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Abstract
Diese Arbeit behandelt die Herausforderung der Identifizierung von Elektronen, die mit
Jets überlappen. Kontext ist die Suche nach resonanter Higgs-Boson-Paarproduktion am
Atlas Experiment, wobei der "boosted" X → HH → bb̄WW ∗ 1-Lepton-Kanal betra-
chtet wird.
Ein neuronales Netzwerk mit sechs Hidden Layers, ReLU Aktivierung, L2 Regularisierung
und Batch Normalisierung wurde entwickelt, um die Identifizierungsgenauigkeit in von
Elektronen in Jets zu verbessern. Das Modell wurde mit dem Adam-Optimierer und der
categorical Cross-Entropy Verlustfunktion trainiert und nutzte EarlyStopping und Mech-
anismen zur Reduzierung der Lernrate.
Das trainierte Netzwerk erreichte eine hohe Genauigkeit von 0,9718 und einen Verlust von
0,1353 nach 54 Epochen, mit einer AUC von 0,9918 für sowohl Signal- als auch Hinter-
grundklassen. Die Konfusionsmatrix zeigte eine hohe Genauigkeit bei der Unterscheidung
von Signal- (99,98%) und Hintergrundklassen (94,38%), was die Robustheit des Modells
bei der Unterscheidung von Jets, die prompte Elektronen enthalten, und anderen Jets
und Leptonen bestätigt.

Stichwörter: Higgs-Boson, resonante Higgs-Paarproduktion, HHbbVV, Neuronale
Netze

Abstract
This work addresses the challenge of identifying electrons that overlap with jets. The
context is the search for resonant Higgs boson pair production at the Atlas experiment,
where the boosted X → HH → bb̄WW ∗ 1-lepton channel is considered.
A neural network with six hidden layers, ReLU activation, L2 regularisation and batch
normalisation was developed to improve the identification accuracy of electrons in jets.
The model was trained with the Adam optimiser and the categorical cross-entropy loss
function and used early stopping and learning rate reduction mechanisms.
The trained network achieved a high accuracy of 0.9718 and a loss of 0.1353 after 54
epochs, with an AUC of 0.9918 for both signal and background classes. The confusion
matrix showed high accuracy in discriminating signal (99.98%) and background classes
(94.38%), confirming the robustness of the model in discriminating jets containing prompt
electrons and other jets and leptons.
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1. Introduction

Understanding the universe has always been a profound quest for humanity, particularly
for physicists. The Standard Model (SM) of particle physics [1–5] represents a major mile-
stone in this pursuit, offering a comprehensive framework that clarifies the interactions
and properties of elementary particles.
The discovery of the Higgs boson in 2012 by the Atlas and Cms experiments at the Large
Hadron Collider (Lhc) [6, 7] was a groundbreaking achievement, affirming the validity
of the SM. In the realm of particle physics, the Higgs boson is not just another particle;
it is a cornerstone of our understanding of the universe. The Higgs boson is intimately
connected with the Higgs field, an energy field that pervades the entire universe [8]. As
particles interact with this field, they acquire mass [9]. Without the Higgs field and the
Higgs boson, particles would move at the speed of light, making the formation of stars,
planets, and life as we know it impossible.
A promising method for testing the SM description of Higgs physics is through the study
of Higgs boson pair production. While the SM predicts non-resonant pair production,
theories beyond the SM (BSM) also predict resonant production, where a heavy scalar
particle X decays into two Higgs bosons. This type of resonant production serves as a
direct probe for new physics. Since the SM does not include any particles heavy enough
to decay into two Higgs bosons, observing such resonant production would signal the
presence of new particles or interactions [10].
At very high resonant masses (mX ≳ 2 TeV), the topology of the Higgs pair production
becomes boosted, resulting in collimated decay products. One possible final state is the
bb̄WW ∗. In these scenarios, the decay products of the Higgs boson (H → bb̄) and the
hadronically decaying W boson (Whad) are often reconstructed as a single jet due to the
limitations of detector resolution. Additionally, the lepton from the leptonically decaying
W boson may overlap with the Whad jet, complicating the reconstruction process [11].
In high-energy environments, it is particularly difficult to distinguish individual particles.
This challenge is especially pronounced for electrons compared to muons, which benefit
from the muon spectrometer designed to track them more accurately.
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1. Introduction

This thesis focuses on the challenge of identifying electrons that overlap with jets in the
search for boosted X → HH → bb̄WW ∗ in the 1-lepton channel at the Atlas experi-
ment. The study employs neural networks to enhance both the precision and effectiveness
of the identification process.
The structure of the thesis is as follows: Chapter 2 discusses the fundamentals of particle
physics, including the Standard Model, the Higgs mechanism, and the properties of the
Higgs boson. Chapter 3 describes the Large Hadron Collider and the Atlas detector.
Chapter 4 provides an overview of neural networks, detailing various types, training tech-
niques, and optimization methods. Chapter 5 focuses on the identification of electrons in
jets in the boosted X → HH → bb̄WW ∗ 1-lepton analyses, addressing object reconstruc-
tion and the application of neural networks for classification. Finally, Chapter 6 presents
the conclusion and an outlook on future research.
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2. Fundamentals of Particle Physics

2.1. The Standard Model

The Standard Model (SM) of particle physics provides a comprehensive framework for un-
derstanding the fundamental particles and their interactions [12]. It categorizes elemen-
tary particles into fermions and bosons, each with specific roles and characteristics. Figure
2.1 illustrates the arrangement and classification of these particles within the model.
Twelve of the particles in the SM are fermions. They have a spin of 1

2 and build up
matter. They are further characterized by their mass, charge, colour and weak isospin.
Depending on these characteristics, they couple electromagnetically, weakly, strongly and
to the Higgs field. They are divided into three generations with equal charge, colour and
isospin but with different masses. Each generation contains quarks and leptons. Quarks
are either up-type (charge of +2

3e) or down-type (charge of −1
3e) and carry colour charge,

necessary to interact strongly.
Leptons do not interact via the strong force and have an integer charge. They are either
charged (±1e) or neutral (neutrinos). The first generation of leptons are the electron (e)
and the electron neutrino (νe). The second generation consists of the muon (µ) and the
muon neutrino (νµ). The third generation consists of the tau (τ) and the tau neutrino
(ντ ). Leptons become heavier with each generation as well. Neutrinos are basically mass-
less.
Gauge bosons (vector bosons) are the last group of particles of the SM. They mediate the
fundamental forces. The four known forces of nature are the strong force, the electromag-
netic force, the weak force and gravity. However, gravity has no effect in particle physics
because it is too weak. There are five gauge bosons in total. The massless gauge boson
for the strong force is the gluon (g), and for the electromagnetic force it is the photon
(γ). The weak force has three gauge bosons: two charged bosons (W +/W −) with a mass
of about 80.4 GeV and a neutral Z0 boson with a mass of 91.2 GeV [12].
The final boson in the SM is the scalar Higgs boson. More detailed information can be
found in Sections 2.3 and 2.4.
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2. Fundamentals of Particle Physics

Figure 2.1.: Standard Model of Elemantary Particles with fermions (quarks and lep-
tons) and bosons [13]

The SM does not explain several crucial phenomena, including gravity, dark matter and
dark energy [14]. It also fails to explain the observed matter-antimatter asymmetry in
the universe [15] and the existence of neutrino masses [16]. These and other limitations
suggest the presence of new physics beyond the SM (BSM) [17].

2.2. The Higgs mechanism

The Higgs mechanism, first described by Peter Higgs in 1964, François Englert and Robert
Brout in 1964, and independently by Tom W. B. Kibble, Carl R. Hagen, and Gerald
Guralnik in 1968 [8, 18, 19], explains how particles acquire mass while preserving gauge
symmetries. Generally, mass terms in the Lagrangian conflict with gauge invariance,
necessitating the introduction of a field known as the Higgs field. This field permeates
all of space and has a non-vanishing vacuum expectation value [8]. Massive particles
interact with the Higgs field, which imparts mass to them. The extent of this interaction
determines the mass of the particle: particles that interact strongly with the Higgs field
have higher masses, while those that do not, such as the photon, remain massless. The
Higgs field is represented by a potential function, which is given by Formula 2.1 and
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2.3. Higgs boson properties

illustrated in Figure 2.2 [8, 18, 19].

V (ϕ) = µ2(ϕ†ϕ) + λ(ϕ†ϕ)2 (2.1)

with

ϕ = 1√
2

ϕ1 + iϕ2

ϕ3 + iϕ4

 (2.2)

Figure 2.2.: V (ϕ) potential for a complex scalar field with µ2 < 0 and λ > 0 [20]

After electroweak symmetry breaking, three degrees of freedom are absorbed by the masses
of the W and Z bosons, while the photon remains massless, thereby preserving electro-
magnetic symmetry. Additionally, it explains the mass of fermions, such as electrons,
through interactions described by Yukawa coupling. The presence of the Higgs boson is a
consequence of the Higgs mechanism, as the Higgs field itself cannot be measured directly.

2.3. Higgs boson properties

The Higgs boson was discovered in 2012 by the Atlas and Cms experiments at the Large
Hadron Collider (Lhc) at CERN [6, 7]. It has a spin of 0 and is one of the heaviest par-
ticles with a mass of mH = 125.09 ± 0.21(stat) ± 0.11(syst) GeV [21].
The Higgs boson can be produced through several distinct mechanisms at the Lhc. These
include gluon-gluon fusion (ggF), vector boson fusion (VBF), vector boson to Higgs
(V ∗ → V H) associated production, and top-antitop pair production associated with
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2. Fundamentals of Particle Physics

a Higgs boson (tt̄H). The lowest-order Feynman diagrams for each of these production
processes are illustrated in Figure 2.3.
The production cross sections for pp collisions at a center-of-mass energy of

√
s = 13 TeV

are shown in Figure 2.4(a) as a function of the Higgs boson mass mH . The Higgs boson
decays into different particles due to its instability. The branching ratios of the Higgs
boson are depicted in Figure 2.4(b) as a function of mH . Both figures illustrate how these
quantities vary with mH .
The most frequent production mechanism involves the creation of a Higgs boson due to a
ggF. The next most common production cross section, which is approximately an order of
magnitude lower, is VBF. Once produced, the Higgs boson decays rapidly due to its large
mass. The branching ratios indicate that the most dominant decay modes are H → bb̄

and H → WW , followed by H → gg and H → ττ .

