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Privacy Threats in Cooperative Collision Avoidance
System Architectures

Sönke Huster , Johann Götz , Klaus David , Delphine Reinhardt

Abstract—In 2020, around 70% of all road crash fatalities
in the EU involve Vulnerable Road Users. To prevent them,
many collision avoidance approaches exist, including cooper-
ative collision avoidance systems, which rely on information
provided by vulnerable road users to detect collisions. While
the systems solely relying on embedded sensors in cars are
already deployed, cooperative systems are still being investigated.
Using and exchanging real-time position and sensor information
about Vulnerable Road Users introduces new privacy threats,
as the data can reveal, e.g., social relationships or even users’
identity. We contribute to these investigations by identifying
new, application-specific privacy threats resulting from different
architectures. In addition to highlighting attacker models, we
show that broadcast-based peer-to-peer architectures are the
most privacy-friendly as compared to client-server and hybrid
systems. Furthermore, we highlight implementation-dependent
threats. We finally provide an overview of potential countermea-
sures and future research directions. Our results can serve as
basis to designers of such systems to better protect the privacy,
thus fostering their acceptance.

Index Terms—Collision Avoidance, Privacy, Threat Analysis

I. INTRODUCTION

IN 2020, almost 70% of road traffic fatalities in urban areas
were Vulnerable Road Users (VRUs), such as pedestrians

and cyclists [1]. To increase VRU safety, collision avoidance
systems are researched and developed [2]. A variety of colli-
sion avoidance approaches exist, with many of them relying
on car-based sensors, such as infrared, cameras, or Light
Detection and Ranging (LIDAR) systems, to detect collisions
between cars and VRUs [3], [4]. Due to the pervasiveness
of mobile devices, sensors are not only available in cars, but
also for pedestrians and cyclists on their personal devices.
Approaches, such as Cooperative Collision Avoidance Sys-
tems (CCA-Systems), leverage VRUs mobile devices or On-
Board Units (OBUs) on bicycles to exchange movement and
location data with cars for movement prediction and collision
detection [5]–[12]. On the vehicle side, either an OBU or
the driver’s mobile device is used. These different options
result in many possible systems, differing in terms of (1)
exchanged data: location, direction, speed, and optionally
sensor data (e.g., accelerometer, gyroscope) and personal
data (e.g., age) to better predict users’ mobility pattern; (2)
communication links: direct, or infrastructure-based (e.g.,
using cellular networks or Roadside Units (RSUs)), or a mix
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Fig. 1: Communication links and entities in CCA-Systems.

of these approaches referred to as hybrid (see Fig. 1); (3)
who exchanges data: both entities sending their data, or
only one; (4) where processing takes place: on a server,
the users’ device or car, or a mix with the server applying a
proximity filter and forwarding relevant data to other nearby
users, and (5) which user(s) is/are warned in case of a
potential collision: either on-device warnings, sent by server,
or nearby users.

As a result, data about users are exchanged and processed by
different entities. Access to these data can, however, threaten
users’ privacy. For example, a stalker might get their victims’
current location through the system. Location data can also be
used to identify an individual [13], reveal their home and work
locations, and social relationships between users [14], [15].
Irregular visits, e.g., a first time hospital visit, might disclose
a health issue and regular visits of certain locations can reveal
political stances or religious beliefs. The accelerometer and
gyroscope data may also reveal sensitive information about the
users. For example, it is possible to identify pedestrians and car
drivers using accelerometer data from their smartphones [16],
[17]. Besides identification, such data can reveal the current
activity, health, and stress levels of pedestrians [18]. It is also
possible to infer, e.g., the bike type [19] or weight [20] of
cyclists.

Consequently, various privacy threats emerge from the col-
lected and exchanged data. Such threats are taken seriously
in related real-world applications. Manchester’s smart city
strategy needed to be revised, as privacy had been ignored
in the first draft, leading to major criticism by citizens [21].
The City of London has launched a privacy register for their
smart city data to enhance transparency, demonstrating the
importance of privacy [22]. This is also confirmed in the US,
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where the Federal Trade Commission announced a warning
to producers of connected cars to respect data privacy in
2024 [23].

However, we are missing a comprehensive analysis and
comparison of privacy threats resulting from CCA-Systems.
We therefore bridge this gap by identifying threats and their
requirements, so that they can be mitigated in future work.
To this end, we conduct a privacy threat analysis for selected
architectures, develop a privacy-based comparison, and sug-
gest mitigation techniques. By doing so, we highlight privacy
challenges to be tackled, depending on the chosen underlying
architecture. In our analysis, we apply LINDDUN [24], one
of the few available privacy threat modeling techniques, which
stands for the related privacy threat types: Linking, Identifying,
Non Repudiation, Detecting, Data Disclosure, Unawareness
& Unintervenability and Non Compliance. LINDDUN has
extensively been used in the automotive domain for privacy
threat analysis [25]–[29]. We have selected it, as it is well-
established and applicable for CCA-Systems.

Our contributions can be summarized as follows:
1) We identify and describe different CCA-System architec-

tures,
2) We introduce attacker models and data-specific threats,
3) We analyze these architectures using LINDDUN and

highlight specific threats, and
4) We compare these architectures in terms of privacy and

highlight the impact of particular architectural decisions.
In Sec. II, we discuss related work. We identify the ar-

chitectures and outline our LINDDUN-based methodology
in Sec. III. In Sec. IV, we identify attacker models and
possible privacy threats. We present the results of our analysis
in Sec. V, discussed in Sec. VI. We make concluding remarks
in Sec. VII.

