
Model Selection in Semiparametric Expectile Regression

Elmar Spiegela∗, Fabian Sobotkab, Thomas Kneiba
aGeorg-August-University Göttingen, Germany

bCarl von Ossietzky University Oldenburg, Germany

Abstract

Ordinary least squares regression focuses on the expected response and strongly
depends on the assumption of normally distributed errors for inferences. An ap-
proach to overcome these restrictions is expectile regression, where no distributional
assumption is made but rather the whole distribution of the response is described
in terms of covariates. This is similar to quantile regression, but expectiles provide
a convenient generalization of the arithmetic mean while quantiles are a generaliz-
ation of the median. To analyze more complex data structures where purely linear
predictors are no longer sufficient, semiparametric regression methods have been
introduced for both ordinary least squares and expectile regression. However, with
increasing complexity of the data and the regression structure, the selection of the
true covariates and their effects becomes even more important than in standard
regression models. Therefore we introduce several approaches depending on selec-
tion criteria and shrinkage methods to perform model selection in semiparametric
expectile regression. Moreover, we propose a joint approach for model selection
based on several asymmetries simultaneously to deal with the special feature that
expectile regression estimates the complete distribution of the response. Further-
more, to distinguish between linear and smooth predictors, we split nonlinear effects
into the purely linear trend and the deviation from this trend. All selection meth-
ods are compared with the benchmark of functional gradient descent boosting in a
simulation study and applied to determine the relevant covariates when studying
childhood malnutrition in Peru. Keywords: expectiles; semiparametric regression;
model selection; least asymmetrically weighted squares; boosting; non-negative
garrote;

1 Introduction

Expectiles as introduced by Newey and Powell (1987) can be introduced in two ways,
either as the generalization of the ordinary mean or as an alternative to quantiles. For
the ordinary mean, the aim is to find the value that minimizes the average squared
distance between the observed data points and the value such that the mean µ repres-
ents the center of gravity. In the following, we assume observations yi, i = 1, . . . , n,
drawn from a random variable Y with finite expectation µ and finite variance. Then
the ordinary mean of the data can be estimated via

µ̂ = argmin
m

n∑
i=1

(yi −m)2.
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On the other hand, an α-quantile qα is determined as the value where at least α · 100%
of the data are located below and at least (1−α) · 100% of the data are located above.
This value can be estimated as

q̂α = argmin
q

n∑
i=1

wα(yi)|yi − q|,

with weights wα(y) depending on the data y and the asymmetry α via

wα(y) =

{
α if y ≥ q
1− α if y < q

.

Expectiles are then introduced as a mixture of the mean and quantiles. On the one
hand, they are determined by an asymmetrically weighted deviations criterion, where
the L1-norm of quantiles is replaced by the L2-norm. On the other hand, they represent
a weighted mean with weights depending on the asymmetry τ and the observed values
of the data. Consequently, an estimate for the τ -expectile eτ is determined via

êτ = argmin
e

n∑
i=1

wτ (yi)(yi − e)2. (1)

Since the expectile eτ is the root of the first derivative of the loss function (1), the
following characteristic equations can be derived:∑

i∈I1

(1− τ)|yi − eτ | =
∑
i∈I2

τ |yi − eτ | (2)

τ =

∑
i∈I1
|yi − eτ |∑

i∈I1∪I2
|yi − eτ |

(3)

with sets of indices I1 = {i|yi < eτ} and I2 = {i|yi ≥ eτ}. As a consequence, ex-
pectiles eτ represent the weighted center of gravity (Yao and Tong, 1996). Further-
more, equation (3) indicates that the fraction between the distances below the expectile
and the total sum of distances is given by the corresponding asymmetry parameter τ .
This statement replaces the corresponding statement on the number of data points for
quantiles.

Both, expectiles and quantiles can be used to describe the complete distribution of a
random variable when using a dense set of asymmetries / quantile levels τ . Even if they
both differ in their definitions and therefore their properties, a bijective transformation
between quantiles and expectiles exists (Yao and Tong, 1996; Schulze-Waltrup et al.,
2015). Given the distribution function F of a continuous random variable Y , the
bijective function h : (0, 1) 7→ (0, 1) converting the α-quantile qα to the h(α)-expectile
eh(α) is given by

h(α) =
−αqα +

∫ qα
−∞ ydF(y)

−µ+ 2
∫ qα
−∞ ydF(y) + (1− 2α)qα

.

This function can easily be calculated for standard types of distributions with finite
variance, see Schulze-Waltrup et al. (2015) for further details and examples.

Similar as quantiles have been subjected to a regression problem (Koenker and
Bassett, 1978), expectiles can also be used to estimate regression models (Newey and
Powell, 1987), where the model specification is then given by

yi = ηi,τ + εi,τ , i = 1, . . . , n
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with yi being a continuous response and ηi,τ specifying corresponding regression pre-
dictor. For the error term, no specific type of distribution is assumed but rather we
assume that the error terms ετ,i are independent, have finite (but potentially different)
variances and

0 = argmin
e

E(wτ (εi,τ )(εi,τ − e)2)

holds, i.e. the τ -expectiles of the error terms are all zero. The resulting regression prob-
lem is typically solved using an iterative scheme called least asymmetrically weighted
squares (LAWS ), where estimation of the regression coefficients and the weights is
done iteratively (compare Sobotka and Kneib, 2012, for further details). The main
advantages of expectile regression are that no specific assumptions have to be made
concerning properties of the error distribution such as homoscedasticity and that by
estimating many expectiles the whole distribution of the response can be analyzed. In
addition, expectile regression can easily be extended beyond the purely linear model
specification when using semiparametric predictors (compare Section 2).

While the specification of regression models based on quantiles or expectiles has
the clear advantage of reducing the required assumptions, it also makes inference and
model choice questions more challenging since the models are no longer based on a
likelihood. As a consequence, both likelihood-based inference (e.g. likelihood ratio
tests or Akaike’s information criterion, AIC) are no longer immediately available. While
either resampling approaches such as the bootstrap or asymptotic normality results can
be used to conduct inferences in expectile regression models (see for example Sobotka
et al., 2013), model choice questions have never been investigated in detail. This is even
more relevant when considering semiparametric regression models where we do not only
have to decide which covariates should be included but also whether effects should be
purely linear or nonlinear. Furthermore, for expectile (and quantile) regression models,
a common question is whether covariates should be selected for the different expectile
levels separately or simultaneously for the complete response distribution.

We will mostly focus on two avenues for approaching model selection: (1) procedures
based on information criteria such as stepwise selection based on AIC-type criteria that
are very popular in ordinary least squares regression (Burnham and Anderson, 2002)
and (2) shrinkage approaches such as the least absolute selection and shrinkage operator
(LASSO) (Tibshirani, 1996) that augment a complexity penalty to the fit criterion.
Since the L1 penalty induced by the LASSO does not fit well with the L2 geometry of
expectiles, we will consider the non-negative garrote (Breiman, 1995) as an alternative.

