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Abstract
Estimating nonlinear effects of continuous covariates by penalized splines is well established for regressions

with cross-sectional data as well as for panel data regressions with random effects. Penalized splines are partic-
ularly advantageous since they enable both the estimation of unknown nonlinear covariate effects and inferential
statements about these effects. The latter are based, for example, on simultaneous confidence bands that provide
a simultaneous uncertainty assessment for the whole estimated functions. In this paper, we consider fixed effects
panel data models instead of random effects specifications and develop a first-difference approach for the inclu-
sion of penalized splines in this case. We take the resulting dependence structure into account and adapt the
construction of simultaneous confidence bands accordingly. In addition, the penalized spline estimates as well
as the confidence bands are also made available for derivatives of the estimated effects which are of considerable
interest in many application areas. As an empirical illustration, we analyze the dynamics of life satisfaction
over the life span based on data from the German Socio-Economic Panel (SOEP). An open source software
implementation of our methods is available in the R package pamfe.

Keywords: first-difference estimator; life satisfaction; panel data; penalized splines; simultaneous confidence
bands.

1 Introduction
Nonparametric and semiparametric regression methods are extremely popular in statistics and econometrics when
studying the impact of one or more continuous covariates on a response variable. Their main advantage is that
they do not impose strong prior assumptions on the functional shape of the covariate effects but rather let the
data speak for themselves such that a data-driven amount of nonlinearity is identified. In this paper, our interest
lies in estimating regression models with flexible covariate effects for panel data. We therefore think of N persons
observed at T points in time and consider an additive panel data model of the form

yit = γi +
p∑

h=1
fh(xhit) + uit, i = 1, . . . , N, t = 1, . . . , T,

where yit is the response variable of interest, f1(x1it), . . . , fp(xpit) represent the nonlinear effects of p continuous
covariates, uit are independent and identically distributed normal error terms with constant variance and γi are
individual-specific, time-invariant effects either allowed (fixed effects model) or not allowed (random effects model) to
be correlated with the covariates. For the specification of the nonlinear effects, we rely on penalized B-splines (Eilers
and Marx, 1996) which approximate a nonlinear effect of interest by a rich B-spline basis while adding a penalty
to the penalized least squares criterion to regularize estimation. In addition to their computational attractiveness,
penalized splines are also easily combined with parametric effects to obtain partially nonlinear models and allow
for easy access to uncertainty measures.

So far, penalized splines have mostly been used for either cross-sectional data or in combination with random
effects specifications for panel data. The main reason for this is the fact that the penalty considered for penalized
splines fits nicely together with the “penalty” imposed by the random effects and in fact penalized splines can be
considered a special type of random effects model as well, see for example Ruppert and Wand (2003) or Fahrmeir
et al. (2013). However, when utilizing a random effects specification for panel data, one has to critically evaluate
whether correlations between the random effects and the regression covariates are present. Fixed effects specifica-
tions loosen this crucial assumption and are particularly popular in econometrics. To avoid the incidental parameter
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problem that arises when including fixed effects, estimation is then typically based on first order differenced or de-
meaned data. For nonparametric and semiparametric panel data models with fixed effects, a growing strand of
literature has emerged during the last years, including Baltagi and Li (2002), Su and Ullah (2006), Henderson et al.
(2008) and Mammen et al. (2009). Extensive literature reviews are provided by Su and Ullah (2011) and Chen
et al. (2013). While having different concepts to handle the fixed effects and strictly parametric effects, all discussed
methods have in common that they rely on some kind of kernel estimator to estimate the nonparametric model
components. This makes inference on the nonlinear effects challenging or at least computationally demanding in
cases of large sample sizes and many nonparametric model components since uncertainty assessments for kernel
estimators are typically based on bootstrapping techniques (Claeskens and Van Keilegom, 2003; Li et al., 2013).

To overcome this difficulty, we consider a penalized spline specification for the nonlinear model components and
apply first order differences to the model. This basically implies a differenced basis function approximation of the
nonparametric effects while relying on the same parameterization of the penalized spline as the original model. To
account for the serial correlation induced by first differencing, we use a generalized least squares (GLS) criterion.
Utilizing the mixed model representation of penalized splines, we develop a fast way of inference for first-difference
penalized spline estimates via simultaneous confidence bands building on the ideas of Wiesenfarth et al. (2012) for
cross-sectional data. This also allows us to derive simultaneous confidence bands for the derivatives of the nonlinear
effects.

