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Abstract

In shared frailty models for bivariate survival data the frailty is identifiable
through the cross-ratio function (CRF), which provides a convenient measure
of association for correlated survival variables. The CRF may be used to
compare patterns of dependence across models and data sets. We explore
the shape of the CRF for the families of one-sided truncated normal and
folded normal frailty distributions.
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1. Setting the scene

Consider bivariate time-to-event data and let Tj (j = 1, 2) be the two
failure times of interest with marginal survivor functions Sj(tj) and joint
survival function S(t1, t2). The hazard rate at time t for an individual with a
random effect Z ≥ 0 with density f(Z) having finite mean and finite variance,
denoted hj(t, Z), is assumed to be of the form

hj(t, Z) = Z · h0j(t) , (1)

for j = 1, 2, where the baseline hazards h0j(t) are independent of Z and de-
scribe the time effect. The random variation in Z induces association between
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the two failure times T1 and T2; T1 and T2 are conditionally independent given
Z = z. The individual latent effects capture the unobserved heterogeneity
between the individuals and may be viewed as individual frailties, yielding
shared frailty models for the hazard rates (Duchateau and Janssen, 2008;
Hougaard, 2000; Wienke, 2011).
A convenient local association measure for bivariate survival data is the cross-
ratio function (CRF) (Clayton, 1978), which at (t1, t2) is defined as

θ∗(t1, t2) =
S(t1, t2) D1D2S(t1, t2)

D1S(t1, t2) D2S(t1, t2)
, (2)

where Dj denotes the derivative operator ∂/∂tj. The definition (2) lacks an
obvious interpretation. However, since D1D2S(t1, t2)/D2S(t1, t2) = f(t1|T2 =
t2)/S(t1|T2 = t2) and D1S(t1, t2)/S(t1, t2) = f(t1|T2 > t2)/S(t1|T2 > t2),
where f(t) denotes the probability density function (pdf) of a random vari-
able T , (2) is related to the hazard of events. It is the ratio of the hazard
of T1 given T2 has taken place at time t2 over the hazard of T1 given T2 has
not yet taken place at t2 (Oakes, 1989). Furthermore, Anderson et al. (1992)
showed that for ε > 0:

lim
ε→0

OR(t1, t2; ε)
.
= θ∗(t1, t2) ,

where the odds ratio OR(t1, t2; ε) is defined as

OR(t1, t2; ε) =
odds(t1 < T1 ≤ t1 + ε | T1 > t1, t2 < T2 ≤ t2 + ε)

odds(t1 < T1 ≤ t1 + ε | T1 > t1, T2 > t2 + ε)
.

Thus, the CRF has a local odds ratio interpretation as it approximates
OR(t1, t2; ε) in an instant past (t1, t2) (see also Clayton and Cuzick (1985)).
The CRF can also be interpreted as a local version of Kendall’s τ (Oakes,
1989). A CRF greater than one corresponds to a positive association between
T1 and T2. When θ∗(t1, t2), (2) allows for negative dependence between T1
and T2 but there is no frailty interpretation in this case. If T1 and T2 are
independent, then θ∗(t1, t2) = 1.
In shared frailty models for bivariate survival data the distribution of Z in
(1) is identifiable through the CRF. To relate (2) to the distribution of Z
consider the relationship (Anderson et al., 1992):

θ∗(t1, t2) =
Var(Z| T1 > t1, T2 > t2)

[E(Z| T1 > t1, T2 > t2)]
2 + 1 , (3)
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where the first term on the right side of equation (3) is the square of the
coefficient of variation of Z given T1 > t1 and T2 > t2. The representation
(3) provides a readily interpretable measure of how the heterogeneity of the
hazard functions of survivors, as represented by a frailty model, evolves over
time. It is well established that the gamma frailty distribution is the only
continuous distribution with constant θ∗(t1, t2) and that (3) decreases with
time e.g. for the inverse Gaussian and increases with time e.g. for the
compound Poisson frailties. However, more diverse shapes of the CRF are
possible. For example, Paik et al. (1994) state that “...no frailty models
are known to yield...bathtub-shaped dependence function.”. Farrington et al.
(2012) give evidence that bathtub-shaped cross-ratio functions can arise in
the context of mixed distributions, which have an atom at zero and are
continuous on the positive real line. They present an example with a bathtub-
shaped profile that arises from a mixed distribution in which the continuous
component is inverse Gaussian.
Normal distributions and Student-t distributions are not possible families of
frailty distributions, as these have support (−∞,∞). However, truncated
and folded versions of normal and Student-t distributions may be adequate
candidates for frailty distributions. In this paper we investigate the shape
of the dependence structures that are induced by members of the class of
truncated and folded normal frailty distributions.
The remainder of the paper is organized as follows. In Section 2, some results
are presented that are useful for further analyses. We explore the shape of the
CRF generated by truncated (folded) normal frailty distributions in Section
3 (Section 4). A discussion in Section 5 concludes. Computations for this
manuscript were carried out using the R Software, version 3.2.1 (R Core
Team, 2015). All computer code used is available upon request.

