
Trimming the Tree: Tailoring Adaptive

Huffman Coding to Wireless Sensor Networks

Andreas Reinhardt1, Delphine Christin2, Matthias Hollick2,
Johannes Schmitt1, Parag S. Mogre1, and Ralf Steinmetz1

1 Multimedia Communications Lab, Technische Universität Darmstadt
Rundeturmstr. 10, 64283 Darmstadt, Germany

{areinhardt, jschmitt, pmogre, ralf.steinmetz}@kom.tu-darmstadt.de
2 Secure Mobile Networking Lab, Technische Universität Darmstadt

Mornewegstr. 32, 64293 Darmstadt, Germany
{delphine.christin, matthias.hollick}@seemoo.tu-darmstadt.de

Abstract

Nodes in wireless sensor networks are generally designed to operate on a limited
energy budget, and must consciously use the available charge to allow for long
lifetimes. As the radio transceiver is the predominant power consumer on current
node platforms, the minimization of its activity periods and efficient use of the
radio channel are major targets for optimization. Data compression is a viable
option to increase the packet information density, resulting in reduced trans-
mission durations and thus allowing for an optimized channel utilization. The
computational and memory demands of many current compression algorithms
however hamper their applicability on sensor nodes.

In this paper, we present a novel variant of the adaptive Huffman coding
algorithm, operating on reduced code table sizes and thus significantly alleviating
the resource demands for storing and updating the code table during runtime. An
implementation for tmote sky hardware proves its adequacy to the capabilities
of sensor nodes, and we present its achievable compression gains and energy
requirements in both simulation and real world experiments. Results anticipate
that overall energy savings can be achieved when transferring packets of reduced
sizes, even when increased CPU utilization is incurred.

1 Introduction

In general, energy budgets of nodes in wireless sensor networks (WSNs) are
tightly limited [1], thus necessitating the design of applications with increased
awareness to their energy consumption. As radio transmissions are an inher-
ent and crucial characteristic of WSNs, but current radio transceivers, such as
the widely employed CC2420 device, still expose power consumptions of tens
of milliamperes [2], permanent operation of the radio transceiver leads to quick
depletion of the battery in both transmission and reception mode. This problem
can be approached in several ways, reaching from energy-aware medium access
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control (MAC) protocols to highly application-specific means of data compres-
sion. In this paper, we focus on compressing packet payloads, targeting to reduce
the transmission duration and thus the energy required to exchange data. We in-
vestigate the achievable energy savings while disregarding the influence of MAC
protocols in our analysis, as reduced packet transmission durations always cor-
respond to savings in transmission energy. The share of the overall radio energy
consumption however depends on the selected MAC protocol and its features
like duty cycling and low-power listening [3]. The presented solution is designed
to remain compatible with both existing header compression schemes as well as
energy-aware MAC protocols. In fact, our approach is even capable of compress-
ing both packet payloads and headers.

While data processing and compression mechanisms specifically tailored to
an application may provide optimal compression results, they require individual
adaptation to sensor data and packet structures and thus place an additional
load on the application developer. In contrast, generic data compression solu-
tions, as known from desktop computers, often greatly exceed the capabilities
and available resources of embedded sensing systems. In this paper, we pur-
sue the strategy to adapt a generic compression algorithm to the capabilities of
sensor nodes. The resulting generic and application-agnostic solution allows to
compress data without necessitating additional programming efforts. Opposed
to existing approaches, which buffer multiple packets of data prior to compres-
sion, our approach targets applications that rely on immediate transmissions;
i.e. each packet is compressed individually prior to its transmission.

We focus on the adaptation of a lossless adaptive data compression algorithm,
based on adaptive Huffman coding (AHC), where literals in the input sequence
are replaced by binary codes with a length reciprocal to the frequency of their
occurrence [4]. Our analysis of the existing adaptive Huffman coder implemen-
tation for WSNs by Guitton et al. in [5] however revealed that on a TelosB
platform, more than 62% of both program Flash and RAM are consumed to
maintain a single compressed unicast radio connection. Instantiating more than
one connection has not been possible at all due to the memory requirement for
storing the corresponding Huffman code table. We address this limitation by
making use of Huffman code trees with a limited number of entries, greatly re-
ducing computational and memory consumption at the possible cost of slightly
degraded compression ratios. By comparing the achievable compression gains
and energy requirements, we prove the applicability and benefits of the pro-
posed approach considering the data-oriented characteristics of traffic in many
deployments.

The contributions of this paper are as follows:

1. We analyze the characteristics of WSN traffic from different deployments
and prove that compression gains can be achieved when only a subset of the
contained symbols are encoded.