II. RELATED WORK

Privacy-preserving methods have been proposed in
CCA-Systems and Intelligent Transportation Systems (ITSs).
Nkenyereye et al. [30] proposed a non-cooperative collision
avoidance system based on vehicle reported speed violations.
To protect the user identities, pseudonyms, and cryptography
are used. As several works investigate different pseudonym
schemes to preserve user privacy in ITSs, Lefevre et
al. [31] examined their safety impact in intersection collision
avoidance. Besides pseudonyms, data perturbation is another
privacy-preserving method suitable for CCA-Systems.
Bachmann et al. [32] investigated its impact on safety and
privacy. Hahn et al. [33] surveyed security and privacy
issues in ITSs. They showed that pseudonyms, public-key
cryptography, location cloaking, and homomorphic encryption
can be used to mitigate privacy issues. Instead of mitigating
specific privacy threats, our work focuses on a thorough
analysis of possible privacy threats and the establishment of
an attacker model, which is required to make privacy-aware
decisions.

Schaub et al. [34] defined privacy requirements in vehicular
communication systems, including data minimization, sender
anonymity, and unlinkability. The EU project PRECIOSA

examined privacy in cooperative vehicular systems [35]. They
used encryption and integrity checks of the deployed appli-
cation to ensure privacy policy enforcement. Yoshizawa et
al. [36] analyzed security and privacy issues of Vehicle-to-
everything (V2X) systems with a focus on standards and
regulations, such as the European General Data Protection
Regulation (GDPR). Petit et al. [37] established a general
attacker and system model for connected vehicles. They fo-
cused on pseudonyms as a privacy-preserving mechanism. Qu
et al. [38] introduced broad security and privacy threats in
Vehicular Ad Hoc Networks (VANETs) and gave an overview
of privacy-preserving authentication schemes. Othmane et
al. [39] described security and privacy threats in connected
vehicles and provided an overview of mitigations. However,
these works largely focus on security threats and cars and their
drivers, but do not consider other road users.

Still, some privacy threat analyses in the automotive domain
exist, often using the LINDDUN method. Raciti et al. [26]
used and modified LINDDUN to discover soft privacy threats
in the area of smart cars, i.e., threats due to missing trans-
parency and non-compliance. Chah et al., applied LINDDUN
to a hardware-centric model of connected autonomous vehi-
cles [25]. Stingelová et al. [27] extended their model with
cloud services. They conducted a security analysis focusing
on the car driver. Azam et al. [29] applied several threat
modeling methods to a model of an autonomous car. They
demonstrate that existing methods model data privacy threats,
but do not cover all GDPR principles. Especially data subject
rights, such as the right to data portability, were not covered
by the existing methods. Abuabed et al. [40] developed a
security threat modeling framework based on STRIDE, which
follows a similar approach as LINDDUN, focusing on car-
based driver-assistance systems. Nevertheless, these threat
analyses are not easily transferable to CCA-Systems, as they
either focus on a single vehicle, or the driver, thus excluding
data exchanged with VRUs. Similarly, discussions on security
in V2X and VANET scenarios neither cover all privacy aspects
nor consider the same data.

So far, privacy is often considered as a secondary aspect
next to security and is discussed mostly in V2X and VANET
scenarios excluding data exchanged with VRUs. In compar-
ison, our work focuses on both, unexplored attacker models
and privacy threats originating from CCA-Systems, as well as
their consequences depending on the underlying architectures.

III. METHODOLOGY

In the following, we highlight both existing and future
system architectures under development. We next detail the
methodology applied to conduct our privacy threat analysis.

A. Architecture Selection

We categorize CCA-Systems into client-server, P2P, and
hybrid architectures. In client-server architectures, data to and
from vehicles and VRUs is typically communicated over cel-
lular networks to a server. The collision detection processing
can be distributed over the vehicle, VRU, and server [41]–[46].
This shift towards, e.g., a more centralized collision detection
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Fig. 2: A client-server CCA-System with global processing. The users send their data (DV /DC) to a server, comprising location,
direction and speed, and possibly raw sensor data, personal data, and probabilities of future movements.
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Fig. 3: Variations of client-server CCA-Systems with local processing.
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Fig. 4: Variations of Peer-to-Peer (P2P) CCA-Systems.

processing reduces the burden for the VRU devices. So far,
in many proposed client-server architectures, the collision
warning is sent to either the car [43], [44] or both the car
and VRU [42], [45].

In P2P architectures, data can be broadcast or directly ex-
changed between nearby users using device-to-device commu-
nication. The processing happens locally on either one or all
participating devices [47]–[52]. Some architectures use C-V2X
Sidelink, a cellular direct communication [53], others use ad-
hoc networks [12], [52]. Either the car sends its movement data
to the VRU’s device, which then processes the collision [52],
[54], [55], or the other way around, where the vehicle’s
OBU processes the collision [47], [49], [56]. In other studies,
both the VRU and vehicle exchange their movement data to
calculate potential collisions on both sides [5], [48]. Usually,
either only the vehicle or both road users are warned [5], [48]–
[50], [52], [54]–[56]. In contrast, only the VRU is warned
about the approaching vehicle in [57]. P2P communication has
the advantage of low latency and robustness against missing
cell coverage and infrastructure failures.