An alternative to AIC-type criteria is provided by proper scoring rules derived
from information-theoretic considerations Gneiting and Raftery (2007). Proper scoring
rules can be applied for several regression types, including quantile regression and
expectile regression (Gneiting, 2011). For quantile regression, further approaches on
model selection have been introduced, starting with a goodness of fit criterion suggested
in Koenker and Machado (1999). Alternatively, several authors including Li and Zhu
(2008), Zou and Yuan (2008a), Zou and Yuan (2008b), Wu and Liu (2009), Koenker
(2011) and Jiang et al. (2014), introduced LASSO-type or SCAD-type penalties to
select variables in quantile regression (for a detailed review see Wu and Ma, 2015). All
of them, except Koenker (2011), restrict their approaches to linear predictors while
Koenker (2011) penalizes the variation of nonlinear effects but does not include the
possibility to de/select them. Moreover, most of the former papers select the variables
separately for each quantile level while Zou and Yuan (2008b) and Jiang et al. (2014)
introduce methods to select the covariates jointly for a given set of asymmetries (albeit
with the restriction that coefficients should vary smoothly over the quantile levels).
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Among others (see Gijbels et al., 2015, for a review of recent approaches) Huang
et al. (2010), Greven and Kneib (2010), Marra and Wood (2011) and Chouldechova and
Hastie (2015) introduce approaches to perform model selection in regression specifica-
tions with semiparametric predictors but a pre-specified type of response distribution.
Greven and Kneib (2010) suggest criterion-based selection, while the others use shrink-
age approaches.

Further research has also been done to implement semiparametric predictors in
quantile regression (see Koenker et al., 1994, He and Ng, 1999, Doksum and Koo,
2000). In this context some ideas for deciding whether nonlinear effects are indeed
necessary have been introduced. Most of them deal with varying coefficient models and
try to decide if the varying part is required (see for example Wang et al., 2009, Tang
et al., 2012, Noh et al., 2012, Tang et al., 2013). In order to select the models, they
make use of asymptotic distributional results or shrinkage methods. Moreover, they
select the covariates for each quantile level separately. Some approaches to overcome
this assumption in varying coefficient models are introduced in Kai et al. (2011) and
Guo et al. (2015). Here the models of several quantile levels are selected jointly via a
penalization approach. In addition, Guo et al. (2013), Lin et al. (2013) and Lv et al.
(2015) suggest methods to use truly additive models and apply model selection on the
linear and the nonlinear predictors via penalization approaches.

A flexible alternative to criteria- or penalization-based approaches is functional
gradient descent boosting (Bühlmann and Hothorn, 2007), where coefficient estimation
and model selection is done in one estimation run. Boosting also has the advantage
that selection of nonlinear and linear effects is readily available and can be combined
with a variety of model specifications. Boosting has been introduced to semiparametric
quantile regression by Fenske et al. (2011).

All told, we are not just adopting the above procedures to expectiles. Instead we
combine several approaches, which have been used only separately in previous papers
and add new ideas. First, we select variables based on AIC-type criteria and shrinkage
methods. Thereby we introduce methods to select models for the whole distribution
by combining multiple asymmetries. Whether or not performing model selection for
the complete distribution or for single asymmetries very much depends on the specific
context of the application. If we focus on specific parts of the distribution such as
the tail, it will in general be preferable to select only asymmetries associated with
this part of the distribution and to perform separate model selection. If, on the other
hand, the complete distribution of the response should be studied, we expect benefits
from performing simultaneous selection. In particular, this will have the advantage to
provide a consistent model selection for the complete distribution, allows us to borrow
strength from neighboring expectiles and facilitates interpretation of the results.

Second, to overcome the assumption, that a covariate influences the response lin-
early the specification of semiparametric regression is advantageous. Therefore all our
suggested methods can also select nonlinear predictors. However, model selection with
semiparametric predictors is more complex. In this paper, we make use of the fact,
that P-splines can be separated in a linear trend and the wiggly/nonlinear deviation
of this trend (Fahrmeir et al., 2004) and select them separately. This decomposition is
orthogonal in the parameters such that selection between the linear and the nonlinear
part is not deterred by concurvity of the linear and the nonlinear effect.

The remainder of the article is organized as follows: In Section 2, we briefly review
some basic concepts of semiparametric regression. Section 3 discusses model selec-
tion methods that allow to separate between linear and nonlinear predictor structures.
Furthermore, the expectile-specific model selection approaches are introduced. The
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following Section 4 contains a simulation study on the empirical performance of the
different approaches while Section 5 presents the application of our methods on the es-
timation of determinants for chronic undernutrition of children in Peru. The concluding
remarks are summarized in Section 6.

2 Semiparametric regression models

In the remainder of this paper, we will consider semiparametric regression specifications
where the response variable yi is related to a combination of linear effects xilβl as well
as smooth, nonlinear effects fs(xis) of continuous covariates such that

yi = β0 + . . .+ xilβl + . . .+ fs(xis) + . . .+ εi.

More generically, bivariate splines for interaction surfaces, Markov random fields or
Kriging terms for spatial effects and a variety of other effect types can be included in
a similar way (see Sobotka and Kneib, 2012). In the following we will focus on the
special case of univariate nonlinear effects for the sake of illustration.

To further simplify the presentation, assume a model with only one covariate with
nonlinear effect such that we obtain the specification

yi = f(xi) + εi

with smooth function f . This function is then approximated by a weighted sum of

B-spline basis functions B
(d)
r of a fixed degree d such that

f(x) =
R∑
r=1

γrB
(d)
r (x).

where γr are the corresponding coefficients and R is the dimensionality of the basis,
i.e. the number of basis elements. If the matrix Z contains the values of the basis
functions evaluated at the observed covariate values and γ is the vector of coefficients,
the model can then be rewritten in matrix-vector notation as

y = Zγ + ε. (4)

To reduce the dependency on the dimension and the position of the basis functions,
Eilers and Marx (1996) introduced P-splines where a large number of basis functions
is combined with a difference penalty on the basis coefficients such that the estimated
coefficients γ do not vary too much between neighboring basis functions. This leads to
the penalized least squares criterion

(y −Zγ)′(y −Zγ) + λγ′Kγ

where K is a penalty matrix representing squared differences of a predetermined order
p and λ ≥ 0 denotes the smoothing parameter that governs the trade-off between
smoothness of the function estimate (λ→∞) and fit to the data (λ→ 0).