In terms of the model specification, our approach is closely related to Hajargasht (2009) who also proposed a
penalized spline estimator for fixed effects panel data, based on the within-transformation, i.e., demeaned data.
However, our approach differs from the one by Hajargasht (2009) with respect to the following important aspects:
(i) we use the mixed model representation of penalized splines not only to obtain a data-driven estimate for
the smoothing parameter but also simultaneous confidence bands, (ii) we develop and investigate inferences for
the nonlinear effects directly and for the derivatives, and (iii) we provide an open source implementation in the
accompanying R package pamfe that enables practitioners to apply the proposed method which is capable to handle
partially linear models and models with multiple nonlinear components.

To illustrate the applicability of our methods, we use the information from the German Socio-Economic Panel
(SOEP) database1 on the dynamics of life satisfaction over the life span. So far, there has not been reached a
consensus on the functional form of the relationship between age and life satisfaction. Typically, it is modeled
via a strictly parametric specification, which might be too restrictive and is therefore likely to affect the results
adversely. Our more flexible approach avoids this issue and also accounts for individual heterogeneity among the
survey respondents by including fixed effects.

The remainder of this paper is organized as follows: First-difference penalized spline estimation for panel data
models is introduced in Section 2. Inference via simultaneous confidence bands is considered in Section 3. In Section
4, the performance of our approach is tested in a simulation study while the empirical investigation of the dynamics
of life satisfaction is described in Section 5. Section 6 summarizes our conclusions and discusses directions for future
research.

2 Penalized splines for cross-sectional and panel data
2.1 Penalized splines in the cross-sectional context
We start our considerations by discussing penalized spline specifications for cross-sectional data. Consider the
additive regression model

yi = β0 +
p∑

h=1
fh (xhi) + ui, ui ∼ N

(
0, σ2

u

)
, i = 1, . . . , n, (1)

where yi is the response variable of interest, β0 is an overall intercept term, f1(x1i), . . . , fp(xpi) represent the
nonlinear effects of p deterministically observed covariates and ui are independent and identically distributed normal
error terms with variance σ2

u.2 To approximate the nonlinear effects fh, we use the weighted sum of dh B-spline
1 Socio-Economic Panel (SOEP), data of the years 1984-2011, version 28, SOEP, 2012, doi: 10.5684/soep.v28.
2 For notational simplicity, we refrain from adding stochastic covariates and covariates with strictly parametric effects. However, as can
be seen in Section 5, partially linear models can also be easily handled within our framework.
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basis functions, Bh1, . . . , Bhdh
, such that

fh(xhi) =
dh∑
j=1

Bhj(xhi)βhj = zTh (xhi)βh, (2)

where βh is a dh-dimensonal column vector of basis coefficients and zh(xhi) is the dh-dimensonal column vector
containing the evaluations of the basis functions at the observed covariate value xhi. In compact matrix notation
we drop this dependency on the covariate and write

fh(xh) = Zhβh,

where Zh is a design matrix of dimension n× dh. In order to avoid an overfit to the data, a matrix Kh penalizing
to much variability of adjacent coefficients in the coefficient vector βh is assigned to each smooth function resulting
in the penalized least squares criterion(

y− β01n −
p∑

h=1
Zhβh

)T (
y− β01n −

p∑
h=1

Zhβh

)
+

p∑
h=1

λhβ
T
hKhβh, (3)

where y denotes the n-dimensional response vector, 1n is an n-dimensonal column vector of ones and λh is a
smoothing parameter determining the impact of the penalty on the minimization criterion. The dh×dh-dimensional
matrix Kh of first-order differences, i.e. penalizing differences of directly contiguous coefficients, has the form

Kh =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 .

Difference matrices of higher orders can be easily constructed. Details on such penalties for B-spline functions can
be found, for example, in Eilers and Marx (1996).

Let now x
(h)
0 be an arbitrary value on the domain of xh. Defining the smoothing matrix Lh(x(h)

0 ) as

Lh(x(h)
0 ) = (In − S−h) Zh

[
ZTh (In − S−h)Zh + λhKh

]−1zTh (x(h)
0 ) (4)

with In denoting the identity matrix of dimension n × n, S−h = Z−h(ZT−hZ−h + λ−hK−h)−1ZT−h with λ−h =
(λ1, . . . , λh−1, λh+1, . . . , λp), Z−h = (Z1, . . . ,Zh−1,Zh+1, . . . ,Zp), K−h = (K1, . . . ,Kh−1,Kh+1, . . . ,Kp), and zh(x(h)

0 )
defined as in (2), the estimator of each fh(x(h)

0 ) can be written as

f̂h(x(h)
0 ) = LTh (x(h)

0 )y.