(a) ggF (b) VBF

(c) VH (d) tt̄H

Figure 2.3.: Lowest order Feynman diagrams for the production of Higgs bosons at the
Lhc. (a) gluon-gluon fusion (ggF), (b) vector boson fusion (VBF), (c) VH
production, and (d) tt̄H production [11]

2.4. Higgs boson pair production

In addition to single Higgs boson production shown in Figure 2.3, pairs of Higgs bosons
can be produced at the Lhc. In the SM, such pair production can only occur in a
non-resonant mode. However, BSM theories allow for Higgs boson pairs to be produced
resonantly by introducing a heavy particle X that can decay into Higgs bosons. Such
a heavy scalar is introduced for example in two-Higgs-doublet models, where a second
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2.4. Higgs boson pair production
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(a) Production cross section (b) Branching ratio of the Higgs boson

Figure 2.4.: Lhc production cross section for pp collisions at a center-of-mass energy
of

√
s = 13 TeV, measured in pb, and the branching ratio of the Higgs

boson, both as functions of the Higgs boson mass. The precision of the
calculations is indicated in parentheses [22].

scalar doublet is added to the SM [23] and the two real singlet model (TRSM), where
new scalar bosons like X and S can be produced [24]. These models do not specify the
masses of these new particles, so searches must explore a wide mass range.
Higgs boson pair production can occur through several mechanisms: self-coupling of Higgs
bosons or interactions with the top quark Yukawa coupling as predicted in the SM, within
BSM frameworks, it can occur through the mediation of a new heavy scalar particle X.
Figure 2.5 illustrates the Feynman diagrams corresponding to these mechanisms of Higgs
pair production.

(a) Higgs self-coupling (SM) (b) top Yukawa-coupling
(SM)

(c) resonant Higgs boson pair
production via heavy scalar X
(BSM)

Figure 2.5.: Feynman diagrams of Higgs pair production [11]
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2. Fundamentals of Particle Physics

Figure 2.6 shows the branching ratios for the decay of two Higgs bosons. The most
common decay modes are either both Higgs bosons decaying into two bottom quarks
each (34%) or one Higgs boson decaying into two bottom quarks and the other into two
W bosons (25%). The W bosons themselves can decay in various ways, with the most
frequent mode being into two quarks, although they can also decay into a lepton and its
neutrino.
For this thesis only the bb̄WW ∗ decay channel is relevant.

bb WW ττ ZZ γγ
bb 34%

WW 25% 4.6%
ττ 7.3% 2.7% 0.39%
ZZ 3.1% 1.1% 0.33% 0.07%
γγ 0.26% 0.1% 0.02% 0.01% < 0.001%

Figure 2.6.: Branching ratios of a Higgs boson pair with mH = 125 GeV at the Lhc
[22]
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3. The Large Hadron Collider and
Atlas Detector

This chapter gives an overview of the Large Hadron Collider in Section 3.1 and describes
the Atlas Detector in Section 3.2.

3.1. The Large Hadron Collider

Figure 3.1.: Schematic of the full accelerator complex of the Cern [25]

The Large Hadron Collider, also known as Lhc, is a circular synchrotron accelerator with
a circumference of 27 km. It is based at the European Organisation for Nuclear Research
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3. The Large Hadron Collider and Atlas Detector

(Cern) in Geneva, Switzerland [26]. The Lhc is designed as a proton-proton as well
as a heavy ion collider, with a current pp-collision centre-of-mass energy of 13.6 TeV.
It is used to study particles of the Standard Model (SM) and to search for particles and
interactions beyond the SM. It was built in the old Large Electron-Positron collider (Lep)
tunnel, making it the world’s largest collider.
To achieve such high energies, the protons are subjected to a series of acceleration stages
(shown in Figure 3.1). The process commences with the Linear Accelerator 4 (LINAC4),
where negative hydrogen ions are accelerated to about 160 MeV [27]. These ions are then
transferred to the Proton Synchrotron Booster (PSB), which strips away the electrons,
leaving only the protons. These protons are then further accelerated to 2 GeV and passed
to the Proton Synchrotron (PS). In the PS, protons achieve energies of 26 GeV before
being injected into the Super Proton Synchrotron (SPS), which propels the protons to
energies of 250 GeV. Subsequently, the protons are transferred to the Lhc to reach their
final energy. At this stage, the protons are travelling at velocities close to the speed of
light.
The Lhc accelerates two proton beams in opposite directions. The dipole magnets, which
are used to guide the protons along a circular path, require field strengths of B = 8 T.
To achieve this, the magnets are superconducting and must be cooled down to 2 K. The
beams are focused using quadrupole and higher order multipole magnets. The protons
traverse the accelerator in bunches, with each bunch containing 1.15 × 1011 protons.
Bunches follow one another at time intervals of 25 ns. Collisions occur at a rate of
40 MHz. Each time the two beams intersect, numerous interactions take place. For Run-
3, there are, on average, 46.5 interactions per bunch crossing.
The luminosity delivered by the Lhc can be determined from the frequency of bunch
crossings f , the particle number per bunch in both beams N1 N2, the number of bunches
nb, and other variables such as the transverse beam dimension σx/y,i and a reduction factor
S:

L = N1N2nbfS

2π
√

σ2
x,1 + σ2

x,2

√
σ2

y,1 + σ2
y,2

. (3.1)

During operation, the proton beams lose protons due to collisions and beam losses. After
approximately 15 h, the beams are discarded and new beams are generated.
The collision data of the Lhc is collected at four main experiments: Atlas [28], Cms
[29], Alice [30] and Lhcb [31]. Atlas and Cms are the two largest experiments with
multipurpose detectors focusing on precise measurements and the search for Beyond Stan-
dard Model (BSM) physics. Alice and Lhcb are more specialized. Alice focuses on
lead-lead collisions, simulating the state of the universe shortly after the Big Bang while
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3.2. The Atlas Detector

Lhcb specializes in b-physics.
The Lhc does not operate continuously. There are long shutdown periods between run
periods during which the machine undergoes maintenance and upgrades are installed. The
first run of Lhc (Run 1) happened between 2010 and 2013 with a centre-of-mass energy
between

√
s = 7 and 8 TeV. For Run 2 (2015-2018), the Lhc was upgraded and a energy

of
√

s = 13 TeV was reached. After Run 2 the Lhc was upgraded again. The Lhc Run 3
started again with

√
s = 13.6 TeV in 2022 and is supposed to end in 2025. After another

upgrade phase, the High-Luminosity Large Hadron Collider (HL-Lhc) will be operated,
supposingly delivering an integrated luminosity of 3000 fb−1 in Run 4 [32].
This thesis uses data from Run 3.

3.2. The Atlas Detector

The Atlas (A Toroidal LHC ApparatuS) detector is the largest particle detector at the
Lhc with a length of 44 m and a diameter of 25 m [28]. It weighs 7000 t and has a
cylindrical shape with the beam axis corresponding to its symmetry axis. The detector
covers almost the full solid angle and is a general-purpose detector, comprising several
detector layers each with different tasks. Figure 3.2 shows a schematic illustration of the
Atlas detector.

Figure 3.2.: Schematic illustration of the Atlas detector [33]

The Atlas experiment at the Lhc is designed to measure a wide range of particles from
proton-proton as well as heavy ion collisions. It consists of several sub-detectors: the
inner detector (ID), the calorimeters (CAL), and the muon spectrometer (MS). They are
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3. The Large Hadron Collider and Atlas Detector

arranged cylindrically around the proton beam. This arrangement ensures comprehensive
coverage across the full azimuthal range and a pseudorapidity of |η| < 4.9. The Atlas
experiment at the Lhc uses a right-handed coordinate system, with the x-axis pointing
towards the center of the Lhc, the y-axis pointing upwards, and the z-axis aligned along
the beam direction. In this system, the polar angle θ is commonly expressed as pseu-
dorapidity η = − ln tan(θ/2), which provides a Lorentz-invariant measure of the angle
relative to the beam axis. Differences in pseudorapidity, ∆η, are invariant under boosts
along the z-axis in the relativistic limit, making them useful for particle identification
and separation. The spatial separation between two particles in the detector is quantified
using ∆R =

√
(∆η)2 + (∆ϕ)2, where ∆ϕ is the difference in azimuthal angle.

The Inner Detector (ID), situated closest to the beam pipe, is designed for precise tracking
of charged particles. It consists of the pixel detector, the Semiconductor Tracker (SCT),
and the Transition Radiation Tracker (TRT). It is situated within a magnetic field (2 T)
aligned with the beam axis. The magnetic field causes charged particles’ tracks to bend
according to their charge and momentum. The ID tracks these particles, with spatial
resolution decreasing with distance from the interaction point. The detector is designed
to achieve a transverse momentum resolution of σpT

/pT = 0.05% pT [GeV] ⊕ 1%, and a
transverse impact parameter resolution of 10 µm for high-energy particles in the central η

region. The pixel detector provides 3D information, while the SCT offers 2D information,
both covering a pseudorapidity range of |∆η| < 2.5. The TRT, used for electron iden-
tification, covers |∆η| < 2. To mitigate radiation damage, the ID is cooled to between
−5 and −10 ◦C. The ID offers high precision in both R − ϕ and z coordinates, enhances
electron identification, and aids in heavy-flavour and τ -lepton tagging [28].
After traversing the Inner Detector (ID), particles enter the calorimeter system of the
Atlas experiment, which is designed to measure their energy. The calorimeter system
is divided into two main components: the Electromagnetic Calorimeter (ECAL) and the
Hadronic Calorimeter (HCAL).
The ECAL, which is crucial for measuring the energy of electrons, positrons, and pho-
tons, surrounds the HCAL. The HCAL is primarily responsible for measuring the energy
of hadrons. This arrangement ensures accurate energy measurements across a broad range
of particles. The energy resolution for the ECAL is given by:

σE

E
= 10%√

E
⊕ 0.7%

where E is the energy in GeV for electromagnetic showers. For the HCAL, the energy
resolution for hadronic showers varies by region. Specifically:
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3.2. The Atlas Detector

• Barrel and End-Cap Regions:

