {0.99} {0.46} 
Notes: We removed 5% of the lowest and highest extreme value in WTP estimates, because 
some of those values are not reasonable. 
One (*) asterisk represents the 0.05 level of statistical significance. 
a Mean WTP from 450 simulated WTP of attribute Xi (i=1,2,3,4).  
b Mean Squared Errors of attribute Xi. 
c Average Mean Squared Errors of all attributes in a CE.  For experiments with two attribute, 
MSE of X1=MSE, because only WTP for X1 exists. 
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Table 3 WTP Estimates and MSE in Different Simulation Scenarios (Discrete Utility Function) 

 RD   ME   MD  RP  
# of 

Attribute Attribute s=S s=M s=H s=S s=M s=H s=S s=M s=H s=S s=M s=H 
1.99 1.99 1.99 1.94* 1.97 1.99 1.99 1.99 1.98 1.96 1.97 1.98 

X1a (0.30) (0.14) (0.07) (0.25) (0.13) (0.07) (0.23) (0.10) (0.05) (0.37) (0.18) (0.08) 2 
MSE {0.21} {0.09} {0.05} {0.16} {0.09} {0.05} {0.16} {0.07} {0.04} {0.22} {0.11} {0.05} 

1.98 1.99 1.99 2.03 1.98 1.97 1.99 1.95* 1.97 2.00 1.98 1.98 
X1a (0.35) (0.19) (0.09) (0.45) (0.20) (0.11) (0.32) (0.15) (0.08) (0.34) (0.17) (0.07) 

2.98 2.99 2.99 3.05 2.99 2.96 2.99 2.96 2.96* 3.07 2.99 2.96* 
X2a (0.63) (0.35) (0.18) (1.01) (0.47) (0.24) (0.65) (0.32) (0.16) (0.86) (0.43) (0.18) 3 

MSE {0.37} {0.20} {0.10} {0.53} {0.24} {0.12} {0.34} {0.16} {0.08} {0.44} {0.21} {0.09} 

2.00 1.98 1.98 1.97 1.98 1.98 2.26* 2.07* 2.02 2.03 1.98 1.98 
X1a (0.90) (0.21) (0.09) (0.85) (0.21) (0.11) (2.67) (0.60) (0.27) (1.09) (0.22) (0.12) 

3.03 2.99 2.97 2.91* 2.94 2.98 3.32* 3.07 3.03 3.07 2.96 2.99 
X2a (0.90) (0.43) (0.21) (0.85) (0.49) (0.25) (2.67) (0.70) (0.34) (1.09) (0.40) (0.23) 

4.02 3.98 3.95 3.90* 3.92* 3.96 4.41* 4.08 4.03 4.09 3.95 3.99 
X3a (1.39) (0.73) (0.35) (1.22) (0.63) (0.34) (4.37) (1.16) (0.53) (2.27) (0.85) (0.47) 

4 

MSE {0.70} {0.35} {0.17} {0.66} {0.35} {0.18} {2.39} {0.64} {0.30} {1.00} {0.38} {0.21} 

2.12* 1.99 1.98 2.21* 2.04 1.99 1.44* 2.10 2.03 2.14* 2.03 1.99 
X1a (0.78) (0.22) (0.11) (1.71) (0.49) (0.23) (5.46) (2.29) (0.57) (1.02) (0.40) (0.20) 

3.17* 3.00 2.98 3.28* 3.03 2.98 2.23* 2.97 2.97 3.20* 3.05 3.00 
X2a (1.91) (0.59) (0.32) (3.67) (0.86) (0.42) (13.16) (5.00) (1.45) (1.65) (0.68) (0.34) 

4.21* 4.02 3.99 4.19 4.00 3.95 3.16* 4.25 4.10 4.28* 4.07 4.01 
X3a (2.85) (0.95) (0.53) (5.79) (1.63) (0.73) (26.63) (9.25) (1.98) (2.99) (1.18) (0.62) 

5.31* 5.03 4.97 5.43* 5.07 4.97 3.85* 5.14 5.06 5.37* 5.11 4.99 
X4a (4.78) (1.53) (0.80) (9.31) (2.36) (0.97) (26.45) (10.14) (2.40) (5.15) (2.13) (1.02) 