It follows that

Var
[
f̂h(x(h)

0 )
]

= Var
[
LTh (x(h)

0 )y
]

= LTh (x(h)
0 )Var(y)Lh(x(h)

0 ) = LTh (x(h)
0 )σ2

uInLh(x(h)
0 ) (5)

holds for homoscedastic and independent errors.
Naturally, the smoothing parameters λh are unknown. One way to estimate them is to exploit the mixed model

representation of penalized splines. In particular, it is possible to rewrite

Zhβh = Zh(Fhfαhf + Fhrαhr) = Xhfαhf + Xhrαhr

such that αhf contains fixed coefficients and αhr is a vector of i.i.d. random coefficients with variance σ2
re, which are

assumed to be independent from the errors ui.3 In this mixed model formulation, we obtain estimates both for the
coefficients (fixed and random) and smoothing parameters by a single (restricted) maximum likelihood estimation.
For details we refer the reader to Ruppert and Wand (2003) or Fahrmeir et al. (2013). In Section 3 we will make
use of the the mixed model formulation to construct confidence bands.
3 One way to obtain the mixed model representation is described in Wood (2006, pp. 316-317).
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It should be noted that each row in the initial design matrix Zh (i.e., before applying the mixed model refor-
mulation) for each covariate sums up to one, i.e.,

∑d
j=1 Bhj(xhi) = 1 ∀ i = 1, . . . , n. Obviously, this leads to an

identification problem in an additive model with an intercept or multiple smooth components. This issue can be
solved by imposing a centering constraint on each function fh such that

n∑
i=1

fh(xhi) =
n∑
i=1

zTh (xhi)βh=0

holds for all h = 1, . . . , p. Following the ideas of Wood (2006, pp. 167-168), this can be achieved by constructing
appropriate matrices Wh of dimension dh × (dh − 1) with orthogonal columns, leading to a reparameterized model
with design matrices Z̃h = ZhWh and penalty matrices K̃h = WT

hKhWh. If the mixed model framework is used
to determine the smoothing parameters as described above, the reparameterizing procedure to ensure identifiability
is done before the mixed model reformulation of the model.

2.2 Penalized splines for panel data: A first-difference estimator
In comparison to cross-sectional data leading to model (1) introduced in the previous section, we now consider
individuals (e.g., persons) observed at T consecutive points of time.4 We therefore consider an additive panel data
model

yit = γi +
p∑

h=1
fh(xhit) + uit, i = 1, . . . , N, t = 1, . . . , T, (6)

where uit are assumed to be independent and normally distributed errors with constant variance and γi are
individual-specific, time-invariant fixed effects allowed to be correlated with other covariates. As model (6) holds
for each point of time, we obtain

yi,t−1 = γi +
p∑

h=1
fh(xhi,t−1) + ui,t−1 (7)

for a one period time lag. To cancel out the individual-specific effects γi, we subtract (7) from (6) and obtain

∆yit = yit − yi,t−1 = γi − γi +
p∑

h=1
[fh(xhit)− fh(xhi,t−1)] + uit − ui,t−1 (8)

=
p∑

h=1

 dh∑
j=1

Bhj(xhit)βhj −
dh∑
j=1

Bhj(xhi,t−1)βhj

+ ∆uit

=
p∑

h=1
[zh(xhit)− zh(xhi,t−1)]T βh + ∆uit

=
p∑

h=1
[∆zh(xhit)]T βh + ∆uit, (9)

where equation (2) is used for the second and third equality and ∆ denotes the first-difference operator over time.
Note that only T − 1 observations per individual are retained after differencing. Accordingly, as the NT × dh-
4 The only reason to refrain from incorporating different observation horizons between persons is notational convenience. As can be
seen in Section 4 and Section 5, unbalanced panels can be handled without any difficulties in our framework.
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dimensional design matrix Zh of the evaluated basis functions is given by

Zh =



Bh1(xh11) . . . Bhdh
(xh11)

...
. . .

...
Bh1(xh1T ) . . . Bhdh

(xh1T )
...

. . .
...

Bh1(xhN1) . . . Bhdh
(xhN1)

...
. . .

...
Bh1(xhNT ) . . . Bhdh

(xhNT )


, (10)

we obtain

∆y =
p∑

h=1
∆Zhβh + ∆u (11)

in compact matrix notation, where ∆y = (y12 − y11, . . . , y1T − y1,T−1, . . . , yN2 − yN1, . . . , yNT − yN,T−1)T is a
N(T − 1)-dimensional column vector, ∆u is defined analogously and the N(T − 1) × dh-dimensional matrix ∆Zh
is obtained by building the difference between matrix Zh in (10) and its one period lagged counterpart:

∆Zh =



Bh1(xh12) . . . Bhdh
(xh12)

...
. . .