σE

E
= 50%√

E
⊕ 3%

• Forward Region:
σE

E
= 100%√

E
⊕ 10%

In these formulas, σE represents the energy resolution, E is the energy in GeV, and the
⊕ symbol denotes the addition in quadrature of constant terms.
The Atlas calorimeter system includes two barrel calorimeters and two end-cap calorime-
ters, designed to cover a broad pseudorapidity range. It utilizes alternating layers of
passive and active materials to measure energy effectively, accommodating both electro-
magnetic and hadronic showers.
Precision measurements of electrons and photons are achieved through the ECAL, which
plays a crucial role in detecting these particles. On the other hand, the HCAL, which con-
sists of the Tile Calorimeter (TileCal) and the Liquid Argon Hadronic End-cap Calorime-
ter (LAr HEC), is essential for accurate jet reconstruction.
The Atlas TileCal is a sampling calorimeter that measures the energy of jets and tau
leptons. It contributes to the Level 1 trigger system and consists of steel absorbers and
scintillating tiles, covering |η| < 1.7 with approximately 10,000 readout channels. A com-
prehensive calibration system ensures high data quality [34].
The LAr HEC, which covers up to |η| = 4.9, consists of several sub-detectors including the
Electromagnetic Barrel (EMB), Electromagnetic EndCaps (EMEC), Hadronic EndCaps
(HEC), and Forward Calorimeters (FCal). These sub-detectors are maintained at 88 K
in cryostats to keep the Liquid Argon in its liquid state [35].
Calorimeters must effectively contain electromagnetic and hadronic showers. Therefore,
their depth is crucial. The total thickness of the Atlas ECAL is more than 22 radiation
lengths (X0) in the barrel and more than 24 X0 in the end-caps. The HCAL has a thick-
ness of approximately 10 interaction lengths (λ) [28].
Muons (µ) are minimal ionizing particles that are tracked by the Inner Detector (ID) but
typically pass through the calorimeters without being fully absorbed due to their high
momenta. To achieve accurate muon measurements, especially for those that escape the
calorimeters, the Atlas experiment incorporates an additional tracking detector: the
Muon Spectrometer (MS). As the outermost detector in the Atlas setup, the MS is
specifically designed to detect and measure these high-energy muons. It employs gas-
filled drift chambers within magnetic fields of 0.5 T (barrel) and 1 T (end-cap) to ensure
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precise muon tracking and momentum measurement. The MS uses three large air-core su-
perconducting toroidal magnets to generate a magnetic field of approximately 0.5 T, with
separate high-precision tracking and trigger chambers. Monitored Drift Tubes (MDTs)
and Cathode Strip Chambers (CSCs) provide precision tracking up to |η| < 2.7, while Re-
sistive Plate Chambers (RPCs) and Thin Gap Chambers (TGCs) are used for triggering
in the barrel and endcap regions, respectively, with momentum resolution better than 4%
for most transverse momenta [28, 36]. The Atlas MS is organized into various chamber
layers and sectors, featuring different types of chambers and wheels.
All these sub-detectors of the Atlas detector produce an overwhelming amount of data,
with a recording of up to 3 kHz and a bunch crossing rate of approximately 40 MHz. Most
interactions are at low energy scales and not of significant interest, necessitating a real-
time filtering system to store only pertinent events. To accomplish this, Atlas employs a
two-stage trigger system [37]. The Atlas trigger system, consisting of a hardware-based
Level-1 (L1) trigger and a software-based High-Level Trigger (HLT), reduces the event
rate from 40 MHz to approximately 100 kHz at L1 and further down to 1,000 events per
second at the HLT, which uses advanced algorithms on Regions of Interest identified by
L1 triggers [38]. Significant upgrades during LS2 enhanced the system’s capabilities for
Run 3, with the introduction of new features like FPGA-based extractors for improved
granularity in calorimeter-triggered events and upgrades to the muon trigger system.
Neutrinos do not interact with the detector material and thus remain undetected. In-
stead, their presence is inferred from the missing transverse energy, which is the energy
required to ensure energy conservation in the plane perpendicular to the beam axis.

14



4. Fundamentals of Neural Networks

In this chapter, the fundamentals of neural networks are discussed. Over the past few
decades, neural networks have emerged as powerful tools across a wide range of applica-
tions, from image processing and natural language processing to complex scientific anal-
yses. Their ability to recognize and learn patterns in large and complex datasets makes
them particularly valuable for physical research. In this thesis neural networks are used
to identify electrons that overlap with jets in the boosted X → HH → bb̄WW ∗ 1-lepton
channel.

4.1. Perceptron

The idea of the perceptron was introduced by Frank Rosenblatt in 1958 [39] to mimic
the neural structure of the human brain [40]. It is known as the first single-layer neural
network and it serves as their foundation. A perceptron can solve linearly separable prob-
lems by calculating a weighted sum of inputs plus a bias, which is fed into an activation
function to produce a binary output. Each input node has therefore an individual weight.
Figure 4.1 shows a diagram of a perceptron.
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Figure 4.1.: Diagram of a Perceptron showing a weighted sum of inputs creating a
binary output y. It consists of the inputs x, their weights w, a bias b, and
an activation function f : y = f(wT x + b) ∈ {0, 1}

4.1.1. Multi-Layer Perceptron

The extended version of the perceptron is the Multi-Layer perceptron (MLP) also known
as Neural Network. The MLP consists of multiple layers: an input layer, one or more
hidden layer(s) and an output layer. The number of hidden nodes (z) and layers varies
based on the problem’s complexity. Typically, it is better to have too many hidden units
in a model than too few. If the model has too few hidden units, it may not have the
flexibility to capture the nonlinearities in the data. On the other hand, if there are too
many hidden units, the extra weights can be minimized toward zero using proper regu-
larization. The number of hidden units generally ranges from 5 to 100, increasing with
the number of inputs and training cases.
It is a common strategy to start with a large number of units and apply regularization
during training. The number of hidden layers is determined by prior knowledge and ex-
perimentation. Each layer plays a role in extracting features from the input for regression
or classification tasks. The use of multiple hidden layers enables the creation of hier-
archical features at various levels of resolution [40]. A MLP is able to solve non-linear
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problems and each unit of a hidden layer is a perceptron as in Figure 4.1. A MLP is a
fully connected network. This means that each node is connected to every node in the
subsequent layer. Figure 4.2 shows a diagram of a MLP with one hidden layer.
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Figure 4.2.: Diagram of a Multi-Layer Perceptron showing an input layer x, hidden
layer(s) z and the output layer y. Each unit zm of the hidden layer is a
perceptron: zm = h(Wmx + bm)

4.2. Types of Neural Networks

In the field of neural networks, there is a wide variety of types. The simplest and most
commonly used network type is the Feedforward neural network (FNN). FNNs are a type
of artificial neural networks (NN) where connections between units do not form cycles.
They’re referred to as "feedforward" because information moves in only one direction -
forward. It starts at the input nodes, passes through any hidden nodes, and finally reaches
the output nodes. There are two main types of Feedforward NNs: single layer FNN and
multi-layer FNN [41]. The key difference is that an MLP is a specific type of FNN where
each layer is fully connected. In some definitions, the number of nodes in each layer is
equal.
Deep Neural Networks (DNNs) are NNs with at least two hidden layers. The field also
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includes more advanced forms such as Recurrent Neural Networks (RNNs) [41] and Con-
volutional Neural Networks (CNNs) [42] but these are not covered in this thesis.

4.3. Training and Optimization

Training neural networks requires considerable skill. These models are often overparame-
terized, and the optimization problem is non-convex (meaning it has multiple valleys and
peaks) and unstable unless certain best practices are followed [40]. The goal of training
is to enhance model accuracy and reduce loss.

4.3.1. Activation and Loss Functions

Key aspects include the activation and loss functions of the neural network. Activation
functions play a crucial role in artificial neural networks because they convert a neuron’s
input signal into an output signal that is passed on to the next layer. These functions de-
termine a neuron’s output based on the weighted sum of its inputs and their corresponding
weights and ensure this output is fed forward to subsequent layers in the network. The
choice of activation function is crucial, as it influences the network’s ability to learn and
represent complex data.
Linear activation functions, while simple, are limited in their ability to capture complex
patterns resulting in the neural network behaving like a linear regression model, which
often lacks the capability to handle complex tasks [43].
Non-linear activation functions are essential in deep learning because they enable the net-
work to model intricate relationships and adapt to diverse data types, including images,
audio and text. This non-linearity is crucial for processing high-dimensional, non-linear
datasets with multiple hidden layers and complex architectures. Unlike simple linear mod-
els, non-linear activation functions allow the network to approximate complex mappings
between inputs and outputs. Additionally, these functions must be differentiable to sup-
port backpropagation (see chapter 4.3.2 for a detailed explanation), which optimizes the
network’s weights by minimizing errors through gradient descent or other optimization
techniques [43]. Figure 4.3 illustrates some of the most common activation functions,
which will be discussed in more detail in the following. The ranges of the axes have been
chosen so that all features are clearly visible.
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There is the non-linear sigmoid activation function:

σ = 1
1 + e−x

. (4.1)

It is the most widely used activation function and transforms values to the range of 0 to 1,
with a turning point at x = 0 [43].
Another popular activation function is ReLU, which stands for Rectified Linear Unit. It
is a non-linear activation function used in neural networks. One of its key advantages
is that it prevents all neurons from being activated simultaneously. Instead, a neuron
activates only when the output of the linear transformation is positive. Mathematically,
ReLU is defined as:

f(x) = max(0, x). (4.2)

ReLU is more efficient compared to other activation functions because it activates only a
subset of neurons at any given time, reducing computational complexity. However, it can
encounter issues where the gradient is zero, causing weights and biases to not be updated
during the backpropagation phase of neural network training [43].
The softmax activation function is an extension of the sigmoid function, for multi-class
classification problems. It converts the outputs of a network into probabilities that sum
to 1 across all possible classes, making it ideal for scenarios where each data point must
be classified into one of several categories. Mathematically, the softmax function for a
given data point can be expressed as:

Softmax(x)i = exi∑
j exj

, (4.3)

where xi is the output for class i, and the denominator is the sum of the exponential
functions of all class outputs. This normalization ensures that the output values repre-
sents a probability distribution over the classes. When building a model for multi-class
classification, the output layer of the network will have a number of neurons equal to the
number of classes, and the softmax function is applied to these outputs to obtain the final
class probabilities [43].
Other functions used in machine learning are the loss functions. They are essential because
they measure how much the predicted outputs of a model deviate from the actual target
values. During training, they offer a metric to evaluate model performance and guide
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Figure 4.3.: Different activation functions: Sigmoid, ReLU and Softmax

the learning algorithm to adjust the model’s parameters, reducing errors and enhancing
predictions. By balancing bias and variance, effective loss functions ensure the model can
generalize effectively to new, unseen data [40].
There are many different loss functions for machine learning, such as mean squared error
or mean absolute error. Cross entropy (CE) is a widely used loss function for classification
tasks in neural networks. Originating from adaptive algorithms designed for estimating
probabilities in complex stochastic networks, CE has proven effective for combinatorial
optimization problems. In deep learning, CE serves as a fundamental loss function for
both binary and multi-class classification problems [44]. The CE loss for a classification
task is mathematically defined as:

CE(j, p) = −
∑

j

gj log(pj) (4.4)

where gj represents the discrete ground-truth label for class j, and pj is the predicted
probability of class j. In multi-class classification, the predicted probabilities pj are typi-
cally obtained from a softmax layer. This formulation results in the softmax cross entropy
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loss, also known as categorical cross entropy loss. For binary classification, probabilities
are often generated using a sigmoid layer leading to the sigmoid cross entropy loss, also
known as binary cross entropy loss. In practice, CE is preferred for classification tasks
because it directly measures the discrepancy between the predicted probabilities and the
true labels, leading to more stable and effective training results [44].