To optimize λ, a first option is to use selection criteria like the AIC, or generalized
cross-validation. Alternatively, the Schall algorithm (Schall, 1991) can be applied since
P-splines can be cast in a mixed model framework (see for example Fahrmeir et al.,
2004). The Schall algorithm as well as optimization of selection criteria can also be
adapted to the combination on P-splines with expectile regression, see Sobotka and
Kneib (2012) and Schnabel and Eilers (2009).
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When including nonlinear effects in a regression model, a typical model choice ques-
tion relates to the decision whether a covariate should be included linearly or flexibly
i.e. based on a P-spline. To facilitate this decision, we decompose the coefficients of the
P-spline in its penalized and unpenalized part (following Lin and Zhang, 1999; Currie
and Durban, 2002; Fahrmeir et al., 2004)

γ = V γunp +Wγpen.

with matrices V and W spanning the null space and the orthogonal deviation from the
null space of the penalty matrix K. Plugging this reparameterization into Equation (4)
yields

y = Z(V γunp +Wγpen) + ε

= Ṽ γunp + W̃γpen + ε (5)

With this representation, the first part contains the unpenalized coefficients which
represent a linear function for second order differences (p = 2) and more generally a
polynomial of order p − 1. The second part contains the penalized coefficients, which
can be interpreted as the smooth deviation from the linear effect. Both parts can then
be treated as separate model components in the model selection task (see Section 3.1
for details). Note that the orthogonal decomposition provided by the matrices V and
W improves the model choice performance since concurvity between the linear effect
and the nonlinear deviation is avoided by construction.

3 Selection methods

3.1 Model selection for P-splines

For continuous covariates, we consider four selection approaches:

� Linear vs. no effect: The covariate is either included as a linear function or not
included at all. In this case, no nonlinear effects can be chosen.

� Nonlinear vs. no effect: The covariate is included as a P-spline (without decom-
posing it into penalized and unpenalized part) or not included at all. Note that
the smoothing parameter still allows to reduce the effect to a polynomial of degree
p− 1 (and therefore a linear effect for the standard case of p = 2) if λ→∞.

� Nonlinear vs. linear vs. no effect: In this case, all three possibilities are compared,
i.e. the covariate is included as a P-spline (without decomposing it into penalized
and unpenalized part), as a linear effect or it is dropped from the model. We will
consider this possibility in combination with best subset and stepwise forward
methods (see Section 3) and only allow for one of the competing alternatives,
i.e. once the covariate is included as either linear or nonlinear effect, the other
inclusion variant is not possible any more. Accordingly we call this method
restricted.

� Decomposition into linear and nonlinear effect: Here the decomposition of the
P-spline in a linear part and the deviation from the linear effect is utilized as de-
scribed in Equation (5). Hence the covariate can be included as a linear effect, the
deviation from the linear function, or the combination of both effects which then
yields the original P-spline again. Based on the orthogonality of the effects this
corresponds to an independent treatment of penalized and unpenalized part such
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that both are included or excluded separately from the model. This method is
called complete in the following and can be used in combination with all methods
defined in the following including the non-negative garrote.

Other smooth function types such as Markov random fields can also be selected with
the approaches defined in Section 3.2.1 to Section 3.3.3. However no decomposition is
used for them such that the model choice is simplified considerably.

Besides the selection of semiparametric predictors, the main novelty of model selec-
tion for expectile regression is that selection can be done for each asymmetry separately
or jointly for the whole distribution. In the next sections we introduce model selection
methods for each asymmetry separately and discuss joint selection afterwards.

3.2 Selection methods for a single asymmetry

3.2.1 Best subset and stepwise selection

Classical model selection methods like stepwise or best subset selection rely on the
definition of an appropriate selection criterion. We therefore introduce adaptations of
selection criteria well known from mean regression.

The first criterion is obtained by defining a cross-validated measure corresponding
to the least asymmetrically weighted squares (LAWS ) criterion

1

n

n∑
i=1

wτ (yi)(yi − ŷi,τ )2 (6)

where yi is the observed response and ŷi,τ is the predicted expectile for this observation.
For the cross-validated LAWS criterion, we determine expectile regression estimates on
a subset of the data and evaluate its predictive ability based on the predictive LAWS
criterion. In the following, this predictive index is called mean weighted squared error
(MWSE, in generalization of the standard mean squared error, MSE).

As an alternative, we consider a generalization of Akaike’s information criterion
(AIC) (Akaike, 1974) defined as

AIC = n log

(
1

n

n∑
i=1

wτ (yi)(yi − ŷi,τ )2

)
+ 2df

where the weighted sum of squared errors replaces the negative likelihood while the
degrees of freedom df = trace(H) are determined based on the hat matrix

H = (Wτ )1/2X(X ′WτX +K)−1X ′(Wτ )1/2,

where X is the complete design matrix of all effects, K is the (block diagonal) penalty
matrix consisting of all individual penalty matrices and their associated smoothing
parameters, andWτ is the diagonal matrix of the weights per observation for the current
asymmetry τ . Similarly, an expectile version of the Bayesian information criterion
BIC (Schwarz et al., 1978) can be defined by adjusting the weight on the degrees of
freedom. Note that in expectile regression we did not make an explicit assumption
on the distribution of the error term and therefore neither AIC nor BIC are strictly
justified based on standard arguments as in Burnham and Anderson (2002) but they
are rather defined as ad hoc analoga to these criteria.
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3.2.2 Non-negative garrote

An alternative to best subset or stepwise selection procedures are shrinkage methods
that avoid the necessity to estimate multiple models for a comparison. They rather
combine estimation and model selection in one step. The most prominent example is
the LASSO by Tibshirani (1996) which adds an L1 penalty term to the fit criterion.
Due to the specific geometry of the L1 penalty of the LASSO, covariates are excluded
from the model if their influence on the response is too small.

Since combining the LASSO with penalized predictors is not directly possible due
to the ties in the coefficients, several attempts to build shrinkage methods for semipara-
metric predictors have been developed (see Marra and Wood, 2011, for an overview).
In this article, we focus on the non-negative garrote introduced by Breiman (1995) that
uses a two-step approach for shrinking. In a first step, the saturated model with all
effects included is estimated. In a second step, the prediction accuracy is optimized by
multiplying every estimated predictor component with an extra weight δ and check-
ing which predicted value has a relevant influence on the response. We introduce the
non-negative garrote for semiparametric expectile regression following the notation of
Marra and Wood (2011). To get the special case of ordinary least squares, one has to
set τ = 0.5, such that τ can be ignored in the formulae.

In the following, we consider the non-negative garrote for models with semipara-
metric predictors ητ =

∑
k fk,τ (xk) where, for the sake of simplicity, also linear effects

are represented as arbitrary functions fk,τ (xk) = xkβk,τ . In principle the aim of non-
negative garrote is to optimize the coefficients not only due to the model fit, but also
by the prediction accuracy. Therefore the MWSE is transformed to the following op-
timization criterion

n∑
i=1

wτ (yi)

(
yi − β0,τ −

K∑
k=1

f̂k,τδk,τ

)2

, (7)

where δk,τ ≥ 0 is an extra weight to optimize the predictive model fit. These weights δk,τ
are limited in size by the tuning parameter ξτ =

∑K
k=1 δk,τ . To explain the procedure

in more detail, we first show how to estimate the weights δτ = (δ1,τ , . . . , δK,τ )T for
a given tuning parameter ξτ . Next, we explain how to estimate the optimal tuning
parameter ξτ . Finally we provide an algorithm to combine these steps and estimate
the final weights δτ for a specific asymmetry τ .