Hybrid architectures rely on direct and cellular communica-
tions. They exchange data between multiple sources, such as
vehicles, VRUs, RSUs, and a server [12], [46], [58]. The pro-
cessing can be distributed over the car, VRU, and potentially a
server [59]. Many of the studies based on hybrid architectures
focus only on sending warnings to the vehicle [46], [58], [59].

To improve collision detection, contextual data derived from
mobile device sensors can be used [60]. However, at the same
time, these data can pose a threat to privacy. To emphasize the
possible trade-off between data availability and privacy, we
select system architectures with differences in their topology
and involved entities. To this end, we further divide the client-
server architectures into two variants, one with global and one
with local collision detection processing. To reduce the server
load, the local approaches use a server-based proximity fil-
ter [61]. The proximity filter only checks for similar locations

and forwards the relevant data of and to nearby users, who then
detect upcoming collisions. Furthermore, we include variants
with either local warnings, and warnings generated by other
users. We assume that the threats to privacy are similar if the
VRU resp. the car sends the warning to the car resp. the VRU.

This results in the following seven architectures:
(A) Client-server architectures with:

1) Global processing (Fig. 2),
2) Local processing and local warnings (Fig. 3a), and
3) Local processing and user-generated warnings (Fig. 3b);

(B) P2P architectures using:
4) Broadcasts (Fig. 4a),
5) Cellular links,
6) Ad-hoc networking (Fig. 4b), and

(C) a hybrid architecture combining 7) P2P and client-server
communication.

Note that we solely focus on the impact of the different
architectures on privacy, without considering the different
communication technologies or protocols. Thus, we differ-
entiate between, e.g., P2P systems with direct and cellular
communication, as their network topologies differ (the second
involving a base station), but not specific protocols, such as
Dedicated Short Range Communication (DSRC) and IEEE
802.11.

B. Threat Analysis

We use LINDDUN [24] for our threat analysis. We first
model the different architectures as data flow diagrams, con-
taining entities, processes, data stores, and data flows. We use
these diagrams to identify the involved entities and identify
potential attackers and their capabilities in Sec. IV-A. We
display simplified versions of these diagrams in Fig. 2 - 4.
We compile threats occurring from the used data in Sec. IV-B.
We next apply the proposed flow-based LINDDUN enhance-
ment [62] to all diagrams and thus analyze these data flows for
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TABLE I: Entities’ involvement in CCA-System architectures.

Name C
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Description

System
Operator ✓ (✓)1 ✓2 Provides and operates the system

Infrastructure
Operator ✓ ✓ ✓2 Provides communication infrastructure

Users ✓ ✓ ✓ Participates with their OBU or device

Bystanders ✓ ✓2 Non-user in communication range

1 As application provider. 2 Involvement is implementation-dependent.

LINDDUN’s threats. As we apply LINDDUN repeatedly to the
specified architectures, we compare the resulting threat tables,
find similar threats, and compile those in a consolidated threat
table. We present the architecture specific threats, attacker
capabilities, and an architecture comparison in terms of privacy
threats based on the compiled threats in Sec. V. We disregard
unawareness, unintervenability and non-compliance threats,
as they depend on other factors than the architecture (see
Sec. V-E).

C. Scope

While some privacy threats can originate from security
issues, we only consider such issues, if they depend on the
architecture. For example, an attacker hacking into a user’s
device can access all data, but this threat is not specific
to CCA-Systems. In contrast, an attacker may spoof certain
messages to be able to learn information about other users
from system responses. This security issue leads to a privacy
threat specific to the CCA-System. Similarly, certain privacy
threats originate in the usage of smartphones, e.g., the mobile
service provider learning the user’s location and knowing their
identity. We only include such threats, if they can be leveraged
to increase the impact of application-specific threats.

V2X uses different standards, e.g., cellular V2X or IEEE
802.11p. In this paper, we focus on network topologies and do
only consider CCA-System specific threats, not threats specific
to those standards.

IV. RESULTING ATTACKERS AND THREATS

Different entities can be potential attackers. Their access to
certain data leads to various privacy threats. In the following,
we discuss the derived attacker models and elaborate on the
identified threats.

A. Attacker Models

We display the involved entities in different architectures
in Table I. Their capabilities differ, depending on architectural
details, described in Sec. V.

1) System Operator: In client-server and hybrid architec-
tures, the most severe threat comes from a malicious actor’s
access to the server, posing a global attacker with full access.
This could be the system operator, e.g., forced to record
information by a state actor, or a hacker breaking into an

TABLE II: Privacy threats and their requirements.
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Stalking S

Next location S S S

Significant locations P

Working hours P

Future movements P

Social relationships P

Health, religion, etc. S

Activity recognition P S

Cycling properties P

Driving behavior P

Gait recognition P

Demographics P

User characteristics S S

Risk behavior P

System participation S
U

se
r

(r
e-

)
id

en
tifi

ca
tio

n
Location traces P

Gait recognition P

Driving behavior P

Hardware
fingerprinting

Demographics P S

S: Singular data is required. P: Profiling of data is required.

insufficiently secured server, e.g., motivated by financial gains.
While the operator has permanent full access, a hacker might
only have access to a subset of the deployed servers for a
limited time frame. We assume, that the operator is honest-
but-curious, so it does not deviate from the protocol, but tries
to learn as much information as possible [63]. Thus, despite
providing the application in P2P architectures, it does not have
access to the user’s data, as no server is involved.