4.3.2. Gradient Descent and Backpropagation

Gradient Descent is an optimization algorithm that aims to minimize an objective function
J(θ) parameterized by θ ∈ Rd. It updates the parameters in the opposite direction of
the gradient of the objective function ∇θJ(θ). The step size towards the minimum is
determined by the learning rate η. The process involves moving in the direction of the
gradient of the objective function’s surface until reaching a local minimum [45].
There are three variants of gradient descent. Depending on the amount of data, a trade-off
is made between the accuracy of the parameter update and the time it takes to perform
an update. Batch gradient descent, also known as vanilla gradient descent, computes
the gradient of the loss function with respect to the parameters θ for the entire training
dataset:

θ = θ − η · ∇θJ(θ) (4.5)

Batch gradient descent can be slow and impractical for large datasets, as it requires com-
puting the gradient vector for the entire dataset before each update, leading to redundant
calculations. This approach also prevents online updates, delaying model adjustments
until the full dataset is processed. Parameters are updated in the direction of the gradi-
ents, with the learning rate determining the size of the update. Batch gradient descent
is guaranteed to converge to the global minimum for convex error surfaces and to a local
minimum for non-convex surfaces [45].
Stochastic gradient descent (SGD) performs a parameter update for each training example
x(i) and outcome y(i):

θ = θ − η · ∇θJ(θ; x(i); y(i)) (4.6)

SGD avoids this redundancy by performing one update per example, which is usually
much faster and can support online learning. However, SGD’s frequent updates with
high variance can cause the objective function to fluctuate heavily, which can complicate
convergence to the exact minimum. It has been shown that decreasing the learning rate
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over time allows SGD to converge to the same point as batch gradient descent [45].
Mini-batch gradient descent combines the advantages of both batch and stochastic gradi-
ent descent by performing an update for every mini-batch of n training examples:

θ = θ − η · ∇θJ(θ; x(i:i+n); y(i:i+n)). (4.7)

This approach reduces the variance in parameter updates, leading to more stable conver-
gence, and can make use of highly optimized matrix operations common in state-of-the-art
deep learning libraries. Common mini-batch sizes range between 50 and 256 training ex-
amples, but can vary for different applications. Mini-batch gradient descent is typically
the algorithm of choice when training a neural network, and the term SGD is often used
to refer to mini-batch gradient descent as well [45].
The Backpropagation algorithm is essential for training multilayer neural networks. It
uses Gradient Descent to minimize the error function by adjusting the network weights.
The Backpropagation algorithm consists of two phases: feed-forward and backpropaga-
tion. In the feed-forward phase, the input x is fed into the network, and the primitive
functions at the nodes and their derivatives are evaluated and stored. In the backpropa-
gation phase, the error signal is propagated back through the network, starting from the
output unit. During this process, the gradients of the network function with respect to
the weights are calculated using the chain rule. The collected result at the input unit
gives the derivative of the network function with respect to the input x.
The error function E(w) measures the number of false classifications made by a perceptron
and is defined as:

E(w) =
∑
x∈A

(1 − fw(x)) +
∑
x∈B

fw(x), (4.8)

Here, A and B are sets of input vectors in n-dimensional space that need to be separated.
The binary function fw is defined such that fw(x) = 1 for x ∈ A and fw(x) = 0 for x ∈ B.
The function fw depends on the weight vector w and a threshold. The goal of perceptron
learning is to minimize the error function E(w), which is always non-negative, aiming to
reach the global minimum where E(w) = 0. This is achieved by starting with a random
weight vector w and iteratively searching for a better alternative to reduce E(w) at each
step.
During the feed-forward step, the output of each unit is stored. In the backpropagation
step, the gradient of E with respect to each weight wij is computed. The weight update
is given by ∆wij = −γoiδj, where oi is the output of unit i and δj is the backpropagated
error at node j. This process transforms the backpropagation algorithm into a learning
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method for neural networks [46].

Gradient Problems

In the training process, monitoring the gradients of different parameters is essential, as
issues can become evident through the Gradient Descent. There are two main types of
gradient issues: vanishing gradients and exploding gradients.
The vanishing gradient problem occurs during backpropagation in deep neural networks,
where gradients become progressively smaller as they propagate backward through lay-
ers, especially with sigmoid activation functions, whose derivatives can approach zero in
saturated regions. As a result, weight updates in earlier layers become negligible, leading
to very slow training or halted progress. This issue is less severe in shallow networks
but critical in deeper ones, where small gradients decay and hinder model training. The
problem can be identified by observing stagnation in model weights, minimal perfor-
mance improvements, or erratic loss function behavior during training. To address this,
techniques like batch normalization, ReLU activation functions, skip connections, Long
Short-Term Memory (LSTM) or Gated Recurrent Units (GRUs) architectures [47], and
gradient clipping can stabilize gradients and improve training stability. Gradient clipping
limits gradient size, while batch normalization scales activations to enhance training effi-
ciency [48].
The exploding gradient problem arises in deep neural networks when gradients of the
loss function with respect to the weights become excessively large during backpropaga-
tion. Exploding gradients are typically caused by high weight values, leading to large
derivatives and substantial deviations in weight updates. This can cause the network to
oscillate around local minima, making it difficult to converge to a global minimum. Key
indicators of exploding gradients include erratic behavior of the loss function, encounter-
ing non-numeric values in calculations, and rapid increases in weight values. Tools like
TensorBoard [49] can help visualize gradients and detect the problem. To address explod-
ing gradients, techniques such as gradient clipping and batch normalization are commonly
used.

4.3.3. Optimization techniques

Optimization is crucial for developing accurate and efficient neural network models. It
involves fine-tuning model parameters to enhance performance and achieve optimal re-
sults. The goal is to find the best configuration that enables the model to learn from
data and make accurate predictions. As neural networks are used in increasingly complex
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applications, effective optimization strategies are essential to realizing their full potential
and delivering high-quality results.

Hyperparameters

Hyperparameters are parameters that are set before training and cannot be adjusted
during training, such as the number of hidden layers, learning rate, and batch size. These
parameters significantly impact the efficiency and accuracy of model training and must be
carefully configured. Since manual tuning of hyperparameters is labor-intensive and relies
on experience, automated hyperparameter optimization (HPO) is proposed as a solution.
HPO aims to minimize human effort while improving training accuracy and efficiency [50].

Optimizer

Optimizers play a crucial role in enhancing the accuracy and speed of training neural
networks. They adjust the model’s weights based on gradients to minimize the loss func-
tion. Key hyperparameters associated with optimizers include the choice of optimizer,
mini-batch size, momentum, and learning rate. SGD with momentum accelerates con-
vergence by incorporating momentum into the weight updates. This method calculates
an exponentially weighted average of past gradients, smoothing the update process. The
momentum term, usually set to values such as 0.9, helps to reduce oscillation and directs
the updates in a consistent direction:

vdw = βvdw + (1 − β)dw (4.9)

w = w − lr · vdw (4.10)

where β is the momentum parameter.
Root Mean Square Propagation (RMSprop) adjusts the learning rate based on the mag-
nitude of recent gradients, improving convergence and reducing oscillation. It uses ex-
ponential moving averages of squared gradients to adaptively scale the learning rate for
each parameter. The update equations are:

Sdw = βSdw + (1 − β)dw2 (4.11)

w = w − lr · dw√
Sdw

(4.12)

where β is typically set to 0.9.
Adaptive Momentum Estimation (Adam) combines the advantages of both momentum
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and RMSprop. It computes adaptive learning rates for each parameter using both the
first moment (mean) and second moment (uncentered variance) of the gradients. The
update equations for Adam are:

vdw = β1vdw + (1 − β1)dw (4.13)

Sdw = β2Sdw + (1 − β2)dw2 (4.14)

v̂dw = vdw + (1 − βt
1) (4.15)

Ŝdw = Sdw + (1 − βt
2) (4.16)

w = w − lr · v̂dw√
Ŝdw + ϵ

(4.17)

where β1 is typically 0.9, β2 is typically 0.999, and ϵ is a small constant (usually 10−8)
to prevent division by zero. The equations for the bias are calculated analogously, with
the weight w being replaced by the bias b. Adam is widely used due to its effective
performance and minimal need for tuning, making it a preferred default optimizer in
many deep learning frameworks. While RMSprop and Adam are often favored for their
adaptability and efficiency, SGD with momentum may require more time to converge to
an optimal solution [50].

Learning Rate Techniques

The learning rate (LR) is a crucial hyper-parameter in training neural networks, deter-
mining the step size for updating model weights during optimization. It can be set as a
constant value or adjusted through various scheduling methods. Learning rate scheduling
techniques, such as linear decay and exponential decay, gradually adjust the LR over time
or iterations to improve training efficiency [51]. Another popular method is ReduceLROn-
Plateau, which lowers the LR when a plateau in model performance is detected, helping
the model converge more effectively [52]. Choosing the optimal LR or its schedule is
challenging and often requires experimentation or automated tuning [50].

Regularization Techniques

Regularization is essential for managing the neural network’s complexity and preventing
overfitting, especially when training data is limited. Key regularization techniques include
L1 and L2 regularization, dropout and data augmentation. During the training of the
neural network, it is decided by trial and error which techniques are really necessary.
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L1 regularization, or Lasso Regression, penalizes the sum of absolute weights, promoting
sparsity in the model. Conversely, L2 regularization, or Ridge Regression, penalizes the
sum of squared weights, typically providing better predictive performance and computa-
tional efficiency. While L1 produces simpler models with inherent feature selection, L2
tends to be more robust and capable of handling complex patterns.
Dropout randomly deactivates neurons during training, reducing overfitting by making
the model less dependent on specific weights. A dropout rate between 20% and 50%
is commonly used, with the rate influencing training dynamics and model performance
[50, 53].
Data augmentation artificially creates new data using flips, rotations, crops and more [54].