2. The rescaled cross-ratio function

In a shared frailty model such as (1), the frailty Z solely generates the
association structure between T1 and T2. This means that an association
measure should be free from the influence of

H0j(t) =

∫ t

0

h0j(u) du ,

where H0j(t) are the cumulative baseline hazards (j = 1, 2). Oakes (1989)
showed that if the shared frailty model (1) holds, the CRF depends on (t1, t2)
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only through some function θ(ν) of the joint survivor function ν = S(t1, t2).
This means that θ∗(t1, t2) = θ(S(t1, t2)) = θ(ν). The function θ(ν) deter-
mines the frailty distribution up to a scale factor (Oakes, 1989). Farrington
et al. (2012) showed that

θ∗(t1, t2) = θ(µ · (H01(t1) +H02(t2))) ,

where µ denotes the frailty mean. Thus, the CRF depends on (t1, t2) only
through µ · (H01(t1) + H02(t2)) and may be characterized independently of
the cumulative baseline hazards by rescaling the time axis. Thus, we can set
s = µ · (H01(t1) + H02(t2)) and define θ(s) = θ∗(t1, t2). The rescaled CRF,
θ(s), is a feature solely of the frailty Z. Suppose that Z has cumulative
distribution function (cdf) F (z), Laplace transform

L(s) = E {exp(−sZ)} =

∫ ∞
0

exp(−sz) dF (z)

and cumulant-generating function K(s) = ln {L(−s)}. The rescaled CRF can
rewritten in terms of K(s) as follows (Aalen et al., 2008; Farrington et al.,
2012):

θ(s) =
K′′(−s/µ)

K′(−s/µ)2
+ 1 =

K′′(−(H01(t1) +H02(t2)))

K′(−(H01(t1) +H02(t2)))2
+ 1 , (4)

where the prime denotes differentiation with respect to its argument. The
expression (4) may ease the computational burden for calculating the CRF
for shared frailty distributions. In Figure 1 profiles of the rescaled CRFs are
displayed for various frailty distributions.

[Figure 1 about here.]

Figure 1 shows that the CRF can take many shapes. When bivariate time-to-
event data are thought to arise from a shared frailty model, diagnostic plots
based on the CRF may be used to suggest an appropriate frailty distribution
or class of distributions (Viswanathan and Manatunga, 2001; Duchateau and
Janssen, 2008).

3. Truncated normal frailty distributions

Suppose a continuous random variable Y has a standard normal distri-
bution, that is, Y ∼ N (0, 1). For ξ ∈ R and σ > 0, let X = ξ + σY . The
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two-parameter family of distributions associated with X ∼ N (ξ, σ2) is called
the location-scale family associated with the given distribution of Y ; ξ is
the location parameter and σ the scale parameter. The resulting Laplace
transform of X is

E {exp(−sX)} = exp

(
σ2s2

2
− ξs

)
. (5)

The two-parameter location-scale family of distributions with Laplace trans-
form (5) is not a possible family of distributions for the frailty Z ≥ 0,
since their members have support on the whole real line. As a remedy,
one may consider a one-sided truncated version of the pdf of X instead,
that is, a conditional density that results from restricting the domain of

fX(x) = 1√
2πσ

exp
(
− (x−ξ)2

2σ2

)
for −∞ < x < ∞ to the interval [0,∞). Sup-

pose that the frailty Z represents the truncated distribution of X over the
support [0,∞). Then, the density of Z is given by

fZ(z) =
σ−1φ

(
z−ξ
σ

)
1− Φ

(
0−ξ
σ

) , 0 ≤ z <∞ , (6)

where φ(·) and Φ(·) are the pdf and cdf of the standard normal variable,
respectively. The mean and variance of Z are

µ = E(Z) = ξ + σλ(α)

and
Var(Z) = σ2[1− δ(α)] ,

respectively, where α = −ξ/σ, λ(α) = φ(α)/[1−Φ(α)] and δ(α) = λ(α)[λ(α)−
α]. The Laplace transform of Z is

L(s) =

∫ ∞
0

exp(−sz)fZ(z) dz (7)