2) Infrastructure Operators: They provide the communi-
cation infrastructure, e.g., mobile network operators, network
service providers, and operators of RSUs, and thus (partially)
have access to the communication. As the usage of trans-
port encryption for client-server applications has increased
significantly in recent years [64], we assume that client-
server communication uses state-of-the-art transport encryp-
tion. Thus, a malicious actor with access to the communication
infrastructure is only able to collect metadata. Depending on
their network position and collusion, the attacker might have
permanent access to all users’ communication, e.g., the data
center operator, or only to a subset, e.g., the mobile network
operator. They might be motivated by financial gains, e.g., by
providing better advertisements through learning about their
customers, or forced by state actors. The infrastructure opera-
tor is always involved in client-server and hybrid architectures.
In P2P architectures, it is only involved when cellular links
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are used. Note that we do not assume transport encryption
in P2P scenarios, as key distribution and trust in such a
distributed architecture is more complex. Thus, in modern
cities where an infrastructure operator might also operate
RSUs, it might eavesdrop unencrypted P2P communication
in a larger area. Many privacy risks regarding infrastructure
operators can occur when using any smartphone application.
We hence focus on those which are specific to CCA-Systems.

3) Users: Attacks can also happen at the user level, either
executed by malware on a compromised smartphone or OBU,
or by an attacker who is registered as a user. By spoofing
messages or providing fake data, they can gain information
from system responses. Malicious users can be motivated
by personal (e.g., a stalker gaining information about their
victim), or financial reasons, (e.g., a burglar finding empty
homes or profiling the work hours of their victims). Multiple
malicious users in physical proximity could collude to achieve
a semi-global position, e.g., a network of criminals stalking
certain individuals.

4) Bystanders: A bystander is someone in proximity to
a user while not being part of the system. They appear in
P2P and hybrid architectures, as here they are able to listen
to wireless communication. For example, a single malicious
hacker eavesdropping communication to find out information
about their victim. Colluding bystanders eavesdropping P2P
communication are comparable to infrastructure operators in
our model, despite potential differences in coverage.

B. Privacy Threats in CCA-Systems
To avoid collisions, CCA-Systems require the user’s current

location, direction, and speed. But Global Navigation Satellite
System (GNSS) location data can be inaccurate. Thus, some
systems use sensor or personal data to improve the VRU’s
location accuracy by providing context information about their
current movement [60], [65] or by correcting the movement
direction [66], [67]. For example, accelerometer data is used to
detect a pedestrian stepping down from a curb [65]. Compared
to GNSS, this context provides an earlier and more precise
information that the pedestrian is on the road. However,
the gain of such contextual data must be balanced with the
incurred privacy threats, as demanded by the ISO/IEC 29100’s
related privacy principles of collection limitation and data
minimization [68]. Alternatively, raw sensor data can locally
be used to predict the VRU’s future movements and the result
can be forwarded.

Based on the used information types, we identify sev-
eral threats that we group into two categories: (1) Personal
information leakage and (2) user (re-)identification attacks.
Table II shows which collected data and metadata can be used
to perform the respective attack(s). We also show, whether
these attacks require single or multiple data points. We define
profiling as evaluating multiple data points of a user to
derive knowledge. Profiling requires linkability of subsequent
messages to the same user.

1) Personal Information Leakage: A personal information
leak means that personal information is available to an entity
without the individual’s consent. It can be caused by unautho-
rized disclosure of message contents, profiling data to infer

certain properties, or metadata analysis. The attacker must
obtain that information, and be able to link the information
to a certain user.

a) Location-based: Stalking means that an attacker is
able to find out the user’s current location without their
consent. We distinguish between proximate and remote stalk-
ing. Being absent from a location can also result in threats,
e.g., burglars identifying empty homes. Additionally, with
current direction and speed, the users’ next location can be
calculated. This enables linkability of subsequent messages,
even if no or changing sender identifiers are used. Profiling
can reveal a user’s significant locations, such as their home
and workplace, as well as friend’s locations [14]. The times
spent at those locations further reveal, e.g., the user’s working
hours. Moreover, future movements can be predicted [69].
Profiling location data of multiple users can disclose social
relationships [70]. Also, singular location visits can reveal
information about health, religion or political affiliation. These
attacks require an exact location and are not feasible with
location data from radio cells.

b) Sensor-based: Profiling sensor data from accelerom-
eters and gyroscopes over a short time period can be used
for activity recognition, such as walking, running or bik-
ing [71]. These activities might also be derived from the
computed future movement trajectories. When focusing on
cyclists, deriving cycling properties is possible, such as the
seat height [19] or the cyclist’s weight [20]. Driving behavior
can be derived from a car driver’s smartphone sensor data [72].
According to [18], gait recognition features reveal the level of
intoxication, a carried object’s weight, or demographics (age,
gender).

c) User Characteristics: Personal information such as
age, height, or weight can refine movement prediction [73].
Depending on how and where information is processed, stored,
and transmitted, it might be accessible by unauthorized actors,
e.g., if sent unencrypted or if the applied access control
mechanisms are not sufficient.

d) Risk Behavior: By detecting how many collision
warnings a user receives, e.g., through metadata analysis, a
traffic-based risk behavior can be determined. More warnings
may indicate that a person is, e.g., driving aggressively.

e) System Participation: Detecting a single message be-
tween a user and the system discloses that this person is
participating in the system.