For the estimation of δτ , we assume a specific tuning parameter ξτ and estimate
the saturated expectile regression with all effects included in the first step. Hence, the
predictors f̂k,τ and the weights wτ (yi) are then available from this full model. Since

we only consider cases with K < n, no specific form of the estimates f̂k,τ needs to be
assumed. As the intercept is not subject to selection, the response y = (y1, . . . , yn)T is
transformed to y̆ = y−β0,τ for simplification. With this, equation (7) can be rewritten
in matrix notation as

δ̂τ = argmin
δτ

√
W (y̆ − F̂ δτ )2

= argmin
δτ

y̆TWy̆ − 2y̆TWF̂δτ + δTτ F̂
TWF̂δτ (8)

where F̂ =
[
f̂1,τ ; . . . ; f̂K,τ

]
is the matrix of predicted values and

W = diag(wτ (yi)) is the diagonal matrix of expectile weights. Moreover it is possible
to apply the methods for solving quadratic programming problems on equation (8).
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This yields an estimate for δ̂τ in the second step and the optimized model comprises
the effects

f̂newk,τ = f̂k,τ · δ̂k,τ .

If the saturated model is indeed the true model, then ξτ = K and δk,τ = 1 for all
k = 1, . . . ,K, thus the non-negative garrote changes nothing. However, if there is a
covariate xk, which is irrelevant for the prediction, then the prediction will be better
if its weight δk,τ is close to or even equal to zero such that the effect of xk is excluded
from the model. Furthermore, the weights δk,τ can be larger than 1. This is, however
unlikely, as the regression also minimizes the divergence between the observed values
and the predictions. Moreover the value of ξτ is essential for the estimation, but it has
to be specified in advance. In order to find the model with the best prediction accuracy,
the tuning parameter ξτ is determined via cross-validation out of a grid Ξ of possible
tuning parameters ξτ . This leads to the following algorithm:

1. Build the grid Ξ of possible tuning parameters ξτ .

2. Split the data into G pairs of training and validation data sets.

3. Iterate over all pairs g ∈ G and

a. Estimate the full expectile regression model for the training data set to obtain
f̂k,τ and wτ (yi).

b. Iterate over all ξτ ∈ Ξ and

i. Estimate the parameter δ̂τ based on the training data set to obtain the effect
estimates f̂k,τ .

ii. Compute the updated coefficients
(f̂new1,τ , . . . , f̂newK,τ ) = (f̂1,τ δ̂1,τ , . . . , f̂K,τ δ̂K,τ ).

iii. Use these new coefficients to predict the expectiles for the corresponding
validation data set.

iv. Estimate the MWSE for this validation data set g and tuning parameter ξτ
to obtain MWSEg,ξτ .

4. Build the cross-validation score for each ξτ separately

(score(ξτ ) = 1
G

G∑
g=1

MWSEg,ξτ ).

5. Find the minimal score and use the corresponding ξτ as the optimal one (ξoptτ ).

With the algorithm described above, we can now define the complete algorithm for
using the non-negative garrote:

I. Find the optimal tuning parameter ξoptτ based on cross-validation.

II. Use this tuning parameter ξoptτ to estimate the final weights δ̂τ of the complete
data set.

III. Compute the new coefficients f̂newk,τ = f̂k,τ δ̂k,τ and treat the result as the final
model.

We prefer using the non-negative garrote compared to the LASSO due to several
reasons. First, it can easily be adopted for semiparametric models (see Marra and
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Wood, 2011). Second, the non-negative garrote does not limit the value of the coef-
ficients, as LASSO does, but it rather measures the influence of the predicted values.
This is appropriate for expectile regression, as we allow the coefficients to vary freely in
between the different asymmetries τ . Last but not least, this method can be expanded
to a joint estimation of the weights for all asymmetry parameters simultaneously (see
Section 3.3.3).

3.3 Selection methods for the complete distribution

The methods considered in the previous sections select the optimal model for each
asymmetry parameter τ separately. This is advantageous in order to analyze which
covariate has an influence on specific parts of the distribution of the response. Fur-
thermore, the resulting models incorporate only relevant information for this specific
asymmetry parameter. However, it might be easier to compare the effects of the covari-
ates between the asymmetries if the same covariates are included for all asymmetries.
Moreover, the probability of crossing expectiles is reduced with this joint approach.
Our simulation studies show that with an approach for joint selection a superfluous co-
variate is excluded more often than otherwise. Still, a covariate with a specific influence
on one tail can build up enough leverage to remain in a joint model.

3.3.1 Mean AIC

The first method we propose to select the optimal model for all asymmetry parameters
jointly is the mean AIC or area under the criteria curve. This method is motivated
by the fact that the whole distribution of the response can be estimated with expectile
regression. Then the selection criterion for a given model, treated as a function of
the asymmetry parameter τ , can be compared with the corresponding function of a
competing model specification. To reduce the information to one single value (and
therefore to facilitate the decision which of the models is “better”), the area under the
criteria curve is determined and the model with the smaller area is preferred (for a
negative orientation of the criterion as for example in case of the AIC ). This principle
is illustrated in Figure 1 where the model including the P-spline of x2 performs better
on the left side of the distribution while the simpler model would be preferred on the
right side. When comparing the area under criterion curve, the more complex model
is found to perform better. Of course the integrated criterion can easily be weighted
such that specific parts of the distribution are more relevant than other when doing the
comparison.

In practice, the whole distribution will be approximated by a grid of asymmetry
parameters τj with j = 1, . . . , J . For these parameters, the expectile regression will be
estimated separately and the corresponding selection criterion AIC(τj) can be com-
puted. Furthermore the area under the criteria curve is approximated with the simple
Riemannian sum as

area =
J−1∑
j=1

AIC(τj) · (τj+1 − τj).

If the asymmetry parameters τj are chosen on a homogeneous grid, the area criterion
is proportional to the arithmetic mean of the individual contributions AIC(τj)

AIC =
1

J

J∑
j=1

AIC(τj).
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Figure 1: Differences between models as area between the criteria curves. This graphic
is based on the exponential simulation design of Section 4, but with more extreme
parameters and fewer observations.

Again, this index can also be replaced by a weighted mean with weights favoring outer
or inner part of the distribution. Eventually this index can be used for stepwise model
selection, for example, and the resulting model will contain the same covariates for all
asymmetry parameters.