...
Bh1(xh1T ) . . . Bhdh

(xh1T )
...

. . .
...

Bh1(xhN2) . . . Bhdh
(xhN2)

. . .
Bh1(xhNT ) . . . Bhdh

(xhNT )


−



Bh1(xh11) . . . Bhdh
(xh11)

...
. . .

...
Bh1(xh1,T−1) . . . Bhdh

(xh1,T−1)
...

. . .
...

Bh1(xhN1) . . . Bhdh
(xhN1)

...
. . .

...
Bh1(xhN,T−1) . . . Bhdh

(xhN,T−1)


.

Additionally taking into account penalization, a first-difference penalized spline estimator for all βh can be obtained
by minimizing the penalized least squares criterion[

∆y−
p∑

h=1
(∆Zh)βh

]T [
∆y−

p∑
h=1

(∆Zh)βh

]
+

p∑
h=1

λhβh
TKhβh. (12)

Since the smoothing parameters are unknown, one can again exploit the mixed model representation and using
(restricted) maximum likelihood estimation as discussed in the previous subsection.

We briefly have to refer to the identification problem in case of multiple smooth model components: Our aim is
to estimate the functions fh, h = 1, . . . , p. Hence, model (6) should be identified such that

N∑
i=1

T∑
t=1

fh(xhit) = Zhβh = 0

holds for all h = 1, . . . , p. Therefore, we rewrite the design matrices of the evaluated basis function given in (10)
and the penalty matrices such that Z̃h = ZhWh and K̃h = WT

hKhWh, proceeding as described in the previous
subsection. Furthermore, the identification restriction also implies that a one period lagged design matrix is then
constructed directly from Z̃h by taking its one-period-lagged rows. After building the difference between each Z̃h
and its respective lagged counterpart, the resulting matrices ∆Z̃h and the penalty matrices K̃h are plugged into
(12) to obtain estimators for βh and thus for fh.

Another common approach in fixed effects panel data models is time-demeaning, i.e., removing the individual-
specific effects γi by building the mean over time for each individual in equation (6) and subtracting the resulting
equation from (6). Using the information above, this variant is straightforward to derive.
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3 Simultaneous confidence bands for penalized splines
In linear regression models, one is typically interested in the uncertainty of the parameter estimates. Confidence
intervals are an established tool to make inferential statements. Similarly, inference about entire smooth functions
in nonparametric regression models can be obtained by constructing simultaneous confidence bands around the
estimated functions:{

f̂h(xh)− ch,1−α
√
Var

[
f̂h(xh)

]
, f̂h(xh) + ch,1−α

√
Var

[
f̂h(xh)

]
, xh,min ≤ xh ≤ xh,max

}
. (13)

The critical value ch,1−α should ensure that the resulting bands (depending on the sample at hand) cover the true
function with a prespecified probability 1−α in all possible samples, i.e., c1−α is the (1−α)-quantile of the random
variable

sup
xh,min≤xh≤xh,max

|f̂h(xh)− fh(xh)|√
Var

[
f̂h(xh)

] .

The difficulty in the penalized spline framework lies in finding the distribution of this random variable. Due to
the introduction of a penalty, the estimators for fh, obtained for instance by minimizing (3) or (12), are usually
not unbiased.5 Krivobokova et al. (2010) propose a solution that takes this bias into account when constructing
the simultaneous confidence bands for penalized splines. They consider univariate models while Wiesenfarth et al.
(2012) extend the approach to the multivariate case, also covering heteroscedastic errors and spatially heterogeneous
splines. The approach performs very well in simulation studies and offers a fast way of inference without the need
for computationally intensive resampling procedures. The basic idea (derived for the cross-sectional case here) is
to exploit the mixed model representation of penalized splines as described in Section 2, i.e., we consider smooth
functions as mixed models:

fmh (xh) := Xhfαhf + Xhrαhr = Zmh βmh .

Recall that both the the random coefficients in each random coefficients vector αhr, h = 1 . . . p, and the model
errors ui are assumed to be independent and normally distributed with zero expectation and constant variance.
Additionally assuming mutual independence, the marginal distribution of y is given by

y ∼ N
(
β01n +

p∑
h=1

Xhfαhf , σ
2
uIn +

p∑
h=1

σ2
reXhrXT

hr

)
.