2) User (Re-)Identification: With a user identification at-
tack, an attacker is able to link a user to a certain individual.
Re-identification means that an attacker has prior knowledge
of an individual and is able to precisely identify this person
among others. This includes linking two identities/devices to
the same individual. Another example is an attacker using an
external dataset (e.g., location check-ins in a social network)
to find out a user’s identity.

a) Location-based: Location traces are quite unique [13].
Four spatio-temporal data points suffice to identify 95% of
the individuals. Thus, an attacker collecting location data can
identify the corresponding individuals with high probability.

b) Sensor-based: Individuals’ gait features derived from
accelerometer data are unique and can be used for identifi-
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TABLE III: Attacker capabilities, positions, and mitigations.

Client-Server
(GP)

Client-Server
(LP) P2P

U IO O U IO O U IO B

Content ✓ ✓ ✓

if
ne

ar
by ✓2

if
ne

ar
by

Metadata ✓ ✓ ✓ ✓ ✓ ✓2

Profiling ✓ ✓ ✓ ✓ ✓ ✓2

Active ✓ ✓

Passive ✓ ✓ ✓ ✓ ✓ ✓ ✓

Global ✓1 ✓ ✓ ✓1 ✓ ✓ ✓

Local ✓ ✓

Possible Mitigations:

Encryption ✓ ✓ ✓ ✓

Pseudonyms3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Private Computing ✓ ✓ ✓ ✓ ✓

GP: Global processing, LP: Local processing, U: User, IO: Infrastructure
Operator, B: Bystander, O: Operator.
1A user achieves a global position by sending fake locations. 2Directly with
cellular networks, indirectly as operator of road side infrastructure. 3If
message content is unlinkable.

cation [16]. Similarly, car drivers can be re-identified [17],
while cyclists can be distinguished using the recorded sensor
data [19].

c) Hardware Fingerprinting: Unique hardware proper-
ties of a wireless antenna can be used for wireless fingerprint-
ing. An attacker in proximity of a transmitting user is able to
re-identify the device, even without any identifier [74].

d) Demographics: Gender, ZIP code, and birthdate al-
lowed to uniquely identify 63% of the US population [75].

3) Bystander Privacy: While we focus on users, by-
standers’ privacy can also be endangered. For example, an
attacker who knows that a person has joined their victim,
knows that they share a location (e.g., a car). To provide
transparency and respect users’ rights [68], bystanders must
be informed about these risks.

V. RESULTS

We now present the results of our privacy threat analysis.
We discuss the architecture-specific capabilities of attackers
introduced in Sec. IV-A and displayed in Table III. We show
which attacker under which circumstances can exploit the
threats introduced in Sec. IV-B. Table IV shows the resulting
list of threats, merging similar threats to ease the comparison
of the architectures. We refer to each threat as Ti, with i being
the index of this threat.

A. Client-Server Architectures

Fig. 2 resp. Fig. 3 show client-server architectures with
global and local processing, where users send their data to
a server. The server either calculates potential collisions by
itself (global), or applies a proximity filter and forwards the
relevant data to the users (local). With global processing, the
server sends a warning to the affected users. Otherwise, the
warnings are either generated locally on both users’ devices

(Fig. 3a), or only by one device and then sent to the other user
(Fig. 3b).

In all variants, the system operator can link messages, e.g.,
to the users’ IP address or username (T2 and T5 in Table IV).
An attacker with server access can hence profile the users’
data. User identification is possible with the profiled data (T8)
or IP address (T10). Furthermore, the user cannot deny to the
system operator that it has been at a certain location (T14).
This can be desired for security reasons, e.g., to be able to
block certain users due to misbehavior.

As the infrastructure operator can detect user communica-
tion, it can detect that a particular user is a participant (T17

and T21). Furthermore, it can identify the user, e.g., by their IP
address (T12), and thus link subsequent messages (T3). These
threats are not application-specific, but can be used to learn
more information about system users, e.g., to profile the traffic
behavior. This is possible, if the infrastructure operator can
distinguish warning messages from other messages (T18 and
T23), e.g., based on the direction, size, and timing.

The forwarding of user data for local processing enables
global and active attackers access to message content and
metadata. A malicious user can craft a message containing an
arbitrary spoofed location, and thus has access to messages
from the spoofed area. When user-generated warnings are
used, the victim’s identifier has to be sent with such data.
This enables profiling for remote malicious users (T4 and
T11). Such data can be used for personal information leaks
and user (re-)identification (T9 and T15). At the same time,
user-generated warnings are better for the VRU’s privacy, as
the data does not leave the device.

In addition to the profiling capabilities and threats described,
we identified architecture-specific interactive attacks.

1) Remote Stalking Attack: Location spoofing enables ma-
licious users to execute remote stalking attacks in local pro-
cessing architectures (Fig. 3). These attacks allow following
and finding other users without physical proximity.

a) Following a User: The attacker can regularly spoof a
location that is known to be only used by the victim, e.g., the
victim’s house’s driveway. When receiving a leaving trajectory,
the attacker knows the victim has left and can predict the
next location. By repetition, a remote stalking attack can
be executed with high probability. Similarly, an attacker can
remotely follow victims after spotting them on the street.