2. We present a modification to the adaptive Huffman coding algorithm, which
operates on code trees with a limited number of elements.



3. We prove its adequacy to sensor networks through an evaluation of its com-
pression gain and energy demand as well as its applicability on real hardware.

In a first step, we present existing approaches towards data compression
in WSNs in Sec. 2. We describe selected data traces taken from real sensor
network deployments and estimate their compression gain when encoding only a
subset of symbols in Sec. 3. In Sec. 4, we present our modifications to the AHC
algorithm. Simulation results for both compression gain and energy consumption
are presented in Sec. 5, followed by the results from a real-world experiment. We
conclude this paper in Sec. 6 and provide an outlook on prospective future work.

2 Related Work

Pottie and Kaiser have determined in [1] that the energy demand to transfer one
kilobyte of data over a distance of one hundred meters in a WSN is the same
as required for executing three million CPU instructions. Later, this observa-
tion was confirmed by Sadler and Martonosi, who determined that the one-hop
transmission of a single byte consumes energy equivalent to performing several
thousand instructions on an MSP430 microcontroller [6]. In the same work, the
authors propose the RT-LZW (retransmission LZW) algorithm, which achieves
compression gains up to a factor of 2.5x when operating on aggregated data
blocks of 528 bytes each. It relies on retransmissions of lost packets to ensure
that data required to construct the code dictionary is present at both parties,
possibly resulting in energy expenses for these additional transmissions.

Guitton et al. have analyzed the applicability of adaptive data compression
in WSNs in [5]. They have extended the AHC algorithm by fault-tolerant mech-
anisms, which groupwise acknowledge transfers of encoded data and adapt the
dictionaries to the successfully received data only. They do however not mea-
sure achievable compression gains or the energy consumption of their algorithm.
When packet structures can be statically defined prior to node deployment and
some fields are known to remain constant or only change incrementally, the
EasiPC packet compression scheme by Ju and Cui [7] can also be used to trans-
mit changed fields only.

In [8], Tsiftes et al. have focussed on compressing firmware updates that are
transferred over the radio, and designed the SBZIP algorithm, a derivative of
BZIP2, adapted to the requirements present in sensor networks. However, the im-
plementation of SBZIP on sensor nodes does not target to compress application-
generated data, but is instead used to decompress application code updates.
Chou et al. present means to reduce an overall network’s energy consumption by
exploiting the Slepian-Wolf coding theorem in a low-complexity implementation
in [9]. Hereby, no inter-node communication overhead is required as long as the
correlation between the data is known. Targeting to reduce the overall number
of packet transmissions, the approach is orthogonal to our concept of reducing
the sizes of packets and can be used supplementary.

In [10], we have presented the Squeeze.KOM compression layer as an archi-
tectural element for sensor network nodes. Using a differential coding module,



compression gains of up to 35% can be achieved at low computational cost and
overall energy savings. Additionally, we have presented a feasibility study of data
compression on WSN nodes in [11]. Focused on the energy gains of application-
specific compression means for a wearable sensor, we have determined overall
platform energy savings of up to 5% in a realistic application setting.

We are however not aware of any previous work that discusses the energy effi-
ciency of adaptive compression algorithms in detail while providing an extensive
analysis of their applicability on current WSN hardware.

3 Analyzing the Traffic in Existing Sensor Networks

In the last decade, a variety of WSNs have been deployed in a wide range of
scenarios, including wildlife surveillance [12, 13], object tracking [14], or environ-
mental monitoring [15]. In most of the WSN deployments, network traffic follows
a convergecast scheme; all data is routed out of the network using a collection
tree or equivalent means, rooted at one or more sinks [16]. Especially when the
packet payload is comprised of environmental data, transfers often take place at
a regular interval. Timely message delivery is not essential in such scenarios, but
the loss of a series of packets is often interpreted as a node failure, hence regular
successful transmissions are essential to determine the state of the network.

For our analysis, we have considered four exemplary data sets from exist-
ing WSN deployments: PermaSense [15], Glacsweb [17], and two series taken
from the Porcupines [18]. For PermaSense, we have used 19,730 packets of 30
byte payload each transmitted by node 2036 from 15 November to 15 December
2008, taken from the project website3. From the Glacsweb deployment, we have
used all 523 available packets of 52 byte payload, and in case of the Porcupines,
we have selected two representative phases of 2.203 packets of 42 bytes each,
where the first one was recorded during wearer activity (termed activity phase)
and the second one when the wearer was asleep (sleep phase). While the two
former data sets are physical measurements from sensors deployed for environ-
mental monitoring, with readings changing smoothly over time, the latter are
taken from motion sensors attached to a human and thus reflect both phases
of sudden motions and steadiness. Representative excerpts of the four data sets
are plotted in Fig. 1 for reference. It should be noted at this point that only five
different symbols are present in the entire data stream in the Porcupine sleep
phase, whereas the active Porcupine data set is composed of 89 different values.
Glacsweb makes use of 185 different symbols, and PermaSense spans the entire
input symbol range of 256 values.