Since the fixed coefficients estimators are unbiased, we obtain a zero mean Gaussian process

Gh(xh) = Zmh (β̂mh − βmh )√
Zmh Cov(β̂mh − βmh )(Zmh )T

∼ N(0,Σ)

with regard to each covariate. The entries of the covariance matrix Σ are then given by

Cov [Gh(xh1), Gh(xh2)] =
[

Lm,h(xh1)
||Lm,h(xh1)||

]T [ Lm,h(xh2)
||Lm,h(xh2)||

]
=: ηTm,h(xh1)ηm,h(xh2),

5 The spline representation of smooth function introduces an additional bias which converges to zero with growing number of knots, see
Claeskens et al. (2009) for details. We assume this bias to be negligible by using sufficiently many knots.
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where Lm,h(·) denotes the smoothing matrix from (4) in mixed model formulation. Following Sun and Loader
(1994), the tail probability of maxima of such processes is determined by

α = P

(
sup

xh,min≤xh≤xh,max

|Gj(x)| > ch,1−α

)

= κm,h
π

Cov
(
−ch,1−α

2

)
+ 2 [1− Φ(ch,1−α)] + o

[
exp

(
−ch,1−α

2

)]
, (14)

where Φ(·) is the cumulative distribution function of a standard normal distribution and

κm,h =
xh,max∫
xh,min

|| d
dx
ηm,h(x)||dx

is the length of the mixed model manifold implicitely including the amount of bias which has to be corrected
for. Thus, the critical value ch,1−α in (13) can be approximately obtained from (14). For further details of
such simultaneous confidence bands see Krivobokova et al. (2010) and Wiesenfarth et al. (2012). Their approach
is designed for the cross-sectional case, but directly carries over to the panel data context with fixed effects as
described in (6). The simple, but crucial new aspect to contemplate is the serial correlation in the error term ∆uit
of each individual after applying the first-difference transformation described in (8). Assuming the uit to be serially
uncorrelated, ∆uit and ∆ui,t−1 exhibit a negative autocorrelation for each individual. In case of a homoscedastic
variance, this serial correlation for two consecutive points of time amounts to -0.5, see the appendix for a derivation.
We therefore adopt the generalized least squares (GLS) approach and premultiply the differenced model matrix
(∆Zh) and the differenced dependent variable ∆y in equation (12) by Ψ , where

ΨΨ ′ = Ω−1 =


Ω−1

1 0 . . . 0
0 Ω−1

2 . . . 0
...

...
. . .

...
0 0 . . . Ω−1

N

 (15)

is a block diagonal matrix with main diagonal block square matrices

Ω−1
i =



1 −0.5 0 . . . 0
−0.5 1 0 . . . 0

0 0
. . . 0 0

...
... 0 1 −0.5

0 0 0 −0.5 1


of dimension (T − 1)× (T − 1).6 Note that, when using first differences and GLS, the smoothing matrix in (4) and
thus the variance and the confidence bands of the estimated spline curve change accordingly. Likewise, applying
the GLS transformation on the respective quantities in the penalized least squares criterion (12) results in a more
efficient estimator for the unknown functions.

In practice, panel data often exhibit additional serial correlation. In the rare cases of an exactly known error
structure, the matrices in (15) can be adjusted. The more common case is that the correlation structure in the
error term is unknown and only minor assumptions are made, e.g., that errors between different individuals are
uncorrelated. In such a case, it is recommended to investigate the residuals for all individuals before or after
applying the GLS procedure. If the autocorrelation and partial autocorrelation function suggest the occurrence
of a certain underlying autoregressive moving average process, the obtained information could be exploited in the
subsequent estimation of a feasible GLS estimator, see Hansen (2007) for more details. Another option is the
maximum likelihood-type reestimation of the model with included simultaneous estimation of the autoregressive
and moving average parameters. This can be done in a mixed model framework which additionally allows for
modeling heteroscedasticity, as described in Pinheiro and Bates (2000).

Wiesenfarth et al. (2012) describe the extension how to build simultaneous confidence bands around the deriva-
6 Ψ can be obtained from Ω−1 with the help of the Cholesky factorization and matrix inversion.
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tives. In the case of B-spline basis functions, the derivative of the smoothing matrix in (4) for the cross-sectional
case is given by

L′h(xh0) = (In − S−h) Zh
[
ZTh (In − S−h) Zh + λhZh

]−1 [z′h(xh0)]T , (16)

where [z′h(xh0)]T denotes the row vector of the derivatives of the initial basis functions, evaluated at some value
xh0 (see De Boor, 2001, Ch. 10). Thus, derivative estimates are practically obtained with negligible effort once a
penalized least squares criterion like (3) has been minimized. Critical values and simultaneous confidence bands for
the derivatives, also for panel data settings, can then be obtained by analogy with the steps described above.