Batch Normalization

Batch Normalization (BatchNorm) is a widely used technique that accelerates and stabi-
lizes the training of DNNs by applying a transformation to its inputs, aiming to maintain
the mean output close to zero and the standard deviation close to one. During training,
the layer normalizes its output using the mean and standard deviation of the current
batch of inputs:

output = γ ·

batch − mean(batch)√
var(batch) + ϵ

+ β, (4.18)

where ϵ is a small constant to avoid division by zero, γ is a learned scaling factor (initialized
as 1), and β is a learned offset factor (initialized as 0) [55]. This process stabilizes
activations and addresses Internal Covariate Shift (ICS), which refers to the change in
the distribution of network activations caused by adjustments in network parameters
during training [50, 56].

Early Stopping

Early stopping is a technique used in HPO and neural network training to efficiently
manage computational resources by halting models or trials unlikely to yield better re-
sults, thus reallocating resources to more promising configurations. In neural network
training, it prevents overfitting by stopping when performance ceases to improve [50].
The mechanism involves monitoring a specific metric, such as loss, during training; if it
doesn’t improve beyond a specified threshold (min_delta) over a set number of epochs
(patience), training is halted early, as seen in frameworks like TensorFlow/Keras [57].
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5. Identification of electrons in jets
for the boosted
X → HH → bbWW ∗ analysis

In this chapter a machine learning approach to distinguish signal electrons overlapping
with jets from other jets and leptons is presented. This topology can arise for example
in the boosted X → HH → bb̄WW ∗ search in the 1-lepton channel which is the signal
considered in this study.

5.1. The HH → bb̄WW ∗ channel

In particle physics, the study of new resonances is a crucial aspect of understanding the
fundamental forces and particles of the universe. Consider a hypothetical resonance,
denoted as X, which decays into two Higgs bosons in a back-to-back configuration.
The subsequent decays of these Higgs bosons are of significant interest, particularly the
HH → bb̄WW ∗ decay channel, which has the second highest branching ratio. This chan-
nel is thus highly relevant for experimental studies.
For very high resonant masses (mX ≳ 2TeV), the resulting Higgs bosons will inherit a sub-
stantial amount of kinetic energy. This kinetic energy leads to a boost. In these scenarios,
the decay products of the Higgs boson (H → bb̄) and the hadronically decaying W boson
(Whad) are collimated and are often reconstructed as a single jet due to detector resolu-
tion limits. Additionally, the lepton from the leptonically decaying W boson may overlap
with the Whad jet as shown in Figure 5.1, complicating the reconstruction. Although
this unique topology is not common in background processes and therefore interesting,
it is challenging to accurately reconstruct the charged lepton in this dense environment,
resulting in a low high signal efficiency during reconstruction [11].
Studying these boosted Higgs bosons and their decay products is not only a promising way
to probe the characteristics of the resonance X, but it also enhances our understanding
of Higgs physics and potential new physics beyond the Standard Model.
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Figure 5.1.: Schematic illustration of the boosted HH → bb̄WW ∗ production in the
1-lepton channel [11]

5.2. Object Reconstruction

5.2.1. Lepton Reconstruction

In this thesis, leptons are considered to be either an electron or a muon because τ leptons
decay before reaching the detector. This thesis will further focus on the lepton being an
electron e. Electrons are reconstructed by matching the track they leave in the Inner
Detector with energy deposits in the calorimeters. The tracks are reconstructed with a
Gaussian sum filter to account for the energy loss of charged particles in material. Energy
deposits are collected in topo-clusters using the EM scale, which accurately represents the
energy deposited by electromagnetic showers [58]. In this thesis, electrons only need to
fulfill pT > 10 GeV.

5.2.2. Jet Reconstruction

When quarks and gluons are produced in a collision, they hadronize, creating collimated
showers of hadrons. These hadrons deposit energy in the calorimeters and, if charged,
leave tracks in the Inner Detector. The hadronic objects reconstructed from these con-
stituents are called jets.
For jet reconstruction, various algorithms have been developed. The most commonly used
algorithms employ the following formula [59]:

dij = min
(
pk

ti, pk
tj

) ∆R2
ij

R2 , with k =


−2 anti-kt

0 Cambridge-Aachen

2 kt

(5.1)

This formula defines the type of algorithm and the size parameter R. Here, pti/j repre-
sents the transverse momentum of the constituents i and j. The distance between these
constituents in detector coordinates, based on rapidity instead of pseudorapidity, is given
by
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∆Rij =
√

(yi − yj)2 + (ϕi − ϕj)2. (5.2)

The value of dij is calculated along with a cut-off value diB = pk
ti for each pair of con-

stituents. The exponent p influences the prioritization of energy scales relative to the geo-
metric scales. If dij < diB, the objects i and j are merged into a single entity. Conversely,
if dij > diB, the object i is identified as a jet and removed from the jet reconstruction
process. This procedure continues until all objects are assigned to jets [59].
In the ideal case, each jet corresponds to one parton. However, this is not the case in
boosted topologies. To determine the number of partons that initiated a jet, it is essen-
tial to analyze the distribution of energy within the jet, referred to as its substructure.
This can be done using two main types of substructure variables. The first type involves
Energy Correlator Functions (ECFs) [60], which are defined as follows:

ECF (N, β) =
∑

i1<i2<...<iN ∈J

(
N∏

a=1
pT,ia

)N−1∏
b=1

N∏
c=b+1

∆Ribic

β

(5.3)

The ECFs indicate the energy distribution inside the jet. Generalized ECF Ratios as used
in the variables L2 and L3, which are defined in table 5.1, are defined as follows:

1eβ=1
3 =

∑
1≤i<j<k≤nJ

zizjzk min{θβ
ij, θβ

ik, θβ
jk}

3eβ=1
3 =

∑
1≤i<j<k≤nJ

zizjzkθβ
ijθ

β
ikθβ

jk

1eβ=1
2 =

∑
1≤i<j≤nJ

zizjθ
β
ij

The ratios for β = 1

C2 = ECF3 · ECF1

(ECF2)2 (5.4)

D2 = ECF3 · ECF1 · (ECF1)2

(ECF2)3 (5.5)

are useful for distinguishing between two-prong and one-prong jets. Two-prong jets might
indicate the presence of a boosted W boson decaying hadronically, while one-prong jets
are often associated with background events [61].
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The second method uses a quantity called N-subjettiness τN which is defined as

τN(α) = 1
d0(α)

∑
i∈J

pT,i · min(∆Rα
1i, ∆Rα

2i, . . . , ∆Rα
Ni), (5.6)

with
d0(α) =

∑
i∈J

pT,i · ∆Rα. (5.7)

N-subjettiness quantifies how likely a jet is composed of at least N subjets. The ratio
τMN = τM

τN
with M > N becomes small if a jet contains M or more subjets [62].

Unified Flow Object Jets

Unified Flow Object (UFO) jets utilize a combination of tracking information, Particle
Flow objects (PFOs), topoclusters, and Track-CaloClusters (TCCs) as input. These jets
are constructed using the anti-kt algorithm with a large radius of R = 1.0, which allows
them to capture all hadronic decay products from boosted decays into a single jet. UFO
jets in this thesis are Whad jets and must meet the criteria of pT > 200 GeV [63, 64].
UFOs combine the advantages of topoclusters, PFOs and TCCs. While topocluster-based
jets perform well at low pT , they face challenges at high pT and are sensitive to pile-up
effects. PFOs enhance performance across a broad pT range but fall short at high pT

compared to topoclusters. Conversely, TCCs are effective at high pT but are prone to pile-
up issues at low pT . By integrating the strengths of topoclusters, PFOs and TCCs, UFOs
offer improved tagging performance and greater pile-up stability. This integration results
in enhanced performance across the entire pT spectrum, addressing the shortcomings of
previous jet definitions and providing a more balanced solution for both low and high pT

regimes [65].

5.3. Monte Carlo Samples and Data Preparation

5.3.1. Monte Carlo Samples

The X → HH samples used in this study are generated at leading order in αS using
MadGraph 3.5.1 [66] with the NNPDF23LO PDF set [67]. PYTHIA 8.308 [68] in the A14
tune [69] is used for parton shower simulation with the heavy quark flavour decays being
performed by EvtGen 2.1.1 [70]. Samples are produced for mX = 2.0, 3.0 and 4.0 TeV.
The full Atlas detector simulation is used. Filters are applied to enforce HH → bb̄WW ∗

decays in 1-lepton final state.

30



5.3. Monte Carlo Samples and Data Preparation

5.3.2. Data Preparation

The initial step in the analysis involved investigating the objects present in the samples
with the focus set on UFO jets, electrons and muons. Figure 5.2(a) displays the distribu-
tion of the transverse momentum of all jets present in the samples. Figure 5.2(b) shows
the variable τ1.

0 500 1000 1500 2000 2500
pt in GeV

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

No
rm

al
ize

d 
to

 u
ni

ty

Distribution of pt for Jets
2000
3000
4000

(a) Distribution of transverse momentum pT for jets
without pT cut applied

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

No
rm

al
ize

d 
to

 u
ni

ty

Distribution of 1 for Jets
2000
3000
4000

(b) Distribution of τ1 for jets

Figure 5.2.: Kinematic distributions for jets

The figures clearly shows distinct differences between the various resonance masses. To
address this, the mass points are combined into a single dataset to ensure that the neural
network’s performance remains independent of the specific mass points utilized.
Next, the Truth Labels of the jets and the Truth Types of the electrons are examined.
These provide information on the true nature and origin of the reconstructed jets and
electrons. The distributions are illustrated in Figure 5.3.
The distribution of the jets’ Truth Labels reveals that the majority of jets are categorized
as either H → bb jets or Whad jets ("other_from_Higgs"), which is consistent with the
information presented in Figure 5.1. There are also numerous "qcd" jets, which are not
associated with top quarks or W/Z bosons and are thus treated as background jets.
The distribution of electron Truth Types shows that only a small fraction are prompt
electrons ("IsoElectron"). The majority of electrons originate from background photons
("BkgPhotons") or from the conversion of prompt photons ("BkgElectron"), with some
electrons having an unknown origin. Prompt means that the particle is produced directly
from the hard scattering process in a high-energy collision, whereas non-prompt particles
are produced in secondary processes.
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Figure 5.3.: Truth Labels/Types of Jets and Electrons

Figure 5.4 presents the distribution of ∆R between prompt and non-prompt electrons,
as well as H → bb and Whad jets. Figure 5.4(a) focuses on the ∆R distribution between
prompt electrons and H → bb and Whad jets, with electrons identified as prompt based on
truth information. The plot clearly shows that H → bb jets have a peak in the ∆R values
around π, while Whad jets peak at values below 0.5. This observation is consistent with
Figure 5.1, indicating that prompt electrons are significantly closer to Whad jets than to
H → bb jets.
Additionally, Figure 5.4(b) examines the ∆R distributions for non-prompt electrons with
H → bb and Whad jets. These distributions reveal peaks at both small ∆R values and
around π for non-prompt electrons, irrespective of the jet type. This suggests that there
is no substantial difference between the jets for non-prompt electrons, indicating that
further separation beyond distinguishing between signal and background classes may be
unnecessary.