To attain an estimate for the compressibility of the data sets, we show the
analysis of their symbol distributions in Fig. 2, showing that the occurrence
frequencies of the used symbols are not distributed evenly over the data set.
In contrast, the data sets rather expose a number of subset of symbols with
significantly greater occurrence numbers. The cumulative distribution function

3 http://tik42x.ee.ethz.ch:22001
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Fig. 1. Representative excerpts of the used data sets

of the symbols, which is also shown in the figure, also indicates that only a
fraction of the contained symbols show frequent occurrences, while the remaining
symbols have almost negligible occurrence numbers.

3.1 Huffman Coding Revisited

The foundation of Huffman coding is the assignment of codes to input symbols,
with their length being reciprocal to their occurrence frequency within the input
stream. In static Huffman coding [19], the input sequence is analyzed prior to
encoding, and occurrence frequencies of all contained symbols are determined.
On completion of this process, a tree is constructed, containing mappings for all
input symbols to their corresponding Huffman code. This tree must be sent to
the receiver before the actual data is transmitted to ensure both parties operate
on the same dictionary. This represents additional overhead, which is however
generally encountered by a near-optimal adaptation to the input sequence. The
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Fig. 2. Symbol distributions for the used data sets

major drawback when using static Huffman coding is the required full knowledge
of the data, which strongly limits its applicability in sensor networks, where
sensor readings become available periodically. In such case, the algorithm needs
to operate on individual packets, and thus transmit the code table in each of
them.

Adaptive Huffman coding is based on the maintenance of a the code table
in a dynamic way [4]. In contrast to static Huffman coding, where this table is
generated prior to the actual encoding step, AHC assigns (and possibly modifies
when occurrence frequencies change) the code tree during runtime. To allow for
these dynamic adaptations to occur, a dedicated placeholder symbol for an input
symbol not yet encountered (NYE ) is part of the code tree. This symbol is always
maintained with an occurrence frequency of zero and thus always assigned one of
the longest codes. Whenever a symbol not yet present in the Huffman table needs
to be transferred, the NYE symbol is transmitted, followed by the unencoded
representation of the symbol. The symbol is then added to the code tables of
both parties, so its newly assigned code can be used on its next occurrence.



3.2 Estimation of Compression Gains

In Fig. 2, the cumulative distribution functions for the studied real-world sensor
data indicate that the full range of input symbols is dominated by symbols with
few occurrences within the data stream, whereas only a subset of symbols with
high occurrence frequency is present. To estimate the compressibility of the data,
we evaluate the resulting output sizes when only a subset of symbols is being
compressed while all remaining symbols are sent unencoded.

Let us assume that a compression algorithm can encode n symbols of the size
of a byte, leaving the remaining 256−n symbols uncompressed. We furthermore
assume that γi represents the number of occurrences of the byte value i in the
input sequence, and that f(i) is the function that assigns a code length (in bits)
to this symbol. In case of an uncompressed transmission, f(i) would statically be
assigned a value of eight bits. Given these definitions, the length l of the output
sequence resulting from the data compression step can be calculated as shown in
Eq. 1, which sums the lengths of each symbol’s code multiplied by the number
of its occurrences within the input sequence.

l =

256
∑

i=1

f(i) ∗ γi (1)

Symbol-oriented compression schemes, such as Huffman coding, create the
code length function f(i) from the state of their code table. To assess if compres-
sion with a reduced number of entries in the code tree is feasible, we have used
two approximation functions for code lengths; while fe in Eq. 2 assumes an equal
length for the symbols that are encoded, ff in Eq. 3 assigns the lengths of the
output codes to follow the symbol’s rank r(i) within the occurrence frequency
list. Code trees for both functions are also depicted in Fig. 3.

fe(i) = 1 +

{

⌈ld(n)⌉ if i <= n

8 if i > n
(2)

ff(i) = 1 +







r(i) if i < n

n− 1 if i = n

8 if i > n

(3)

(10)

(3)

d (1)c (2)

(7)

b (3)a (4)

(a) Code tree following fe distribution

(10)