In architectures with global processing, malicious users can
execute weaker attacks. Knowing a unique location, several
trajectories around it can be spoofed. By receiving a warning
message, the attacker can assume that the victim has left their
home, but cannot calculate the next locations. The victim also
receives a warning, which can be suspicious.

b) Finding a User: Users in local processing systems
with user-generated warnings receive an identifier of the other
users. If a malicious user knows the victim’s identifier, it can
find the victims’ location in a wider area by flooding the
system with different locations in that area. When the victim’s
data is received, the attacker knows the victim’s exact location.
To conceal such an attack, multiple accounts could be used.
Moreover, finding and following attacks can be combined:
First, the attacker gathers the IP-address of the individual by
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TABLE IV: Identified threats for the architectures. The threat identifier (e.g., L.1.1) refers to the threat tree from [76]. Threats
in italic result from mobile phone usage.
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1 L.1.1: Subsequent messages can be linked, e.g., by the sender’s address ✓ ✓

Im
pl
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en
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n
de

pe
nd

en
t

2 L.1.1: The operator can link several messages, e.g., by their IP or identifier ✓ ✓ ✓

3 L.1.1: The infrastructure operator is able to link several messages ✓ ✓ ✓ (✓) ✓

4 L.1.1: A remote user can link several messages of other users, e.g., by their IP address ✓

5 L.2.2.1: Subsequent messages can be linked with high probability, e.g., by their
trajectory or personal data ✓ ✓ ✓ ✓ ✓ ✓

6 L.2.2.1: Proximate entities can link system messages by wireless fingerprinting ✓ ✓ ✓

Id
en

tifi
ab

ili
ty

7 I.2.1.1: The MAC address can be used for identification by proximate users ✓ ✓

8 I.2.3: The operator can profile data for identification ✓ ✓ ✓

9 I.2.3: A user can use the sensor data for identification through, e.g., gait ✓ ✓ (✓) ✓ ✓

10 I.2.1.1: The operator can identify a user, e.g., by their IP address ✓ ✓ ✓

11 I.2.1.1: A user is able to identify another user by their IP address ✓

12 I.2.1.1: The infrastructure operator is able to identify users ✓ ✓ ✓ ✓

N
on

-R
ep

ud
ia

tio
n

13 Nr.1.1: The user can’t deny having been at a certain location to proximate users (✓) ✓ ✓

14 Nr.1.1: The user can’t deny having been at a certain location to the operator ✓ ✓ ✓

15 Nr.1.1: The user can’t deny having been at a certain location to another remote user (✓) ✓

16 Nr.1.1: The user can’t deny being a system participant to proximate users (✓) ✓ ✓

17 Nr.1.1: The user can’t deny being a system participant to the infrastructure operator ✓ ✓ ✓ ✓

18 Nr.1.1: The user can’t deny having received a collision warning to the infrastructure
operator ✓ ✓ ✓

19 Nr.1.1: The user can’t deny having received a collision warning to another user ✓ ✓ (✓)

D
et

ec
ta

bi
lit

y 20 D.1: Proximate users can detect that the user is a system participant (✓) ✓ ✓

21 D.1: The infrastructure operator can detect that an individual is a system participant ✓ ✓ ✓ ✓

22 D.1: The warning message reveals to proximate users, that the user detected a collision ✓ (✓)

23 D.1: The infrastructure operator can detect that the user received a warning ✓ ✓ (✓)

Data Disclosure:

24 DD.3.1.2: The unencrypted data reaches all entities radio distance ✓ ✓ (✓)

spoofing the unique user’s location. Later, it can flood the
system with spoofed locations until the attacker finds the user’s
current location.

B. Peer-to-Peer Architectures

In this case, data are either broadcast in beacons (Fig. 4a),
transmitted in ad-hoc networks (Fig. 4b), or sent via cellular
networks. Either vehicles or VRUs send data, nearby users
receive these data and locally compute potential collisions.
Instead of transmitting their data, the nearby user can send a
warning to the sender (Fig. 4b).

In P2P architectures, transmitted data are by design only
available in a user’s proximity. Architectures using cellular
links for communication [53] involve an infrastructure oper-
ator. This global entity drastically impacts privacy threats, as
it has access to the content and metadata of a message and
can identify users (T12). Such an attacker does not require
physical proximity for their attacks. Similarly, attackers with

access to antennas in the area, e.g., RSU operators, have these
capabilities for all P2P architectures.

We assume that addresses in broadcast-based P2P systems
are message-specific, while they are device-specific in ad-
hoc and cellular architectures. With addresses, attackers can
link subsequent messages and identify users (T1, T3, and
T7). Nonetheless, messages contain the current and future
positions, thus they can be linked with high probability even
without identifiers in all architectures (T5). Furthermore, fin-
gerprinting could enable linkability (T6), which is in general
possible for all wireless communication. Profiling is thus pos-
sible, leading to the identification threats detailed in Sec. IV-B
(T9). Anyone in proximity can detect that a user is using the
system, access message contents, and thus know where a user
is located (T13, T16, T20, and T24). Here, the threat probability
for broadcast-based systems is decreased, as this requires the
user’s identification. Possible attackers include operators of—
or entities with access to—multiple antennas in the area.
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In cellular-based systems, the infrastructure operator can
detect the user’s participation (T17 and T21). If a user sends a
warning, the transmitting user cannot deny itself was warned
before a collision (T19 and T22).

P2P systems ease stalking: Usually, the attacker must keep
a visual contact to their victim. However, if the victim is
a participant of the system, this distance changes to the
communication range, as the system reveals their location.
We assume that, especially in urban areas, the communication
range is higher than the visual contact distance required for
stalking. Thus, the attacker gains an advantage.