Classes

The signal class is defined as Whad jets paired with prompt electrons where the ∆R

value between them is less than 0.5. Conversely, the background class includes all other
combinations of jets and leptons with any ∆R value.
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Figure 5.4.: Comparison of distributions for ∆R of prompt and non-prompt electrons.

5.4. Variables to identify electrons in jets

To select the variables for the neural network used to identify electrons in jets, various
properties were analyzed to determine the most distinct features for differentiating be-
tween the signal and background classes. The chosen variables based on these analyses
are summarized in Table 5.1.
Figures 5.5, 5.6, and 5.7 illustrate the distributions of the selected variables used for train-
ing the neural network. Figure 5.5 shows the kinematics of jets. For instance, Figure 5.5(a)
displays the jet mass, which clearly separates the signal, peaking around 80 GeV, from
the background, which peaks around 110 GeV. Figure 5.5(b) shows the number of tracks
within ∆R = 0.5, where the background class is slightly shifted to the right.
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Figure 5.5.: Comparison of distributions for jet kinematics
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Figure 5.6 presents two electron-related variables. The Loose ID distribution (Figure
5.6(a)) is relatively even for the signal class, whereas the background class shows a higher
concentration in the bin at 0. Additionally, the lepton pT distribution (Figure 5.6(b))
reveals a peak near 0 for the background class, which is absent in the signal class.
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Figure 5.6.: Comparison of the electron Loose ID and lepton pT distributions.

Figure 5.7 depicts various jet substructures. Figures 5.7(a) and 5.7(b) display the promi-
nent ECF ratios, C2 and D2. These plots show subtle differences, with both classes
peaking around similar values. On the left side of the peak, the background class is
slightly higher, while on the right side, the signal class is slightly more pronounced.
Figures 5.7(c) and 5.7(d) illustrate the splitting scales Split12 and Split23, where the
jet constituents are reclustered using the kt algorithm until exactly two or three subjets,
respectively, are formed. A clear separation between the signal and background classes is
evident. For Split12, the background peaks lower than the signal, while for Split23, the
background peaks higher than the signal.
The generalized ECF ratios L2 and L3 are shown in Figures 5.7(e) and 5.7(f). The L2

distribution shows a more pronounced difference between signal and background, with
the background resembling a plateau while the signal peaks around L2 ≃ 0.22. For L3,
the distributions appear similar, although the background class fluctuates slightly, being
sometimes lower and sometimes higher than the signal class.
Figures 5.7(g), 5.7(h), and 5.7(i) illustrate the distributions for τ21, τ32, and τ42. These
distributions exhibit distinct characteristics: for τ21, the signal peaks around τ21 ≃ 0.45,
while the background peaks slightly lower at around τ21 ≃ 0.3. The τ32 distribution forms
a plateau around τ32 ≃ 0.5 for the signal, whereas the background peaks at approximately
τ32 ≃ 0.75. For τ42, the signal peaks around τ42 ≃ 0.3, while the background is centered
around τ42 ≃ 0.55. These variations suggest that the signal class likely contains more
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5.4. Variables to identify electrons in jets

subjets compared to the background class.
Additional plots of other variables, which were found to be less effective due to the lack
of distinction between the signal and background classes, are provided in Annex A.
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Figure 5.7.: Distributions of various jet substructures.
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Property Description
m Mass of jets in GeV

pT of the lepton Transverse momentum in GeV

τ21
τMN = τM

τN
with M > N , N-subjettiness ratio

τ32

τ42

C2 C2 = ECF3·ECF1
(ECF2)2

D2 D2 = ECF3·ECF1·(ECF1)2

(ECF2)3

Split12
SplitAB = min(pT (A), pT (B)) · ∆RABSplit23

Generalized ECF Ratio L2 L2 = 3eβ=1
3

(1eβ=2
2 )3/2

Generalized ECF Ratio L3 L3 = 1eβ=1
3

(3eβ=1
3 )1/3

ntracks number of tracks within ∆R(track, jet) < 0.5,
∆R =

√
(∆η)2 + (∆ϕ)2

Electron_LooseID Used for identification of the electron

Table 5.1.: Variables used as inputs for the neural network

5.5. Neural Network Setup and Training

5.5.1. Architecture

The neural network architecture is designed with a series of alternating dense and batch
normalization layers. The network begins with two dense layers, each containing 512
neurons, followed by two dense layers with 256 neurons, and concludes with two dense
layers of 128 neurons. All dense layers utilize the ReLU activation function and are
regularized with the L2 regularizer and a regularizer rate of 0.001. Batch normalization
layers are placed between each pair of dense layers to normalize the output of the preceding
layer, enhancing training stability and performance. The network ends with a dense
output layer featuring 2 units, activated by the softmax function to generate classification
probabilities. A summary of the architecture is presented in Table 5.2. The optimization
process that led to this architecture is described in Appendix B.
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Layer (type) Output Shape Param # Activation / Regularizer(Rate)
Dense (512) (None, 512) input * 512 + 512 ReLU, L2(0.001)
BatchNormalization (None, 512) 2048

Dense (512) (None, 512) 512 * 512 + 512 ReLU, L2(0.001)
BatchNormalization (None, 512) 2048

Dense (256) (None, 256) 512 * 256 + 256 ReLU, L2(0.001)
BatchNormalization (None, 256) 1024

Dense (256) (None, 256) 256 * 256 + 256 ReLU, L2(0.001)
BatchNormalization (None, 256) 1024

Dense (128) (None, 128) 256 * 128 + 128 ReLU, L2(0.001)
BatchNormalization (None, 128) 512

Dense (128) (None, 128) 128 * 128 + 128 ReLU, L2(0.001)
BatchNormalization (None, 128) 512

Dense (2) (None, 2) 128 * 2 + 2 Softmax

Table 5.2.: Final architecture of the Neural Network used for training

5.5.2. Training

The variables listed in Table 5.1 were used for training. The data was divided into
two categories: the signal class, which consists of Whad jets and prompt electrons with
∆R < 0.5, and the background class, which includes all other jets and leptons with any
∆R value.
Due to the significantly higher number of entries in the background data, it was necessary
to resample the data. This means that the entries were artificially increased for the signal
class to balance both classes. It is important that the signal and background classes are
equally represented to prevent the model from becoming biased toward the more frequent
class, which could lead to poor detection of the rarer class. Imbalanced data can also
hinder model optimization and evaluation, as standard metrics like accuracy may not
accurately reflect the model’s true performance.
The model was compiled using the Adam optimizer with a learning rate of 0.0001. For
training, categorical crossentropy was used as the loss function, and the performance
metrics were accuracy and AUC. During training, early stopping was applied with a
patience of 8 epochs, and learning rate reduction on plateau was used with a patience of
4 epochs. The training process was completed after 54 epochs.
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5.5.3. Performance

The training curve shows a steady decrease in loss to 0.1353, while the accuracy curve
rises continuously to 0.9718. Both curves with training and validation datasets can be
seen in Figure 5.8. The values and the similarity of training and validation curves show
that the performance of the model is very good. Significant changes due to the learning
rate plan are particularly recognisable at epochs 20 and 49.

0 10 20 30 40 50 60
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

0 10 20 30 40 50 60
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

Figure 5.8.: Loss and accuracy curves for training and validation. The loss decreases
to 0.1353 while the accuracy rises to 0.9718.

The probability distributions in Figure 5.9 clearly show the expected patterns for both
classes (signal on the left, background on the right). The signal class predominantly
consists of signal labels, while the background class mainly comprises background labels.
For the signal, the peaks in the probability distributions are clearly visible, while for the
background class, the distributions are slightly wider. This highlights the ability of the
model to discriminate between the two classes and reflect the expected trends in the data.
Figure 5.10 shows the same distribution as Figure 5.9 but with a logarithmic scale. With
the logarithmic scale, the signal plot (on the left) shows a clear separation between the
two classes with only a few outliers that arer so small (around 10) that they are negli-
gible. In the background plot (on the right), peaks of signal can be observed within the
background and vice versa (between 103 and 104). This is not an ideal performance. It
illustrates why the signal class performs better.
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Figure 5.9.: Performance of signal and background showing that the classes can be well
separated, indicating that the model works.
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Figure 5.10.: Performance of of signal and background with log-scale providing a more
detailed view on the lower range.