3.3.2 Proper scoring rules

The purpose of model selection is often to identify models with good predictive perform-
ance. In the case of optimizing the model separately for each asymmetry, we therefore
considered cross-validation via the MWSE criterion. For joint selection, we adopt the
notion of scoring rules S (Gneiting and Raftery, 2007; Gneiting, 2011) that evaluate the
fit between predictive distributions and actually observed realizations. More precisely,
we assume that a forecast is probabilistic and we get a predictive distribution P as
forecast for a given realization y. Then

S : (P, y) 7→ s ∈ R

is a scoring function and we write S(P,Q) for the expected value of S(P, ·) under Q. If
Q is the best possible distributional forecast we say that S is a strictly proper scoring
rule, if

S(P,Q) ≥ S(Q,Q)

S(P,Q) = S(Q,Q)⇔ P = Q.

For expectiles we assume to have asymmetries τ1, . . . , τJ ∈ (0, 1) with corresponding
forecasts eτ1 , . . . , eτJ for a given observation y and a probability measure P . The
expected score is now given as

S(eτ1 , . . . , eτJ ;P ) =

∫
S(eτ1 , . . . , eτJ ; y)dP (y) (9)
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similar to the quantile representation in Gneiting and Raftery (2007). Furthermore we
know from Gneiting (2011) that a strictly proper scoring rule for expectiles is given by

S(eτ , y) = wτ (y)(ψ(y)− ψ(eτ )− ψ′(eτ )(y − eτ ))

with ψ being a convex function and ψ′ being its subgradient. The most prominent
example is constructed with ψ(x) = x2. Then the proper scoring rule for expectiles is
similar to our asymmetrically weighted squared error:

S(eτ , y) = wτ (y)(y − eτ )2.

To approximate (9), we utilize a set of asymmetry parameters to get the total distri-
bution from the corresponding expectiles, i.e.

S(eτ1 , . . . , eτJ ; y) =
J∑
j=1

wτj (y)(y − eτj )2 (10)

similar as for quantiles (see Gneiting and Raftery, 2007, for further details on the
quantile setting). To apply this on the model selection framework, we build the score
for a complete data set as

score =
1

G

G∑
g=1

1

ng

ng∑
i=1

J∑
j=1

wτj (yi)(yi − ŷi,τj )2

where yi is the true data point that materialized and ei,τ = ŷi,τ the predicted value for
this point, G is the number of cross-validation folds and ng is the size of the validation
data sets in the individual folds. The cross-validated score can then again be used for
stepwise model selection or for comparing a pre-selected set of models.

In applications, scoring can also be considered as a mixture of cross-validation and
mean AIC, i.e. it is the prediction error integrated via asymmetries (as shown for
quantiles in Gneiting and Ranjan, 2011). As a consequence, we cannot only look at
the complete score but can also decompose it along the asymmetries similar as we did
it for the AIC in Figure 1. Again, a weight vector emphasizing specific parts of the
distribution can easily be included.

3.3.3 Non-negative garrote on a grid

To generalize the non-negative garrote from single asymmetries to the complete distri-
bution, a grid of asymmetry parameters τj is used and expectile regressions for all τj
are estimated, such that f̂k,τj and wτj are given. With these estimates, we solve

(δ̂1, . . . , δ̂K)T = argmin
δ1,...,δK

J∑
j=1

n∑
i=1

wτj (yi)
(
yi − β̂0,τj − (f̂1,τjδ1 + . . .+ f̂k,τjδk)

)2
(11)

such that the weights δ = (δ1, . . . , δK)T ) are the same for all asymmetries while the
same constraints as in Section 3.2.2 apply (δk ≥ 0 and

∑
k δk = ξ). To solve this

minimization problem with quadratic programming routines, it is necessary to rewrite
(11) in matrix notation. With

y̆i,τj = yi − β̂0,τj y̆τj = (y̆1,τj , . . . , y̆n,τj )
T

Wτj = diag(wτj (y1), . . . , wτj (yn)) F̂τj = (f̂1,τj , . . . , f̂K,τj )
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y̆ =

 y̆τ1
...
y̆τJ

 , W =

 Wτ1
. . .

WτJ

 , F̂ =

 F̂τ1
...

F̂τJ


the values of the separate asymmetries are combined in a row-wise fashion such that y̆

is an ((n · J)× 1) vector, F̂ is an ((n · J)×K) matrix and W is an ((n · J)× (n · J))
diagonal matrix. With these definitions equation (11) can be transformed as

(δ̂1, . . . , δ̂K)T = argmin
δ

(y̆TWy̆ − 2y̆TW F̂δ + δT F̂
T
W F̂δ) (12)

and (12) can be solved with standard tools for solving quadratic problems. As in the
separate case, the optimal ξ is computed via cross-validation.

3.4 Boosting

As a competitor for the approaches introduced in this paper, we consider functional
gradient descent boosting (Bühlmann and Hothorn, 2007; Hofner et al., 2014) that
provides a generic way of minimizing the empirical loss

f∗ := argmin
f

n∑
i=1

ρ(yi, f(xi))

with a pre-specified loss function ρ and a regression specification f(xi). Boosting for
each asymmetry parameter separately has been introduced to expectile regression by
Sobotka and Kneib (2012) utilizing the weighted differences

ρ(yi, f(x)) = wτ (yi)(yi − f(x))2

as loss function (for further details see Sobotka and Kneib, 2012). Similarly boosting
was introduced to quantile regression by Fenske et al. (2011). They defined the loss
function ρ as

ρ(yi, f(x)) = wτ (yi)|yi − f(x)|

Boosting also allows to use semiparametric predictors and is therefore used as a bench-
mark in our simulation studies.

4 Simulation Study

We conduct a simulation study that evaluates both the ability to identify relevant
covariates and the ability to discriminate between linear and nonlinear effects for con-
tinuous covariates to determine the behavior of the different selection methods.

4.1 Design

For all scenarios considered in the following, we rely on the additive predictor

η = β0 + f1,τ (x1) + f2,τ (x2) + f3,τ (x3) + f4,τ (x4)

where all covariates x1, x2, x3, x4 are randomly drawn from a uniform distribution
U(1, 2) and x4 is always a noise covariate, i.e. f4,τ (x4) ≡ 0. We then designed three
different settings (see also Figure 2):
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1. Parallel design: The effects are equal for all asymmetry parameters τ (see Fig-
ure 2(a)):

yi = ηi + εi, εi ∼ N(0, 4)

β0 = 2, f1(x1) = 6 · x1, f2(x2) = 2 · x2, f3(x3) = 0.75 · x3

2. Linear design: The effect size increases linearly with increasing asymmetry para-
meters τ , (see Figure 2(b)):

yi = ηi + εi, εi = 0

f1,τi(xi1) = xi1 · β1,τi = xi1 · 3 · qτ̃i,2,0.5
f2,τi(xi2) = xi2 · β2,τi = xi2 · 1 · qτ̃i,2,0.5
f3,τi(xi3) = xi3 · β3,τi = xi3 · 0.5 · qτ̃i,1.5,0.5

where qτ̃ ,mean,sd is the τ̃ -quantile of N(mean, sd) and τ̃i = h(τi) where h is the
bijective function converting the τ -quantile qτ to the h(τ)-expectile eh(τ).