4 Simulation studies
We consider data generated from model (6) with the individual-specific fixed effects γi = i and the p = 3 true
functions

f1(x1it) = sin2 [2π(x1it − 0.5)] ,
f2(x2it) = 0.6b30,17(x2it) + 0.4b3,11(x2it),
f3(x3it) = x3it(1− x3it),

with bl,m(x) = Γ(l +m) [Γ(l)Γ(m)]−1xl−1(1− x)m−1, where Γ(r) denotes the gamma function. All functions were
also considered in Wiesenfarth et al. (2012). They are scaled such that their standard deviations are equal to
one. The functions and their derivatives are shown in Figure 3 in the appendix. The errors are generated as i.i.d.
Gaussian errors with standard deviation σu = 0.5. We consider an unbalanced panel data design with total sample
sizes of n = (525, 1050, 2100), where N = (75, 150, 300) imaginary individuals are observed over different time
horizons without breaks, i.e., there are no missing observations between the first and last point of time at which
one individual is observed. Note that due to taking first differences according to (11), the sample size used for the
estimation decreases by the number of individuals, i.e., we obtain the effective sample sizes n−N = (450, 900, 2700).
The covariates for each individual are taken to be distributed over {a− 0.04, a− 0.03, . . . , a, a+ 0.01} with

P (X = x) =
{

0.5, if x = a,

0.1 else,

with a being randomly drawn with equal probability from {0.04, 0.05, ..., 0.99} for each individual. This setting
is designed to mimic a real-world panel data set where covariate values of individuals are often restricted to a
finite set of values and can sometimes remain constant over time. In all settings, we take 40 equidistant knots for
all covariates. The results are based on 500 Monte Carlo replicates and a nominal coverage rate of 95%. Note
that under the error assumptions stated above, the errors after building first differences are serially correlated (see
Section 3). We use B-spline basis function of degree three and impose a penalty on second-order differences of the
B-spline coefficients.

In Table 1, the resulting coverage rates with and without using GLS are shown. It can be seen that not taking
into account the autocorrelation in the error term leads to substantial undercoverage. In contrast, even for moderate
sample size, the confidence bands estimated by GLS generally perform quite accurately, i.e., the nominal coverage
is met. These results are in line with those of Wiesenfarth et al. (2012).

Using the same setting, we also examine the coverage rates of the confidence bands for the derivatives. The results
in Table 1 show adequate coverage rates for the comparably simple linear derivative f ′3(x3it) but not for the two
other more complicated functions. Especially the confidence bands for f ′2(x2it) perform poorly,7 even if the sample
size is huge (n = 4200) or the error variance is low (not shown here for brevity). In further simulations, we also
varied the number of knots and the difference orders for the penalty. Although sometimes observing improvements
in the coverage rates (with or without the expense of wider confidence bands), we did not find a distinct pattern
how to reach the nominal coverage rate. Thus, we can only advise to be careful in making inferential statements
about the derivative of potentially sophisticated curves.

In addition, we replicated the simulation studies with non-Gaussian errors and autocorrelated errors. The
results are comparable to our simulation setting with independent Gaussian errors. The robustness of the here
proposed confidence bands for non-normal symmetric error distributions was also demonstrated by Loader and Sun
7 We observe similar problems for other functions, e.g., f(x) = (0.5− x)3, see the online supplement.
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Table 1: Coverage rates in simulations, average areas between confidence bands in parentheses. Columns (i) denote
estimation with using GLS, columns (ii) without using GLS.

n f1 f2 f3
(i) (ii) (i) (ii) (i) (ii)

525 0.95 0.86 0.93 0.85 0.97 0.91
(3.42) (3.48) (3.67) (3.63) (3.07) (3.24)

1050 0.95 0.88 0.95 0.85 0.97 0.88
(2.45) (2.51) (2.45) (2.44) (2.12) (2.14)

2100 0.95 0.84 0.96 0.88 0.97 0.88
(1.81) (1.80) (1.90) (1.88) (1.55) (1.55)

f ′1 f ′2 f ′3
(i) (ii) (i) (ii) (i) (ii)

525 0.90 0.75 0.80 0.62 0.94 0.86
(30.60) (31.71) (32.80) (33.57) (17.82) (19.29)

1050 0.90 0.77 0.85 0.66 0.94 0.84
(23.51) (24.42) (25.19) (25.85) (14.06) (14.92)

4200 0.85 0.70 0.73 0.60 0.95 0.83
(15.23) (15.69) (17.01) (17.26) (8.77) (9.19)

(1997). Furthermore, our simulations indicate that slight violations of the serial independence assumption are not
too harmful. However, as shown above, disregarding major serial correlation as introduced by the first-difference
transformation to uncorrelated errors is problematic. Thus, we advise the practitioner to investigate the residuals
and apply, if necessary, more adequate modeling approaches as described in section 3.