Figure 5.11 shows the ROC (Receiver Operating Characteristic) curve for the training
data. On the x-axis, the signal efficiency, also known as True Positive Rate (TPR), is
displayed. The TPR indicates the proportion of actual positive cases that are correctly
identified as positive. On the y-axis, the background rejection, which is equivalent to
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1 − False Positive Rate (FPR), is shown. The FPR represents the proportion of negative
cases that are incorrectly classified as positive.
The model has an Area Under the Curve (AUC) value of 0.9918 for both signal and
background, indicating an excellent ability to discriminate between the two. The AUC
quantifies the performance of the model across all classification thresholds, with values
closer to 1 reflecting greater accuracy in distinguishing between positive (signal) and
negative (background) cases. This high AUC underscores the model’s reliability and
effectiveness in identifying relevant signals amidst background noise.
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Figure 5.11.: ROC curve for training data. The solid lines represent the ROC curves
for signal (blue) and background (magenta), while the dotted cyan line
shows the macro-average ROC curve, which is the average performance
across all classes. The black dashed line represents the performance of a
random classifier, serving as a baseline for comparison. The high AUC
values indicate that the model performs significantly better than random
guessing.
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The confusion matrix in Figure 5.12 shows a high accuracy in identifying both classes. The
model correctly classifies the predicted signal as the actual signal with 99.978% ± 0.002%
accuracy and the predicted background as the actual background with 94.381% ± 0.034%
accuracy. Bootstrapping [71] was used to calculate the uncertainties.
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Figure 5.12.: Confusion matrix of the trained NN. The signal performs almost perfectly
(99.98%), but also the background accuracy is very good (94.38%).
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This thesis focused on the challenging task of identifying electrons overlapping with jets
in the context of the Atlas search for Higgs boson pair production in the boosted
X → HH → bb̄WW ∗ 1-lepton channel. The signal particles can be distinctly traced
back to the decay of a Higgs boson, while the background particles may originate from
various sources, such as QCD events or other heavy bosons. This distinction has a signif-
icant impact on several characteristics, one example is illustrated by the ∆R distribution
in Figure 5.4 for both prompt and non-prompt electrons, as well as H → bb and Whad jets.
For prompt electrons, the distribution clearly differs between Whad (signal) and H → bb

(background) jets. In contrast, for non-prompt electrons (background), no such distinc-
tion is observed.
The developed neural network model, consisting of six hidden layers with alternating
dense and batch normalization layers, demonstrated significant improvements in both the
precision and effectiveness of the identification process in these high-energy environments.
The model architecture utilized ReLU activation functions and L2 regularization, with
batch normalization to enhance training stability and performance. Trained with the
Adam optimizer and categorical crossentropy as loss function, the model employed early
stopping and learning rate reduction mechanisms, resulting in a well-optimized training
process.
The network exhibited excellent discriminative capabilities, achieving a final accuracy of
0.9718 and a loss of 0.1353 after 54 epochs. With an AUC of 0.9918 for both signal and
background classes, the model showed a strong ability to differentiate between them. The
confusion matrix indicated a high accuracy in identifying both signal (99.978% ± 0.002%)
and background (94.381% ± 0.034%) classes. The probability distributions further con-
firmed the model’s effectiveness in distinguishing the classes, with a clear peak for signal
and a slightly more spread-out distribution for background. Overall, the model’s perfor-
mance in classifying Whad jets containing prompt electrons (∆R(Whad, e) < 0.5) against
other jets and leptons highlights its robustness and applicability in high-energy physics
experiments.
The promising results of this work suggest the potential for further integration into the
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EASYjet framework [72]. This could enhance the framework’s capability in classifying
and analyzing Whad jets and prompt electrons with ∆R < 0.5. Future work could focus
on refining the model for broader applications within the framework. Potential extensions
include adjusting the ∆R threshold, distinguishing between multiple background classes,
or further improving the separation of electrons from Whad jets.
Furthermore there are several areas to improve and extend the model’s capabilities. One
important avenue is the definition of different Working Points (WP). WPs are thresholds
applied to the network’s output values, determining the acceptance rate of the classified
objects. For example a WP of 85% means that 85% of the signal is accepted, while a
stricter WP, such as 50%, results in higher purity by accepting only the top 50% of the
signal. By exploring different operating points, the balance between signal purity and
background rejection can be optimized, potentially leading to improved model perfor-
mance in different scenarios.
My work facilitates the inclusion of the electron channel in the analysis, which had to
be excluded in Run 2 due to insufficient sensitivity. This enhancement results in a sig-
nificant increase in statistical power, approximately doubling the available data due to
the branching ratio, although the selection efficiency still needs to be accounted for. The
inclusion of the electron channel in Run 3 not only broadens the scope of the analysis, but
also improves its sensitivity, allowing more precise measurements and potentially better
constraints on the search for new physics. This increased sensitivity is crucial, especially
as the efficiency of the electron selection will play a significant role in the final results.
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Figure A.1.: Distributions of various jet properties: transverse momentum (pT ), pseu-
dorapidity (η) and azimuthal angle (ϕ).
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Figure A.2.: Distributions of the number of tracks within different ∆R values.
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Figure A.3.: Distributions of various electron IDs.
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B. Optimization Process

B.1. Starting Point

model = Sequential([

Dense(64, activation=’relu’, kernel_regularizer=l2(0.01),

input_shape=(X_train.shape[1],)),

BatchNormalization(),

Dropout(0.2),

Dense(32, activation=’relu’, kernel_regularizer=l2(0.01)),

BatchNormalization(),

Dropout(0.2),

Dense(16, activation=’relu’, kernel_regularizer=l2(0.01)),

BatchNormalization(),

Dropout(0.2),

Dense(8, activation=’relu’, kernel_regularizer=l2(0.01)),

BatchNormalization(),

Dropout(0.2),

Dense(2, activation=’softmax’)

)

model.compile(optimizer=optimizer,

loss=’categorical_crossentropy’,

metrics=[’accuracy’, keras.metrics.AUC()])

history = model.fit(X_train, y_train,

epochs=10,

batch_size=1028,

validation_split=0.2,

verbose=1)

55



B. Optimization Process

B.2. Optimizer & Learning Rate

Optimizer Loss Accuracy AUC
SGD 0.3537875711917877 0.8542509078979492 0.9309352040290833
RMSprop 0.6088815927505493 0.7887178659439087 0.8703969717025757
Adam 0.47098442912101746 0.820212185382843 0.8959004878997803
Adagrad 0.3350462019443512 0.8594033122062683 0.9356442093849182
Adadelta 0.31208229064941406 0.8694478869438171 0.942688524723053
Adamax 0.4103929400444031 0.8261270523071289 0.9049563407897949
Nadam 0.4756775498390198 0.797019362449646 0.8805756568908691
Nesterov 0.35934871435165405 0.8531018495559692 0.9284294843673706

Table B.1.: Performance of different optimizers for Learning Rate 0.1

Optimizer Loss Accuracy AUC
SGD 0.3284856081008911 0.8618418574333191 0.9371823072433472
RMSprop 0.3984920084476471 0.8347687721252441 0.9137218594551086
Adam 0.37834569811820984 0.8419525623321533 0.9201933741569519
Adagrad 0.3122376799583435 0.8686411380767822 0.9427957534790039
Adadelta 0.42965081334114075 0.8451664447784424 0.921707034111023
Adamax 0.35366588830947876 0.8530381321907043 0.9301657676696777
Nadam 0.37248507142066956 0.8438640236854553 0.9220110774040222
Nesterov 0.3243614137172699 0.8642727732658386 0.9388145208358765

Table B.2.: Performance of different optimizers for Learning Rate 0.01

Optimizer Loss Accuracy AUC
SGD 0.6797289252281189 0.834211528301239 0.9124084711074829
RMSprop 0.338821142911911 0.8583331108093262 0.935515284538269
Adam 0.3335524797439575 0.8615761995315552 0.9369778037071228
Adagrad 0.5255790948867798 0.8400086164474487 0.9173421859741211
Adadelta 1.1551693677902222 0.7992526888847351 0.8737013339996338
Adamax 0.3163285255432129 0.8690990805625916 0.9420225024223328
Nadam 0.3291243314743042 0.8627187609672546 0.9382164478302002
Nesterov 0.6818354725837708 0.8353551626205444 0.9141890406608582

Table B.3.: Performance of different optimizers for Learning Rate 0.001
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B.2. Optimizer & Learning Rate

Optimizer Loss Accuracy AUC
SGD 1.385091781616211 0.73713219165802 0.810443103313446
RMSprop 0.31145766377449036 0.8702178597450256 0.9428486227989197
Adam 0.31227731704711914 0.8684834837913513 0.9423569440841675
Adagrad 1.3830777406692505 0.7553821802139282 0.818976640701294
Adadelta 1.6331415176391602 0.6121407151222229 0.6278716921806335
Adamax 0.33054694533348083 0.8618407845497131 0.9377246499061584
Nadam 0.3090340793132782 0.8705364465713501 0.9436644315719604
Nesterov 1.3619047403335571 0.7869164943695068 0.8592619895935059

Table B.4.: Performance of different optimizers for Learning Rate 0.0001

Optimizer Loss Accuracy AUC
SGD 1.652526617050171 0.6499819159507751 0.6432902216911316
RMSprop 0.47673213481903076 0.8405119180679321 0.9178560376167297
Adam 0.4607590436935425 0.8443435430526733 0.9210081100463867
Adagrad 1.6715415716171265 0.5558832287788391 0.5733823776245117
Adadelta 1.7126731872558594 0.5226620435714722 0.5296611785888672
Adamax 0.778911828994751 0.8245341181755066 0.9017135500907898
Nadam 0.47193774580955505 0.8406955003738403 0.9176440834999084
Nesterov 1.6253985166549683 0.6686886548995972 0.6917518973350525

Table B.5.: Performance of different optimizers for Learning Rate 0.00001

Best Combinations

Number Optimizer Learning Rate
1 Adadelta 0.1
2 Adagrad 0.01
3 Adamax 0.001
4 RMSprop 0.0001
5 Adam 0.0001
6 Nadam 0.0001

Table B.6.: Best Performances of different optimizers and Learning Rates
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B. Optimization Process

B.3. Loss Functions

Loss Function Loss Accuracy AUC
binary crossentropy 0.31204941868782043 0.8689262866973877 0.9425574541091919
hinge 0.6391475796699524 0.8655709028244019 0.8795554041862488
squared hinge 0.6955493688583374 0.8692415952682495 0.9176466464996338
binary crossentropy
with from logits=True

0.3123341500759125 0.8682966828346252 0.9425604939460754

poisson 0.6574316024780273 0.8683236837387085 0.9417302012443542
categorical crossentropy 0.3116093575954437 0.8697038292884827 0.9432282447814941

Table B.7.: Performance of Adadelta and learning rate 0.1

Loss Function Loss Accuracy AUC
binary crossentropy 0.3084441125392914 0.8707459568977356 0.9437572956085205
hinge 0.6391527056694031 0.8663700222969055 0.8849620819091797
squared hinge 0.6940346956253052 0.8693701028823853 0.9214828610420227
binary crossentropy
with from logits=True

0.31017178297042847 0.87039715051651 0.9433274865150452

poisson 0.6556634902954102 0.8690580129623413 0.9430629014968872
categorical crossentropy 0.31239208579063416 0.8686994910240173 0.9422914385795593

Table B.8.: Performance of Adagrad and learning rate 0.01

Loss Function Loss Accuracy AUC
binary crossentropy 0.31849533319473267 0.8659488558769226 0.9410554766654968
hinge 0.6471104621887207 0.8596096038818359 0.865862250328064
squared hinge 0.6990091800689697 0.8670385479927063 0.9144145250320435
binary crossentropy
with from logits=True