3. Exponential design: With increasing asymmetry parameters τ , the effect size
increases. The effect is linear for x1 and x3, while it is exponential for x2 (see
Figure 2(c)):

yi = ηi + εi, εi = 0

f1,τi(xi1) = xi1 · β1,τi = xi1 · 3 · qτ̃i,2,0.5

f2,τi(xi2) = xi2 · β3,τi + (τ̃i − 1) ·
exp

(
(xi2)

2
)

10
f3,τi(xi3) = xi3 · β3,τi = xi3 · 0.5 · qτ̃i,1.5,0.5

Note that there is a fundamental difference in the way the data are generated in the
parallel design as compared to the linear and the exponential design. For the con-
struction of data sets with a pre-specified structure for the expectiles, we rely on a
generalization of importance sampling where the quantile function is replaced by the
expectile function. More precisely, we draw quantile levels randomly from the uniform
distribution, i.e. τi ∼ U(0, 1) for observation i. Then the quantile level is transformed
to the expectile asymmetry using the transfer function h such that τ̃i = h(τi). The
asymmetry is then plugged into the quantile function of the N(mean, sd) distribution,
yielding qτ̃ ,mean,sd. The mean of the normal then controls the overall size of the effect,
while the standard deviation controls the overall variation of the data. The main ad-
vantage of this complex design is that we get varying but predictable effects for each
asymmetry parameter. With sd = 0 this approach reduces to the parallel design where
an additional error term is still necessary.

All simulations are based on n = 2000 observations (results with n = 500 observa-
tions are available in the supplementary material at
https://www.uni-goettingen.de/en//511092.html, but the basic conclusions did
not change) and the asymmetry parameters {0.02, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95,
0.98}. For each scenario, we consider 100 replications. Cross-validation in all selec-
tion methods is based on 10 folds of equal size. For determining the area under the
criterion curve and the average scores, we use a grid of asymmetry parameters con-
sisting of 49 homogeneous points between 0 and 1. For the non-negative garrote, we
used 49 points for the grid for ξ. Boosting is done with step size ν = 0.1 and 10-fold
in-bag cross-validation to find the optimal stopping iteration of the algorithm mstop
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Figure 2: Simulation design for f2,τ in all three data settings.

which has a maximum value of 4000. For the parallel design, we compare our meth-
ods with quantile boosting. Therefore we adjust the asymmetry parameters with the
transformation function from expectiles to quantiles based on the N(0, 4) distribution.
The resulting quantile levels for quantile boosting are {0.070, 0.127, 0.194, 0.291, 0.500,
0.709, 0.806, 0.873, 0.930}.

All covariates were included as cubic P-splines with 20 inner knots and a second
order difference penalty. The smoothing parameter was estimated via the Schall al-
gorithm (see Sobotka and Kneib (2012) and Schnabel and Eilers (2009) for further
details). For a distinction between linear predictors and smooth functions, we consider
the different possibilities discussed in Section 3.1. Since the results for “restricted” and
“complete” discrimination between linear and semiparametric predictors are similar,
we will only discuss the “complete” separation in detail. The other results are presen-
ted in the supplementary material. The “complete” separation of the linear effect and
the nonlinear deviation of the linear trend has the advantage that both can be selected
independently by the algorithms. Thus it may appear that either both are included
into the best model, or only one of them is included, or none of them is included into
the best model. Therefore the sum of the selection frequencies of the linear and the
nonlinear part of a covariate effect varies between 0 and 2.

All estimations and selection methods were implemented in R (R Core Team, 2017)
using the R package expectreg (Sobotka et al., 2016). The applied version is available
in the supplementary material.

4.2 Results

In the parallel design, the basic sensitivity of the selection methods is analyzed. In
Figure 3, the frequencies of selection for the different coefficients are plotted depending
on the asymmetry parameter.

The different characteristics of the selection approaches are discussed in the follow-
ing, starting with the selection approaches for each asymmetry parameter separately.

� Separate selection:

– center vs. tails of the distribution: Overall, AIC-based selection strong-
ly depends on the current asymmetry parameter τ , while the non-negative
garrote and boosting are less dependent on τ at least for the strong effects
and CV is nearly independent of τ .
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Figure 3: Frequency of selected models for parallel design

– informative vs. noise covariate: The non-informative linear covariate x4 is
excluded for CV, non-negative garrote and boosting constantly in 80%-90%
of the cases, while AIC excluded it in only 60%-70% of the replications.
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All approaches depend on the intensity of the informative covariates, i.e.
the strong covariate x1 is included almost always, while for the less influen-
tial covariate x3 the general pattern of the dependence on the asymmetry
parameter is most visible, even though the size of the parameter should be
constant over all asymmetry parameters.

– linear vs. nonlinear covariate: The data are simulated without any nonlin-
ear part, so this should be excluded for all intensities of the covariates and all
asymmetries. However the approaches behave differently concerning these
nonlinear parts. While CV excludes the nonlinear part in most cases, boost-
ing includes the nonlinear part relatively often for all asymmetry parameters.
To the contrary, the non-negative garrote excludes the penalized part more
likely in the center of the distribution than in the tails. This is similar for
AIC selection, but there the frequency of excluding the noisy nonlinear part
is rather low. So we can conclude that the known problem (see for example
Greven and Kneib, 2010 and Saefken et al., 2014) of nonlinear selection with
AIC is even more problematic for expectiles beyond the mean.

� Joint selection: The joint approaches stabilize the selection results but the overall
sensitivities of the separate selections methods stay the same. This means that
joint CV, i.e. scoring includes few noise covariates and is most restrictive con-
cerning nonlinear parts, while the area under the AIC curve includes the linear
covariates on the level of scoring, it does nearly never exclude a nonlinear covari-
ate. The non-negative garrote on the grid is also more stable, i.e. the exclusion
rate of noisy linear covariates is also on the level of scoring, while the rate for the
wiggly deviation is a little bit higher than for scoring, but much lower than for
the AIC.

� quantile boosting : In this simulation study, the results of expectile boosting and
quantile boosting with transformed asymmetry parameters are approximately the
same.

The other design discussed here is the exponential design. Since the selection fre-
quencies of the linear design behave similarly to the third design, their frequency plots
can be found in the supplementary material (see Figure A.2). Other than in the paral-
lel design, we cannot calculate the corresponding quantile levels for the heteroscedastic
designs. Thus the results cannot be directly compared to quantile boosting.