= exp

(
σ2s2

2
− ξs

)
1− Φ

(
− ξ
σ

+ σs
)

1− Φ(− ξ
σ
)

and the cumulant-generating function K(s) = ln {L(−s)} is

K(s) =

(
σ2s2

2
+ ξs

)
+ ln

(
1− Φ

(
− ξ
σ
− σs

))
(8)

− ln

(
1− Φ

(
− ξ
σ

))
.
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Hence,

K(−s/µ) =

(
σ2(s/µ)2

2
− ξs/µ

)
(9)

+ ln

(
1− Φ

(
− ξ
σ

+ σs/µ

))
− c ,

where c is a constant. In order to investigate the shape of the CRF that
results from using truncated normal frailty distributions one has to obtain
the expression on the right-hand side of equation (4), in other words, the first
and second derivative of (9). For the one-sided truncated normal distribu-
tion, the derivatives K′(−s/µ) and K′′(−s/µ) are specified by the equations
(A.1)–(A.2) in the Appendix. In Figure 2 (i) four different pdfs of one-sided
truncated normal frailty distributions with support [0,∞) are displayed.

[Figure 2 about here.]

Figure 2 (ii) shows the association patterns induced by the use of the one-
sided truncated normal frailty distributions that are displayed in Figure 2 (i).
As can be seen from Figure 2 (ii), for all distributions under investigation the
scaled CRF, θ(s), increases as s increases. In fact, the CRFs are increasing
towards positive asymptotes. The locations and slopes of the curves of the
solid, dotted and dot-dashed curves are quite different, though. Note that for
all one-sided truncated normal frailty distributions with ξ = 0 both the first
derivative (A.1) and the second derivative (A.2) do not vary with respect to
σ. Therefore, the solid and dashed lines coincide. The shape of the latter
two trajectories is similar to the example from the Kummer family with
increasing CRF shown in Figure 1 (ii).

4. Folded normal frailty distributions

If X is a random variable that follows a normal distribution with mean
ξ and standard deviation σ, then Z = |X| has a folded normal distribution
with parameters ξ and σ. The density of Z is

fZ(z) =
1

σ

[
φ

(
z − ξ
σ

)
+ φ

(
z + ξ

σ

)]
, z ∈ [0,∞) . (10)

The mean of Z is

µ = E(Z) = ξ[1− 2Φ(−ξ/σ)] + σ
√

2/π exp

(
−ξ2

2σ2

)
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and the variance is
Var(Z) = ξ2 + σ2 − µ2 .

Note that the truncated normal density is the positive part of the normal
density, scaled up to have unit area, whereas the folded distribution is the
sum of the positive part of the normal curve and its negative tail (as reflected
around the vertical axis). If ξ = 0 in (10), the half-normal distribution is
obtained, which coincides with a zero-mean normal distribution truncated
from below at zero. For ξ 6= 0, however, the density (10) is different from
the density (6).
The Laplace transform of Z is

L(s) = exp

(
σ2s2

2
− ξs

)[
1− Φ

(
− ξ
σ

+ σs

)]
(11)

+ exp

(
σ2s2

2
+ ξs

)[
1− Φ

(
ξ

σ
+ σs

)]
.

The cumulant-generating function of Z is

K(s) =

(
σ2s2

2
+ ξs

)
+ ln

{
1− Φ

(
− ξ
σ
− σs

)
(12)

+ exp(−2ξs)

[
1− Φ

(
ξ

σ
− σs

)]}
.

Hence,

K(−s/µ) =

(
σ2(s/µ)2

2
− ξs/µ

)
+ ln

{
1− Φ

(
− ξ
σ

+ σs/µ

)
(13)

+ exp(2ξs/µ)

[
1− Φ

(
ξ

σ
+ σs/µ

)]}
.

The derivatives K′(−s/µ) and K′′(−s/µ), which are required to compute
the CRF in (4), are given in the equations (A.3)–(A.4) in the Appendix.
In Figure 3 (i) four different pdfs of folded normal frailty distributions are
displayed.

[Figure 3 about here.]

Figure 3 (ii) shows the association patterns induced by the use of folded
normal frailty distributions that are displayed in Figure 3 (i). The solid
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curve represents the half-normal distribution (with frailty mean µ = 1) and
coincides with the solid and dashed curves in Figure 2 (ii), both of which
representing one-sided truncated normal frailty distributions with ξ = 0 (but
different scale parameter σ). At low s values there are slight differences
between the solid and dotted lines; apart from this feature both curves are
virtually identical and both curves do intersect with the dashed curve. For
small values of σ the association pattern becomes virtually flat. The dot-
dashed line virtually corresponds to the case of independence between the
two survival variables and θ(s) = 1.