0.3167499601840973 0.8673938512802124 0.9415303468704224

poisson 0.659796416759491 0.8669953346252441 0.9409213066101074
categorical crossentropy 0.3173893094062805 0.8666476011276245 0.94117271900177

Table B.9.: Performance of Adamax and learning rate 0.001
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B.3. Loss Functions

Loss Function Loss Accuracy AUC
binary crossentropy 0.3125527799129486 0.8681336045265198 0.9424213767051697
hinge 0.640101969242096 0.8645978569984436 0.8766472935676575
squared hinge 0.694812536239624 0.8701509237289429 0.9219750165939331
binary crossentropy
with from logits=True

0.3131623864173889 0.8685882687568665 0.9421939253807068

poisson 0.6565827131271362 0.8688798546791077 0.942297101020813
categorical crossentropy 0.3116426169872284 0.8686606287956238 0.9428696036338806

Table B.10.: Performance of RMSprop and learning rate 0.0001

Loss Function Loss Accuracy AUC
binary crossentropy 0.31063875555992126 0.8703010082244873 0.9432990550994873
hinge 0.64079749584198 0.8641604781150818 0.8741347789764404
squared hinge 0.6937539577484131 0.8701163530349731 0.9174135327339172
binary crossentropy
with from logits=True

0.3107384741306305 0.8691174387931824 0.9430868625640869

poisson 0.6562788486480713 0.8692545890808105 0.9427903890609741
categorical crossentropy 0.3106471300125122 0.8697502613067627 0.9432035088539124

Table B.11.: Performance of Adam and learning rate 0.0001

Loss Function Loss Accuracy AUC
binary crossentropy 0.3119449019432068 0.8683549761772156 0.942639172077179
hinge 0.6412317156791687 0.8639444708824158 0.8742322325706482
squared hinge 0.6952899098396301 0.8684186935424805 0.9167739152908325
binary crossentropy
with from logits=True

0.3111535608768463 0.8689057230949402 0.9427803158760071

poisson 0.6557345390319824 0.870040774345398 0.9431236386299133
categorical crossentropy 0.3122270703315735 0.8689597249031067 0.9424363970756531

Table B.12.: Performance of Nadam and learning rate 0.0001
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B. Optimization Process

Best Combinations:

Optimizer Learning Rate Loss Function
Adadelta 0.1 Categorical Crossentropy
Adam 0.0001 Categorical Crossentropy

Table B.13.: Best Performances of different optimizers, Learning Rates and Loss Func-
tions

B.4. Activation Function

Activation Function Loss Accuracy AUC
relu 0.31153181195259094 0.8691530823707581 0.9427415728569031
leaky relu 0.3263707160949707 0.8611021041870117 0.9363694190979004
elu 0.391489177942276 0.8291735649108887 0.9109557867050171
sigmoid 0.43084779381752014 0.8029482364654541 0.8846057057380676
tanh 0.38066011667251587 0.835237443447113 0.9164707660675049

Table B.14.: Best Performances of different Activation Functions for Adadelta and
lr=0.1

Activation Function Loss Accuracy AUC
relu 0.3109780251979828 0.8693625926971436 0.9430792331695557
leaky relu 0.3263750672340393 0.8612943291664124 0.9365575313568115
elu 0.3859194219112396 0.8323993682861328 0.9133470058441162
sigmoid 0.40272942185401917 0.8231118321418762 0.9035152792930603
tanh 0.3679303228855133 0.8405799269676208 0.9221805930137634

Table B.15.: Best Performances of different Activation Functions for Adam and
lr=0.0001

Best: Adam and lr=0.0001 with ReLU
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B.5. Dropout Rate

B.5. Dropout Rate

Dropout Rate Loss Accuracy AUC
keine 0.30475589632987976 0.8762525916099548 0.9478942155838013
0.1 0.3026161193847656 0.8741175532341003 0.9461998343467712
0.2 0.31111517548561096 0.8698139786720276 0.9430739879608154
0.3 0.31955644488334656 0.8653818964958191 0.9396075010299683
0.4 0.32921102643013 0.8601430654525757 0.9359275102615356
0.5 0.3365066647529602 0.8544636964797974 0.9327797889709473

Table B.16.: Best Performances of different Dropout Rates (Adam and lr=0.0001 with
ReLU)

Best: no Dropout or Dropout Rate=0.1

B.6. Regularizer

Regularizer Loss Accuracy AUC
L1 0.33672958612442017 0.8638559579849243 0.9395376443862915
L2 0.30381160974502563 0.8770917057991028 0.9485225081443787
L1 and L2 0.3370113968849182 0.8639682531356812 0.939145028591156

Table B.17.: Best Performances of different Regularizer for Adam, lr=0.0001, ReLU,
no Dropout

Regularizer Loss Accuracy AUC
L1 0.34994253516197205 0.8564820885658264 0.9340189099311829
L2 0.3026522099971771 0.8743594884872437 0.9462410807609558
L1 and L2 0.3520844578742981 0.8546462059020996 0.9326677322387695

Table B.18.: Best Performances of different Regularizer for Adam, lr=0.0001, ReLU,
Dropout 0.1

Best: L2 Regularizer
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B. Optimization Process

B.6.1. Regularizer Rate

Regularizer Rate Loss Accuracy AUC
0.0 0.3388156592845917 0.8623602390289307 0.9377015233039856
0.1 0.3354109823703766 0.8644812107086182 0.9397829174995422
0.01 0.3398600220680237 0.8630232810974121 0.9387258887290955
0.001 0.3348984122276306 0.8655179738998413 0.9397636651992798
0.0001 0.33923402428627014 0.8600524067878723 0.9364966154098511
0.00001 0.33758437633514404 0.8653775453567505 0.9394603371620178

Table B.19.: Best Performances of different Regularizer Rates for Adam, lr=0.00,
ReLU, L2, Dropout 0.0

Regularizer Value Loss Accuracy AUC
0.0 0.34865057468414307 0.8569151163101196 0.9342195391654968
0.1 0.3523922860622406 0.8555857539176941 0.9330404996871948
0.01 0.35373079776763916 0.8531623482704163 0.9324083924293518
0.001 0.3475794196128845 0.8592132329940796 0.935444176197052
0.0001 0.3519290089607239 0.8556461930274963 0.9332339763641357
0.00001 0.3521043360233307 0.8552045226097107 0.9330962896347046

Table B.20.: Best Performances of different Regularizer Rates for Adam, lr=0.0001,
ReLU, L2, Dropout 0.1

Best: no Dropout and L2 Regularizer with 0.001
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B.7. Batch Size

B.7. Batch Size

Batch Size Loss Accuracy AUC
16 0.31690093874931335 0.8699608445167542 0.9429407715797424
32 0.2982230484485626 0.8772925734519958 0.948190450668335
64 0.2965218424797058 0.8788087964057922 0.9494154453277588
128 0.29521670937538147 0.8787299990653992 0.9494580626487732
256 0.2985486686229706 0.8781111836433411 0.9494020938873291
512 0.310638159134735 0.8745473623275757 0.9468926191329956
1024 0.32532984018325806 0.8706488013267517 0.9445446133613586
2048 0.33819496631622314 0.8675417900085449 0.9421520233154297
4096 0.3541666865348816 0.8663009405136108 0.9403467774391174

Table B.21.: Performances of different Batch-Sizes

Best: 128

B.8. Number of Hidden Layers

Number Loss Accuracy AUC
1 0.31661301851272583 0.8669348359107971 0.9407336711883545
2 0.28872454166412354 0.8824590444564819 0.9522656202316284
3 0.2791387140750885 0.8877345323562622 0.956551730632782
4 0.26821181178092957 0.8954151272773743 0.9612974524497986
5 0.26784688234329224 0.8968254923820496 0.9624056816101074
6 0.26487401127815247 0.8991906046867371 0.9642356038093567
7 0.2733747363090515 0.8980825543403625 0.9632548093795776
8 0.2747383713722229 0.8975501656532288 0.9635468125343323
9 0.2843092083930969 0.8932141661643982 0.9600677490234375
10 0.27641141414642334 0.89545077085495 0.9620593786239624

Table B.22.: Performances of different numbers of Hidden Layers

Best: 6 Hidden Layers

63



B. Optimization Process

B.9. Neurons per Layer

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
1 128 64 32 16 8 4
2 512 256 128 64 32 16
3 512 512 256 256 128 128
4 512 512 512 256 256 256

Table B.23.: Models with different numbers of neurons per layer

Model Loss Accuracy AUC
1 0.27659407258033751 0.8895909786224365 0.9574908614158632
2 0.24666009843349457 0.9165020585060121 0.9728460311889648
3 0.24340121448040009 0.9264732003211975 0.9765763878822327
4 0.24374139308929443 0.9206706285476685 0.9747917652130127

Table B.24.: Performances of different models

Best: 512 → 512 → 256 → 256 → 128 → 128

B.10. Best Model

model = Sequential([

Dense(512, activation=’relu’, kernel_regularizer=l2(0.001),

input_shape=(X_train.shape[1],)),

BatchNormalization(),

Dense(512, activation=’relu’, kernel_regularizer=l2(0.001)),

BatchNormalization(),

Dense(256, activation=’relu’, kernel_regularizer=l2(0.001)),

BatchNormalization(),

Dense(256, activation=’relu’, kernel_regularizer=l2(0.001)),

BatchNormalization(),

Dense(128, activation=’relu’, kernel_regularizer=l2(0.001)),

BatchNormalization(),

Dense(128, activation=’relu’, kernel_regularizer=l2(0.001)),

BatchNormalization(),

Dense(2, activation=’softmax’)
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B.11. More epochs with optimized model

])

loss = ’categorical_crossentropy’

#optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.01)

optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)

model.compile(optimizer=optimizer,

loss=loss,

metrics=[’accuracy’, keras.metrics.AUC()])

B.11. More epochs with optimized model

lr_scheduler = ReduceLROnPlateau(monitor=’val_loss’, factor=0.1, patience=4,

verbose=1, min_lr=1e-6)

checkpoint = ModelCheckpoint(filepath=’best_model.keras’, monitor=’val_loss’,

save_best_only=True, verbose=1)

early_stopping = EarlyStopping(monitor=’val_loss’, patience=8, verbose=1,

restore_best_weights=True)

history = model.fit(X_train, y_train,

epochs=100,

batch_size=128,

validation_split=0.2,

callbacks=[checkpoint, early_stopping, lr_scheduler],

verbose=1)

→ 54 epochs
Performance:

• Test Loss: 0.1352573186159134

• Test Accuracy: 0.9718350768089294

• Test AUC: 0.9917726516723633
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