As x1 is a strong effect in the parallel case as well as in the one sided case, there
are only minor changes in the behavior of the selection methods. The same is valid for
the noise effect. Since the selection methods behave similarly as in the parallel setting,
those frequencies are not shown in Figure 4, where the selection frequencies of the linear
and nonlinear part of x2 and x3 are illustrated.

� linear effect: The strength of the small linear effect x3β3,τ is varying with the
asymmetry parameter. Thus the selection frequency of the unpenalized part
should increase with increasing asymmetry parameter (for the separate selection
per asymmetry parameter). This behavior can indeed be detected in the plots.
However, for the non-negative garrote, boosting and AIC, we observe a decrease
in the selection frequencies for very large asymmetry parameters. This is caused
by the general restriction of these methods in the tail of the distribution, similarly
as detected in the parallel design.

� nonlinear effects: The nonlinear part of x2 is also of major interest in this scen-
ario. Using non-negative garrote and CV, the selection frequency for very small
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Figure 4: Frequency of selected models for the exponential design

asymmetry parameters is not as high as expected. This is related to the fact
that the selection frequency of the linear part is higher than expected. Thus the
nonlinear trend is approximated with a linear function in 10-20% of the cases.
With increasing asymmetry parameter, the selection frequency of the nonlinear
part increases up to the 50% expectile. Beyond that, it is decreasing as expected
for the non-negative garrote and CV. For AIC, the unpenalized part is selected
into the best model more frequently on the upper part of the distribution, but
this could be expected from the parallel design. The unusual design of the selec-
tion frequency of the linear part of x2 can be explained by the design of the data
sets. For the upper part of the distribution, the linear part of x2 and x3 should
be similar, which is confirmed by the simulations. For the bottom part, a higher
selection frequency, as expected, is visible due to the usage of a linear trend in
the estimation of the nonlinear part.

We conclude that for the selection of the linear part CV, boosting and non-negative
garrote behave well, while for the nonlinear part only CV is approximately independent
of the current asymmetry parameter. However the non-negative garrote is also reliable
in the center of the distribution. The joint selection approach over all asymmetry
parameters reduces linear parts of noise covariates for all selection types. Furthermore,
it is advantageous for the selection of nonlinear parts with CV and non-negative garrote.
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5 Application: Childhood Malnutrition in Peru

5.1 Data structure

In the following, we apply the selection methods to a data set on childhood malnutrition
in Peru. As an indicator for the nutritional status, we rely on the stunting score

zscorei =
sizei −MedianSize(agei,sexi)

σ
,

where the standardized height of a child is compared to the median size of children in a
healthy comparison group given the child’s age and gender and σ is a robust estimate
for the standard deviation of the children’s size in the comparison group. Stunting
reflects chronic undernutrition which results in a lack of growth and a score of less
than −2 indicates severe chronic undernutrition (WHO Expert Committee on Physical
Status, 1995). As can be seen from Table 1, severe undernutrition occurs regularly but
the mean nutritional status is above the cut-off value of -2.

Table 1: Distribution of zscores for children in Peru
Asymmetry 0.05 0.1 0.2 0.5 0.8 0.9 0.95

Expectile -2.36 -2.06 -1.72 -1.15 -0.56 -0.23 0.08

When analyzing childhood malnutrition, it is particularly interesting to obtain co-
variates associated with the lower part of the stunting distribution since these are
especially important determinants for chronic malnutrition. At the same time, dis-
criminating between informative and uninformative covariates considerably assists in
identifying sparse and interpretable models. Our analyzes rely on the Demographic and
Health Surveys (DHS ) data set of Peru from 2012 (Instituto Nacional de Estadistica e
Informatica (INEI) Lima Peru and ICF International Calverton Maryland USA [Pro-
ducer], 2012). Using only complete cases, we obtain a data set of n = 8391 children
from the original 9620 observations.

From the original data base, we determined 21 potential covariates including (i)
characteristics of the child such as age, gender, region of living (25 districts), duration
of breastfeeding and birth order, (ii) characteristics of the mother such as age at birth,
education, height and body mass index, (iii) household information such as the house-
hold size, the education of the partner, if there had been dead children in the family
and (iv) variables related to the wealth of the family, i.e. several indicators for the
presence/absence of specific assets.

Besides the estimation of effects beyond the mean, we would like to use flexible
objects like P-splines or Gaussian Markov random fields to include nonlinear effects
of continuous covariates and spatial effects. Those could also be estimated in quantile
regression, but there it would be computationally demanding. Therefore we apply
expectile regression where we can directly make use of the tools of standard least squares
regression, thus we are computationally faster. For comparison, we also estimated a
model based on quantile boosting but the results cannot be directly compared since the
asymmetry levels of quantiles and expectiles are different. In the simulation study we
knew the underlying distribution and could therefore correct the asymmetry parameters
accordingly but this is not possible in the empirical example. Nevertheless, we applied
quantile boosting on the Peru data with asymmetry levels obtained when assuming
Gaussian distributed data. The results are in general similar to the ones of expectile
boosting and are therefore only included in the supplementary material.

As in the simulations, estimation is performed based on the LAWS criterion in com-
bination with the Schall algorithm (see Sobotka and Kneib (2012) for further details).
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Spatial information was included as a Gauss Markov random field and the continuous
covariates were included as cubic P-splines with 20 inner knots and a second order
difference penalty. In the selection, the “complete” discrimination between linear trend
and nonlinear deviation of this trend was used.

5.2 Selected models

We only discuss the results of stepwise forward 10-fold cross-validation (CV) and 10-fold
scoring with a grid of 49 asymmetry parameters. The other results (stepwise forward se-
lection with AIC, area under the AIC curve, non-negative garrote, non-negative garrote
on the grid and boosting) are summarized as tables in the supplementary material.

Table 2 summarizes the selected covariates for CV and scoring. A black box in-
dicates that the covariate is selected in the best model, while a blank signals that the
covariate was not included. Obviously, several covariates are never or almost never
included in the best model for the CV approach (e.g. bicycle, caesarian, electricity).
These covariates are also not included in the best scoring model. Thus we can conclude
that they do not have a relevant influence on the nutritional status. On the other hand,
there are several covariates which are (almost) always included in the best CV model
and also included in the scoring model (e.g. mother’s education, refrigerator, television,
region). Those covariates do have a relevant influence on the complete distribution of
the nutritional status. Furthermore, there are several covariates that are selected in
the scoring model, but only selected in some separate CV models (e.g. sex, partner’s
education). Those coefficients should then only be interpreted in the part of the distri-
bution, where they are selected. Thus the sex of a child does only have an influence on
the bottom part of the distribution, i.e. the undernourished children.

Additionally, there are covariates where no global trend is available, but a relevant
deviation from the constant zero is detected, e.g. duration of breastfeeding. This means
the influence of breastfeeding fluctuates around zero and has only a relevant size for the
upper part of the distribution. Furthermore, the availability of a TV, a refrigerator, a
motorcycle and a telephone are decisive indicators for the wealth of the family. The
occurrence of a bicycle, a radio or electricity do not seem to explain the wealth of the
family and thus the nutritional status of the child.