5 

MSE {2.07} {0.66} {0.35} {4.10} {1.07} {0.47} {14.19} {5.32} {1.30} {2.13} {0.86} {0.43} 
 
Notes: We removed 5% of the lowest and highest extreme value in WTP estimates, because 
some of those values are not reasonable.  
One (*) asterisk represents the 0.05 level of statistical significance. 
a Mean WTP from 450 simulated WTP of attribute Xi (i=1,2,3,4). Corresponding to each 
attribute in continuous utility function, there are two attributes in discrete utility function. 
b Mean Squared Errors of attribute Xi.  
c Average Mean Squared Errors of all attributes in a CE.   
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Table 4 Best CE Designs in Different Scenarios based on MSEi, MSE, RSE and DEF 

 Utility Function 
 Continuous  Discrete 
  Sample Size   Sample Size 

# of Attributes Small Middle Large Small Middle Large 
MSE1a ME ME ME  MSE1a MD MD MD 

2 DEF ME ME ME  DEF MD MD MD 

MSE1 RP RD RP  MSE1a MD MD RP 
MSE2 RP RP RP  MSE2a RD MD MD 

MSE/RSE RP RP RP  MSE/RSE MD MD MD 3 
DEF RD RD RD  DEF ME ME ME 

MSE1 RD RD RD  MSE1a ME ME RD 
MSE2 RD RD ME  MSE2a ME RP RD 
MSE3 RD RD ME  MSE3a ME ME ME 

MSE/RSE RD RD ME  MSE/RSE ME RD RD 4 

DEF RP RP RP  DEF RD RD RD 

MSE1 RD ME RD  MSE1a RD RD RD 
MSE2 RD RD RD  MSE2a RP RD RD 
MSE3 RD RD RD  MSE3a RD RD RD 
MSE4 RD RD RP  MSE4a RD RD RD 

MSE/RSE RD RD RD/RP  MSE/RSE RD/RP RD RD 

5 

DEF RD RD RD  DEF RD RD RD 
Notes: a When the number of attributes in CEs are one, MSE=MSE1. 
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Table 5 Models of WTP Estimates, SE, RE on Design Strategy, Samples Size and Number of 
Attributes (Continuous Utility Function) 

 WTP for   SE for   RE for  
 X1 X2 X3 X4  X1 X2 X3 X4  X1 X2 X3 X4 
Design Strategy               
RD 0.10 0.24 0.47 0.00  -1.55 -6.29 -13.59 -0.04  -0.17 -0.31 -0.37 -0.34 
 (0.00)a (0.00) (0.00) (0.86)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
ME 0.20 0.43 0.89 -0.01  -1.10 -5.33 -10.03 -0.04  -0.13 -0.25 -0.28 -0.28 
 (0.00) (0.00) (0.00) (0.15)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
RP 0.13 0.27 0.55 -0.01  -1.45 -6.16 -13.11 -0.04  -0.15 -0.30 -0.35 -0.34 
 (0.00) (0.00) (0.00) (0.19)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
Sample Size               
Middle -0.06 -0.03 -0.07 -0.03  -0.96 -2.42 -6.55 -0.05  -0.14 -0.16 -0.20 -0.77 
 (0.00) (0.39) (0.23) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
Large -0.06 -0.01 -0.03 -0.02  -1.49 -4.13 -10.12 -0.07  -0.23 -0.26 -0.32 -1.21 
 (0.00) (0.76) (0.56) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
# of Attributes 0.04 -0.28 0.08 N/Ad  0.32 5.01 -0.78 N/A  0.11 0.38 -0.02 N/A 
 (0.28) (0.09) (0.12) N/A  (0.04) (0.00) (0.09) N/A  (0.00) (0.00) (0.05) N/A 

0.00 0.05 N/Ac N/A  0.05 -0.54 N/A N/A  -0.01 -0.05 N/A N/A # of  Attributes 
Squared (0.62) (0.07) N/A N/A  (0.13) (0.01) N/A N/A  (0.00) (0.00) N/A N/A 
Constant 1.90 3.19 3.39 0.13  1.62 -0.37 23.95 0.11  0.29 0.03 0.86 2.32 
 (0.00) (0.00) (0.00) (0.00)  (0.00) (0.84) (0.00) (0.00)  (0.00) (0.63) (0.00) (0.00) 
Statistical Test               
RD=ME (0.00) (0.00) (0.00) (0.21)  (0.00) (0.00) (0.00) (0.42)  (0.00) (0.00) (0.00) (0.27) 
RD=RP (0.07) (0.49) (0.25) (0.26)  (0.24) (0.64) (0.46) (0.95)  (0.00) (0.34) (0.14) (0.99) 
ME=RP (0.00) (0.00) (0.00) (0.90)  (0.00) (0.00) (0.00) (0.46)  (0.01) (0.00) (0.00) (0.27) 
Middle=Large (0.82) (0.58) (0.54) (0.42)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
R-Squared 0.007 0.009 0.016 0.004  0.054 0.065 0.077 0.054  0.137 0.16 0.151 0.113 
# Observations 21600b 16200 10800 5400 21600 16200 10800 5400 21600 16200 10800 5400 