As for all fixed effects panel data models, it is also important to ensure that there is sufficient intra-personal
variation for all covariates. If this is not the case, the model matrix after applying first differences contains many
zeros and thus, there is too little variation to estimate the function adequately.

The results for additional simulations not shown but discussed in this section can be found in the online sup-
plement.

5 Studying the relationship between ageing and life satisfaction
There is a considerable strand of literature studying how life satisfaction evolves over the lifespan. So far, there is
no broad consensus on the shape of this relationship, as study results differ while applying different methodologies
and data sets. A recent overview on this topic is given by López Ulloa et al. (2013). Frequently, an a priori specified
U-shaped relationship is tested in a parametric way. One exception is the work of Wunder et al. (2011), who
apply a semiparametric random effects model using the SOEP and the British Household Panel Survey. However,
they do not address possible endogeneity of time-invariant omitted covariates which can be done by incorporating
individual-specific time constant fixed effects. In the context of the relationship between ageing and life satisfaction,
the importance of doing so is highlighted by Ferrer-i Carbonell and Frijters (2004). Using fixed effects panel models,
Frijters and Beatton (2012) apply a quite flexible step function based on 5-year-intervals for the influence of age
on life satisfaction, which is, however, non-continuous and does not allow for uncertainty statements. To the best
of our knowledge, we provide the first fully flexible fixed effects panel data approach also allowing for statistical
quantification of uncertainty. To illustrate our method, we use SOEP data from 1994 to 2011, see Wagner et al.
(2007) for details on the data set. Following the results of Ferrer-i Carbonell and Frijters (2004), we treat the life
satisfaction score8, which is measured on an actually ordinal 11-point scale ranging from 0 (completely dissatisfied)
to 10 (completely satisfied), as cardinal. While applying a first-difference estimator, the effects on life satisfaction
are assumed to be exclusively instantaneous, i.e., an increase or decrease of an explanatory variable in one year
influences life satisfaction solely in the same year. This is questionable especially in the case of certain life events
like changes in the marital status, for instance. Therefore, we follow an approach similar to Laporte and Windmeijer
8 The corresponding question in the SOEP survey ist: “How satisfied are you with your life, all things considered?”
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Figure 1: Estimated nonparametric relationship between age and life satisfaction with confidence bands (left panel),
corresponding estimated derivative (right panel)

20 30 40 50 60 70 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

f̂ (Age)

Age

20 30 40 50 60 70 80

−
0.

10
−

0.
05

0.
00

f'̂(Age)

Age

(2005) and add dummy variables for each of the two years before and after a life event,9 including changes in marital,
employment and disability status. Furthermore, we include nonparametric effects for age and net household income
(with 60 equidistant knots each) and linear effects for household size and nights stayed in hospital in the previous
year. Thus, our model to estimate is

Life Satisfactionit = γi + f(Ageit) + f(Household Incomeit) + cTitδ + uit, (17)

where the vector cit captures the values of all variables (including lags and leads) which are modelled in a parametric
fashion. The final sample size after removing missing values amounts to n = 143, 299.

The results for the nonparametric effect of age on life satisfaction can be found in the left panel of Figure 1. It
can be seen that young people tend to become more and more unhappy as they become older. This decrease in life
satisfaction is stopped and even slighlty reversed at the age of around 60 for a couple of years. After that, increasing
age again goes along with a reduction in life satisfaction. The estimated derivative of this effect and its confidence
bands are shown in the right panel of Figure 1. For ages older than about 25 years, the zero line is not covered by
the bands over almost the whole life span, indicating a significant negative effect of age on life satisfaction within
these ages. This does not hold for the ages around 60 years. There, the confidence bands cover the zero line and
the lower band almost crosses the zero line once. With regard to our simulation studies in Section 4, however, these
results should be taken with caution.

For comparison, we also estimate two simple parametric first-difference panel data models, where the smooth
functions of age and household income in equation (17) are replaced by quadratic and cubic polynomials. The
results for the age effect can be found in Figure 2. It can be seen that the quadratic fit is a quasi-linear decreasing
function, whereas the cubic fit shows some curvature while still exhibiting a clear downward trend over the lifespan.
Neither of these estimated functions can capture the stage of constant or even increasing life satisfaction for the
ages around 60 years. Thus, it is advisable to use a nonparametric estimator here to estimate the relationship of
interest. In our analysis the often found U-shape or any other simple relationship between age and life satisfaction
cannot be confirmed. Qualitatively, our results rather resemble those of Wunder et al. (2011). The nonparametric
effect of net household income as well as the purely parametric effects are shown in Figure 4 and Table 2 in the
appendix.