An advantage of interpreting the scoring approach as the area under the MWSE
curve is that weights on more interesting parts of the distribution can be applied. In a
second analysis, we applied a weight of 10 on all asymmetry parameters smaller than
0.11 to emphasize the importance of the lower part of the stunting distribution. The
resulting scoring model does only differ marginally (see Table A.7 of the supplementary
material). Here, the mother’s age has a nonlinear effect in the best model. Due to the
marginal differences, our unweighted optimal model also seems to be appropriate for
the undernourished children.

An alternative to comparing the best scoring model with the separate CV model of
all covariates would be to use the result of the scoring model and apply separate stepwise
backward CV selections on the selected covariates. Then the selected covariates of the
backward selection are treated as relevant for this part of the distribution. The result
of this approach can be seen in Table A.8 in the supplementary material. However,
the asymmetry parameters, where the covariates are excluded are very similar to the
standard CV approach.

For a final comparison we also estimated bootstrap confidence intervals for the
saturated model (Sobotka et al., 2013) and determined simultaneous confidence bands
(SCB) following a method proposed in Krivobokova et al. (2010), which originally was
designed to get simultaneous Bayesian credible intervals and is implemented in the R
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Table 2: Selected covariates for stepwise forward selection with 10-fold cross-validation
and scoring

Covariate Type 0.02 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.98 grid

birth order
caesarian
dead children
household head
household members
mother’s education
partner’s education
sex

bicycle
electricity
motorcycle
radio
refrigerator
telephone
television

breastfeeding linear
breastfeeding nonlinear
child’s age linear
child’s age nonlinear
mother’s age linear
mother’s age nonlinear
mother’s bmi linear
mother’s bmi nonlinear
mother’s height linear
mother’s height nonlinear
region GMRF

package acid (Sohn, 2016). Although the estimated confidence intervals provide more
information about the variance of the estimated effects and are not designed for model
selection (compare Burnham and Anderson, 2002), model selection was implemented by
checking which confidence bands were completely covering the zero line. The resulting
“selection” table (Table A.6 in the supplementary material) is in general similar to
the one of stepwise forward selection with 10-fold cross-validation (Table 2). However,
minor differences appear and only the nonlinear part of the child’s age is significant
using the simultaneous confidence bands, while the other nonlinear functions are not
significant.

5.3 Effects

In our analysis we first determine which covariates have a relevant influence on the
response by model selection. Besides this abstract examination, the estimated effects
also tell us the influence on the response. In Figure 5, 6 and 7 the estimated effects of
the model optimized via scoring are plotted.

The categorical covariate effects are visualized in Figure 5. Here we see that being
a female is associated with an increase of the nutritional status for the bottom part
of the distribution. Having a TV is also associated with an increase in the nutritional
status more strongly on the bottom part of the distribution. On the other side, having a
telephone has a larger influence on the upper part of the distribution. Moreover a higher
eduction of the mother always increases the zscore, but is stronger for undernourished
children. Aside from that, children in families with many members tend to have a worse
zscore. This decreases even more if they are not the first child of this mother.

For the effects of continuous covariates shown in Figure 6, we find that the mother’s
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Figure 5: Estimated coefficients of categorical covariates selected via scoring

age, bmi and height have a linear influence on the response. In addition, the estimated
effects of these three covariates are almost parallel when comparing different asym-
metry parameters such that their influence is approximately the same for all nutritional
statuses. With increasing age, height and bmi, the zscore of the child will tend to be
higher. Here the effect of bmi indicates the current nutritional status of the whole
family, while the mother’s height influence the zscore in two ways. First genetically,
since large mothers will have large children and the zscore is a linear function of the
child’s height. Secondly, if the mother did not have enough food as a child she stayed
smaller and often poor families stay poor, such that the child also does not get enough
food. The child’s age does have a strong influence on the nutritional status. Here we
see a steep decrease between ten and 18 months. Afterwards the child’s zscores are not
affected by age anymore. This steep decrease is visible for all parts of the distribution,
while it is considerably more expressed for the lower part of the stunting distribution.

Finally, the regional effects of the 5%, 50% and 95% expectile are shown in Figure 7
(for the other asymmetry parameters see Figure A.25 in the supplementary material).
For all asymmetry parameters, the regional distribution is nearly the same. Regions
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next to the Chilean border in the south and next to the capital Lima, on the middle
of the Pacific coast line, are associated with a higher nutritional status. Furthermore,
the zscore of children living in the Andes is generally found to be lower.

6 Conclusions

In this paper, we considered several approaches for model selection in semiparametric
expectile regression differentiating between the separate selection for specific asymmet-
ries and the selection of covariates for the complete response distribution. Moreover,
we allowed for the separation between linear and nonlinear effects for continuous cov-
ariates. Generally we show that model selection strongly depends on the asymmetry
parameter. Thus the joint model selection for the whole distribution may be advant-
ageous if indeed the complete distribution of the response shall be analyzed. This
approach also reduces the number of included noise covariates.

Overall, the different selection methods all have their advantages. Stepwise AIC
selection is the most intuitive method and computationally moderately fast. It is reli-
able for the selection of linear predictors. However, it selects smooth predictors rather
poorly. To the contrary, CV is restrictive in selecting linear and smooth predictors, but
it is computationally the most demanding approach. Here the non-negative garrote has
its big advantage, because it is computationally much faster. The selection properties
of the non-negative garrote are not as good as for CV, but it is a reliable alternative.
Finally, boosting is a good way for selecting linear predictors, but it is not restrictive
enough for smooth alternatives.

In summation, it is possible to decide if a spline is necessary by splitting the spline
into its linear trend and the wiggly deviation of this trend. Those terms can then
be selected separately with CV or the non-negative garrote. Again the joint selection
approaches stabilizes the performance but for the area under the AIC curve it takes
the upper bound, while for scoring and non-negative garrote on a grid the lower one.

Our example shows that our model selection approaches work for analyzes beyond
the mean with a medium number of covariates.

Besides the approach based on the mixed model decomposition of P-splines, one
could imagine further methods to check if the smooth part is necessary. So could a
variable be transformed in a sequence of basis functions on which a L1 penalty could
be applied to select those which are relevant.

A sensible model selection technique is not only necessary to control the number of
included covariates, but also overall model complexity. So far we can decide on how to
include a continuous covariate, either restricted to a linear function or flexibly modeled
by a P-spline basis. However, we find more and more spatio-temporal regression models.
While an interaction between spatial / regional information and additional information
for multiple points in time can offer a very flexible model, there is also a strong increase
in model complexity. Especially if we aim to estimate more than the mean it will be
very helpful to have a reliable measure to decide on additional model complexity.
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