C. Hybrid Architectures

They combine direct and cellular communications, and can
distribute the processing between the VRU, car and server.
A combination of the previous attacks can hence occur. For
example, a malicious user can obtain information about a
certain user through direct communication, requiring physical
proximity. After gaining enough data to create a user’s profile,
the attacker can use them to re-identify the user on the server
by colluding with the operator. Overall, threats to hybrid
systems are implementation-dependent combinations of the
previously introduced threats.

D. Comparison

In Sec. IV-B, we have shown privacy threats posed by
different data types. In general, reducing the data usage,
frequency, or granularity, increases the user’s privacy. For
example, transmitting results of local computations is more
privacy-friendly than transmitting raw data for remote compu-
tations. Moreover, this is more compliant with the principles
of collection limitation and data minimization [68].

In client-server architectures, a central entity, e.g., the op-
erator or a hacker gaining server access, can profile the users’
data. The advantage is that (proximate) users cannot access
these data, unless local processing is used. Nevertheless, we
have shown in Sec. IV-B that profiling poses major privacy
risks, leading to personal information leakage and the ability of
user re-identification. Furthermore, the infrastructure operator
might derive the risk behavior of its customers by metadata
analysis. Local processing architectures have the potential to
be the most dangerous from a privacy perspective, as they
enable, e.g., remote stalking attacks from malicious users in
addition to a powerful server operator. As they maximize the
number of entities with data access, these architectures do not
comply with the data minimization principle [68] and could
thus not align with privacy laws, such as the GDPR.

In contrast, in P2P, data are only available in the user’s
proximity, but readable for everyone. Attackers can either be
nearby or must have access to multiple receivers in the region,
e.g., operators of RSUs. This also includes the mobile infras-
tructure operator, especially for cellular-based architectures.
They have access to the user’s sensitive information, which
simplifies stalking and enables collecting personal identifiable
information. When using cellular communication, threats simi-
lar to client-server systems arise, as the infrastructure operator,
if acting as an attacker, has access to all information. The

system operator must inform users about the public sharing
of their information to anyone in proximity. As the attacks
require message linkability, broadcast-based systems have a
privacy advantage. But the message by design includes current
and future location, increasing the linkability probability even
in such architectures.

For hybrid architectures, the possible attacks consist of
combinations of the threats for P2P and client-server systems.
Furthermore, attacks combining recorded knowledge from
one architecture with another architecture are possible. They
depend on the implementation, making a general statement is
thus impossible.

In summary, the privacy advantage of either client-server or
P2P architectures depend on the users’ threat model: If many
local entities are not trusted, client-server architectures would
be preferred. In this case, we have further shown in our analy-
sis that systems with global processing have an advantage with
respect to privacy. In absence of any protection mechanisms,
the operator can still collect the exact location data, and has
access to any data used in the system, leading to massive
privacy threats. In contrast, if a powerful central operator
is not trusted, P2P architectures would be preferred. In this
case, everyone in proximity is able to read all data, thus the
privacy also depends on data minimization [68]. Nevertheless,
the broadcast-based approach shows overall the fewest privacy
threats, and these mostly originate in the linkability of the
transmitted trajectories.

E. Unawareness, Unintervenability and Non-Compliance

While these aspects do not depend on the architecture, they
still can pose severe privacy threats. Unawareness threats do
not only occur due to missing transparency, access, or privacy
controls. People sharing their car with, e.g., friends, can make
them to system participants without their knowledge. Hence,
the user must ensure that the uninvolved person knows about
data collection and processing.

Non-compliance relates to the adherence of standards, such
as ISO/IEC 29100 and their principles [68]. Except for data
minimization, information security and privacy compliance,
these principles relate to LINDDUN’s unawareness and un-
intervenability threat, as well as to the non-compliance threat.
Thus, the operators of such systems must inform their users
about, e.g., the collected data, the information that can be
derived from them, and who can access the data. They must
make clear statements about, e.g., data retention, ensure their
correct implementation, and provide methods for users to
access, correct, and delete their data. If processing or involved
parties change, they must ensure that users are notified and can
always opt out.

VI. DISCUSSION

Security threats, e.g., an attacker dropping a warning mes-
sage, can lead to safety issues, but can also lead to new privacy
threats. As detailed in Sec. III-C, we only consider security
threats that can be leveraged to increase the impact of pri-
vacy threats. Nevertheless, we assume security standards, e.g.,
access control, secure servers, and transport encryption, are
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Fig. 5: An example of a possible privacy label providing user transparency for a central CCA-System, as suggested by [77].

TABLE V: Security goals conflicting or supporting privacy
goals in CCA-Systems.

Conflicting Measures Supporting Measure

Authentication ↔ Anonymity Encryption

Repudiation ↔ Non-Repudiation Access-Control

User Tracking ↔ Unlinkability

implemented. Without such security measures, implementing
a privacy-preserving system would be impossible. But some
security measures are against privacy goals, and vice versa. For
example, authentication enables user tracking by the system
operator. But, the system operator may require authentication,
so that misbehaving users can be identified and, e.g., blocked
or prosecuted. To execute such actions, the user’s data might be
stored for a longer duration, so that anomalies can be detected.
By doing so, users can be tracked and profiled, breaching
their privacy. Spoofing can allow attackers to gain knowledge
about other user’s information. Ensuring the integrity and
authentication of user messages reduces such issues. We show
examples of conflicting and complementing goals in Table V.
A future security analysis specific to such systems needs
to find such issues, propose mitigations, and balance such
conflicts.