a Numbers in parentheses are p values. 
b Number of observations are derived from 450 simulations from each simulation scenario. 
c On attribute X3, the # of attributes squared variable is nearly perfectly collinear with the number of 
attributes variable. 
d On attribute X4, there is no variation in the # of attribute, only choice experiments with five attributes 
include X4.  
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Table 6 Models of WTP Estimates, SE, RE on Design Strategy, Samples Size and Number of 
Attributes (Discrete Utility Function) 

 WTP for   SE for   RE for  
 X1a X2a X3a X4a  X1a X2a X3a X4a  X1a X2a X3a X4a 

Design Strategy              
RD 0.01 0.07 0.03 0.42  -0.78 -2.10 -6.19 -10.63  -0.11 -0.13 -0.19 -0.24 
 (0.00)a (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
ME 0.02 0.07 -0.02 0.47  -0.67 -1.80 -5.60 -8.79  -0.08 -0.10 -0.16 -0.19 
 (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
RP 0.02 0.09 0.06 0.47  -0.72 -2.07 -5.93 -10.23  -0.09 -0.12 -0.17 -0.22 
 (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
Sample Size               
Middle -0.01 -0.03 0.00 0.10  -0.58 -1.53 -3.89 -7.38  -0.11 -0.12 -0.14 -0.18 
 (0.64) (0.16) (0.96) (0.21)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
Large -0.02 -0.05 -0.03 0.01  -0.80 -2.06 -5.25 -10.12  -0.18 -0.19 -0.22 -0.27 
 (0.17) (0.03) (0.38) (0.95)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
# of Attributes 0.04 0.19 0.00 N/Ad  -0.47 -3.57 3.40 N/A  -0.04 -0.20 0.12 N/A 
 (0.13) (0.09) (0.95) N/A  (0.00) (0.00) (0.00) N/A  (0.00) (0.00) (0.00) N/A 

0.00 -0.03 N/Ac N/A  0.16 0.76 N/A N/A  0.02 0.05 N/A N/A # of  Attributes 
Squared (0.31) (0.09) N/A N/A  (0.00) (0.00) N/A N/A  (0.00) (0.00) N/A N/A 
Constant 1.94 2.71 4.02 4.65  1.49 7.22 -1.54 18.83  0.34 0.58 0.09 0.61 
 (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
Statistical Test               
RD=ME (0.64) (0.91) (0.35) (0.56)  (0.01) (0.03) (0.12) (0.01)  (0.00) (0.00) (0.00) (0.00) 
RD=RP (0.73) (0.42) (0.44) (0.53)  (0.21) (0.80) (0.49) (0.59)  (0.00) (0.40) (0.03) (0.30) 
ME=RP (0.90) (0.49) (0.09) (0.97)  (0.23) (0.06) (0.39) (0.05)  (0.11) (0.00) (0.30) (0.01) 
Middle=Large (0.36) (0.46) (0.36) (0.24)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 
R-Squared 0.001 0.001 0.000 0.007  0.061 0.056 0.069 0.09  0.169 0.163 0.158 0.165 
# Observations 21600b 16200 10800 5400  21600 16200 10800 5400  21600 16200 10800 5400 

               
               

Notes: The models for attributes Xib (i=1,2,3,4) are not presented in the table because the results are 
similar with those from models for attributes Xia. 
a Numbers in parentheses are p values. 
b Number of observations are derived from 450 simulations from each simulation scenario. 
c On attribute X3a, the # of attributes squared variable is nearly perfectly collinear with the number of 
attributes variable. 
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d On attribute X4a, there is no variation in the # of attribute, only choice experiments with five attributes 
include X4a.  
 

                                                             
 