5. Discussion

This paper has focused on Clayton’s cross-ratio function for assessing
time-varying dependence in models for bivariate survival data. We have
considered models in which the dependence between the two failure times
of interest is generated by a shared frailty that acts multiplicatively on the
hazard. Shared frailty models have a wide applicability in a multivariate
context, for example to model related individuals (e.g. twins), to model
related components (e.g. right and left eye) in individuals, to model the case
of recurrent events (e.g. epileptic seizures) or to model event times that arise
from experiments, where a single individual goes through multiple treatments
and for each treatment the time to some event is recorded (Hougaard, 2014).
We have explored the shape of the CRF for the families of truncated and
folded normal frailty distributions. As one can see from this paper, the
shape of the CRF can take diverse profiles. For appropriate bivariate survival
data at hand, plots of the estimated CRF, suitably rescaled, can serve as an
exploratory tool for suggesting frailty distributions with a shape of the CRF
that matches the observed profile.
The truncated normal and the folded normal can be viewed as the limit of
the truncated and folded Student-t distribution, respectively, as the degrees
of freedom go to infinity. One may want to study the shape of the CRF for
truncated and folded Student-t distributions as well. In some settings it is
more convenient to write the model (1) as

hj(t, U) = exp(U) · h0j(t) , j = 1, 2 ,

obtained by setting Z = exp(U). In this model, U = ln(Z) is a random
effect in the linear component of the proportional hazards model. Note that
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whereas Z ≥ 0, U can take any value, positive or negative, and U = 0 cor-
responds to the case when Z = 1 and there is no frailty. For example, if
U ∼ N (0, σ2

u), then Z has a log-normal distribution. Sahu and Dey (2004)
assume that the distribution of Z = exp(U) is a member of the general
class of log-skew-t distributions obtained in Azzalini and Kotz (2003) and
discussed in Azzalini and Capitanio (2014). The class of log-skew-t distri-
butions includes the log-skew normal distribution for which the dependence
structure via the CRF has been studied by Callegaro and Iacobelli (2012).
However, for the proposed class of log-skew-t frailty distributions, Sahu and
Dey (2004) do not explore the dependence structure via the (local) CRF but
consider the correlation between log-survival times as a (global) measure of
dependence instead. Investigating the shape of the CRF arising from using
various log-skew-t frailty distributions is one possible avenue for further re-
search.
Frailty modelling is fraught with a lack of identifiability. For example, the
temporal pattern in the association could be due to a time-varying frailty or
to selection effects stemming from a time-invariant frailty, and there is no
way of distinguishing between them. Note that with time-varying frailties,
it is not possible to rescale the time axis to remove the dependence on the
baseline hazards (Farrington et al., 2012). Nevertheless, the CRF in (2) can
still be used. Furthermore, in our paper, we have assumed in (4) that the
frailty has a finite but unspecified mean. In practical applications, it is ad-
vantageous to work with frailties of unit mean to separate the frailty model
from the model for the baseline hazards.
Finally, the assumption of a shared frailty between two time variables is
probably somewhat simplistic. In some situations, it is likely that that some
heterogeneity is shared, but supplemented by heterogeneity that is specific
to each variable. In such situations, correlated frailty models may be used
(Wienke, 2011). Correlated frailty models add flexibility, but also make the
model set-up more complicated and show lack of identifiability of the un-
shared components of the frailties. However, one should be aware that the
heterogeneity that is captured by a shared frailty is, in some circumstances,
most likely only part of the heterogeneity.
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Figure 1: Scaled cross-ratio functions generated by shared frailty distributions: (i) gamma
(solid line), inverse Gaussian (dashed line) and compound Poisson model (dotted line);
(ii) mixed frailty model with atom P(Z = 0) = 0.5 and inverse Gaussian continuous
component (solid line), frailties from the Kummer family (Farrington et al., 2012) with
decreasing CRF (dashed line) and increasing CRF (dotted line).
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Figure 2: (i) density for the truncated normal distribution with support [0,∞) for different
sets of parameters: ξ = 0, σ = 1 (solid line), ξ = 0, σ = 2 (dashed line), ξ = 1, σ = 1
(dotted line), ξ = 1, σ = 0.5 (dot-dashed line); (ii) scaled CRFs induced by one-sided
truncated normal frailty distributions displayed in (i).
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Figure 3: (i) density for the folded normal distribution for different sets of parameters:
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σ = 0.2 (dot-dashed line); (ii) scaled CRFs induced by folded normal frailty distributions
displayed in (i).
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