6 Discussion and conclusions
In this paper, we presented a nonparametric first-difference panel data estimator based on penalized splines together
with a corresponding fast way of inference via simultaneous confidence bands. Our approach allows to estimate and
9 Incorporating leads and lags results in a smaller sample size. In our case, we require an individual to be observed in at least six
consecutive periods corresponding to at least one observation for estimation after building two leads and two lags and taking first
differences. Albeit the loss of observations, this modeling procedure allows us to investigate whether effects on life satisfaction are
long-lasting or just temporary, see for instance Lucas (2007) for a discussion on this issue.
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Figure 2: Estimated parametric relationship between age and life satisfaction with sqared (left) and cubic polynomial
(right)
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draw inferences from fixed effects panel data models in a highly flexible way and without a priori specifications of
covariate effects. Furthermore, the derivatives of the estimated effects as well as of their confidence bands are made
available with negligible additional effort. Using data from the SOEP, we illustrated our method by modeling the
relationship between age and life satisfaction. We found that it is not advisable to model this non-linear relationship
in a strictly parametric fashion. Simulation studies showed an overall good performance of our method with the
exception of the confidence bands for the derivatives which sometimes failed to hit the nominal coverage rate. A
possible explanation is that the smoothing parameters are estimated and optimized for the original functions and
not for the derivatives, as pointed out by Ruppert and Wand (2003, Ch. 6.8). It might be an interesting direction
for future research to address this problem. The proposed approach is available for practitioners in the R package
pamfe which enables the fast estimation of partially linear models and models with multiple nonlinear components
even for large sample sizes.
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Appendix
Serial correlation in the first-difference errors
Consider equation (6): If the error terms uit, i = 1, . . . , N, t = 1, . . . , Ti are homoscedastic and independent with
expectation zero, then E(uitui,t−1) = 0 and E(uituit) = σ2

u. It follows for the errors 4uit = uit − ui,t−1 in equation
(8):

E(∆uit) = E(uit − ui,t−1) = 0

and

Var(∆uit) = Var(uit − ui,t−1) = Var(uit) + Var(ui,t−1) = 2σ2
u.

The correlation of two consecutive error terms for the same individual after applying first differences is then given
by

Cor(∆uit,∆ui,t−1) = E [(∆uit)(∆ui,t−1)]√
Var(∆uit)Var(∆ui,t−1)

= E [(uit − ui,t−1)(ui,t−1 − ui,t−2)]√
2σ2

u2σ2
u

=
E(−u2

i,t−1)
2σ2

u

= −σ
2
u

2σ2
u

= −0.5.
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Figures and tables

Figure 3: Simulation studies: True, scaled functions (left) and corresponding derivatives (right).
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Figure 4: Estimated nonparametric relationship between household income (in 1000 e) and life satisfaction with
confidence bands
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Table 2: Estimation results for strictly parametric components. Note that the reference categories for the marital
status and its leads and lags are “single” and its respective leads and lags. For the disability status “not disabled”
serves at reference category, so does “non-working” for the employment status.

Variable Coefficient P-value
Household size -0.0048 0.5668
Nights in hospital -0.0102 0.0000
Disability Status: Disabled + 2 years -0.0156 0.5107
Disability Status: Disabled + 1 year 0.0334 0.1763
Disability Status: Disabled -0.1533 0.0000
Disability Status: Disabled - 1 year -0.2208 0.0000
Disability Status: Disabled - 2 years -0.1775 0.0000
Divorced + 2 years 0.0482 0.2165
Divorced + 1 year 0.2686 0.0000
Divorced 0.0289 0.5528
Divorced - 1 year -0.1348 0.1095
Divorced - 2 years -0.0744 0.3061
Widowed + 2 years 0.2420 0.0000
Widowed + 1 year 0.5067 0.0000
Widowed + 1 year 0.5067 0.0000
Widowed -0.3942 0.0000
Widowed - 1 year -0.0820 0.2459
Widowed - 2 years -0.0935 0.1195
Married + 2 years -0.1082 0.0006
Married + 1 year -0.0569 0.1388
Married 0.1143 0.0046
Married - 1 year 0.1463 0.0007
Married - 2 years 0.1418 0.0002
Part time employed 0.0061 0.7807
Full time employed 0.1235 0.0000
Unemployed -0.4843 0.0000
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