In addition to location, direction, and speed, CCA-Systems
can rely on other data to improve collision detection, as shown
in Sec. IV-B. The exact trade-off between performance and
privacy must further be evaluated in future work. Furthermore,
the application of the principle of data minimization differs
between architectures: In P2P systems, all users in proximity
have access to each other’s data. In central systems, the users
can not access these data, but a powerful central entity can.
If local processing is employed, users and a central entity are
able to access the user’s data. To be compliant with privacy
standards and the GDPR, but also from an ethical standpoint,
the benefit of using more data and involving more entities
should accurately be researched in future work, so that it can
be balanced with associated privacy risks.

The involved entities, data and thus privacy threats vary
widely between the architectures. Such differences must be
made transparent comprehensibly to users, as CCA-Systems
need to ensure user awareness. Future work could therefore
explore methods, e.g., by providing machine-readable trans-

parency information to feed a dashboard and a chatbot as
proposed in [78], but adapted to CCA-Systems. Furthermore,
privacy labels as suggested in [77] could be used for enhancing
user transparency. They provide privacy information in a
uniform and comparable way. Fig. 5 shows an example for a
centralized CCA-System. Similar efforts in future work should
be conducted, so that future systems are compliant with the
ISO/EIC 29100 openness, transparency, and notice privacy
principle.

Privacy threats can be mitigated, e.g., by cryptographic mea-
sures. Most of the identified threats are, or originate in, linka-
bility threats. Existing work in ITSs employs pseudonyms [30],
[31], [33], [79] to mitigate such threats. However, we show that
in CCA-Systems messages are also linkable by their contents,
as they contain current and future location. Thus, pseudonyms
alone are insufficient. Private computing methods, such as
homomorphic encryption or secure multi-party computation,
could be used to hide the message content and mitigate their
linkability. Their usage has been investigated in VANETs [80]
and in crowdsensing applications [81]. In combination with
pseudonyms, they could mitigate some identified privacy
threats.

In addition, reputation schemes and misbehavior detection
could replace the need for authentication and prevent, e.g.,
spoofing attacks. Both has been applied in vehicular communi-
cation [82], [83] and in participatory sensing applications [84].

Using such measures to reduce threats requires careful
evaluation in terms of overheads. In particular, latency is a
critical parameter, as CCA-Systems must operate in real-time
environments. Goetz et al. [85] determined, that a communi-
cation delay exceeding 20ms leads to a probability of 10%
for missed and false alarms. Thus, latencies must preferably
remain below this limit. We show proposed mitigations and
their expected impact on the processing delay in Table VI.
All of them rely on cryptography, either asymmetric, sym-
metric, or both. Performance measurements of asymmetric
post-quantum cryptography demonstrate that sign and verify
operations take around 0.031ms resp. 0.096ms on a modern
CPU [86]. Established symmetric algorithms such as Advanced
Encryption Standard (AES) are implemented in hardware and
their operations only take several nanoseconds on mobile
devices [87]. Thus, even if low-end hardware would be used,
we expect basic cryptographic operations to have a negligible
impact. Transport encryption mitigates privacy issues in cen-



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 10

TABLE VI: Possible privacy-preserving mitigations and their
expected impact on the processing delay.

Mitigation Expected Impact on Processing Delay

Encryption Negligible [86] [87]

Pseudonym Scheme Negligible [88]

Reputation Scheme Receiver: 1 additional
round of communication [84]

Homomorphic Encryption > 200ms [89]

tralized systems. To decrease the introduced latency, session
resumption techniques could be used to avoid handshakes
when sending the data. Reputation and pseudonym schemes
require signing and verification of the incoming message and
their sender. As these operations have a negligible performance
impact, processing delay is only increased if the verification
requires communication with another party, such as in [84].
Pseudonyms would be changed in-between the processing, and
thus do not have an additional delay on processing [88]. Thus,
despite requiring further investigation, these mitigations seem
viable. In contrast, current techniques for private computing
are orders of magnitude too slow. For example, the fastest
homomorphic encryption library takes around 200ms for the
calculation of the squared Euclidean distance of two vectors
of size 64 [89]. Compared to collision detection algorithms,
this measured computation is less intensive.

VII. CONCLUSION

By including VRU devices, many system architectures differ
in terms of exchanged data, topology, processing locations, and
warning mechanisms

Based on seven system architectures, we have conducted
a privacy threat analysis. We have defined attacker models
and have given an overview of the threats resulting from
the used data. Our findings show, i.a., that reducing server
load on server-based systems by distributing processing tasks
to mobile devices bears a great risk of stalking attacks by
other users. Moreover, broadcast-based P2P architectures can
avoid many privacy risks by design, compared to client-server
architectures, which have the risk of a powerful global attacker
when having server access. But a similar powerful attacker can
occur in other architectures as well, as, e.g., operators of smart
traffic infrastructure have the ability to eavesdrop messages in
a whole region. Thus, not all privacy threats can be avoided by
architectural decisions and additional countermeasures must
be applied. Possible countermeasures could make subsequent
messages unlinkable and thus eliminate most privacy threats.
Their application must be carefully investigated to ensure
their efficacy and their impact on the performance. Hence,
a future analysis of the expected trade-offs between safety,
performance, and privacy is necessary.
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