(6)

(3)

d (1)c (2)

b (3)

a (4)

(b) Code tree following ff distribution

Fig. 3. Trees for fe and ff with n = 4, resulting from the input sequence aaaabbbccd



0

1000000

2000000

3000000

4000000

Ref HC 1 2 4 8 16 32 64 128 256

D
at

a 
si

ze
 in

 b
yt

es

Ref. data and AHC for limited code tree (PermaSense)

Estimate using fe
Estimate using ff

0
5000

10000
15000
20000
25000
30000
35000

Ref HC 1 2 4 8 16 32 64 128 256

D
at

a 
si

ze
 in

 b
yt

es

Ref. data and AHC for limited code tree (Glacsweb)

Est. using fe
Est. using ff

0
50000

100000
150000
200000
250000

Ref HC 1 2 4 8 16 32 64 128 256

D
at

a 
si

ze
 in

 b
yt

es

Ref. data and AHC for limited code tree (Porc. active)

Estimate using fe
Estimate using ff

0
50000

100000
150000
200000
250000

Ref HC 1 2 4 8 16 32 64 128 256

D
at

a 
si

ze
 in

 b
yt

es

Ref. data and AHC for limited code tree (Porc. sleep)

Estimate using fe
Estimate using ff

Fig. 4. Compression gain estimates for the data sets using fe, ff , and Huffman coding

When only a subset of the possible input symbols is present within the table
mapping from input symbol to corresponding code, an additional indicator is
required to mark the following bits as plaintext or encoded symbol. We have
selected a one bit prefix to allow for this distinction, which is also reflected in the
two functions. The results for this preliminary analysis are shown in Fig. 4, which
additionally indicates the compression gains when using static Huffman coding
to put the results into perspective. Although clearly indicating that savings can
be achieved even when using the presented non-ideal code length distributions,
the compression gain shows a strong dependence on the used data set.

As the Glacsweb and Porcupine (sleep mode) data sets only expose a small
number of symbols with high occurrence frequency, the ff function presents a
better basis to achieve high compression gains, as very short codes are assigned
to the most frequently occurring symbols. This way, gains of 82% are achieved
for Glacsweb (at n=1), and up to 62% for the Porcupines (at n=4). In con-
trast, the active Porcupine and PermaSense data sets contain a larger number
of frequent symbols, which are not covered well by the ranking performed in ff .
When applying fe instead, compression gains of 17.3% (at n=32) for the active
Porcupine phase, and 12% for PermaSense (at n=16) can be determined.

4 Adaptive Huffman Coding in Sensor Networks

As outlined in Sec. 3.1, a Huffman code tree must be stored for each communi-
cation link, with each of the nodes in the tree containing information about the
symbol it represents, its occurrence frequency, its status (e.g., root, leaf, or NYE)
as well as the identities of its children nodes and its parent. As 2n− 1 nodes are
required to allow for n code entries in a tree, 511 nodes must be stored within
the tree to allow for mappings of 256 input symbols. This number requires nine
bits to be represented and thus two bytes on any byte-aligned microcontroller.
As each tree node needs to store six bytes for its parent and child identities as
well as the input symbol it represents, its frequency and status information, a



minimum of nine bytes are consumed. In summary, this results in a demand of
more than four kilobytes of RAM for a Huffman tree storing 256 symbols. Be-
sides the tree itself, a table for the occurrence frequencies of input symbols must
be maintained, consuming another 256 bytes at least. This theoretical analysis
also confirms the behavior observed in Guitton’s implementation [5], where the
memory consumption of the code tree disallowed us to instantiate more than one
connection. Additionally, whenever a packet is sent or received, the Huffman tree
must be updated according to its new occurrence frequency by a number of swap
operations, which pose computational overhead.

The analysis of the resource demands of AHC has shown its limited applica-
bility in WSNs due to the excessive resource demands, but also resulting from
the lack of dynamic memory allocation schemes in TinyOS [20]. When operating
on statically assigned memory, worst case behavior needs to be assumed for the
assignment of memory during compile time, i.e. memory needs to be reserved
for all symbols, including those that never occur within the input sequence.

4.1 Trimming the Tree

Our observations show that the memory consumption and thus the applicability
of the AHC implementation on WSN nodes is mainly limited by the number of
symbols that are stored in the Huffman tree. However, as discussed in Sec. 3.2,
the symbol occurrence frequencies of traffic in current WSNs are often strongly
biased towards a small subset of symbols, while the remaining input characters
might only rarely or never be part of the input string. Our preliminary esti-
mations of the achievable compression gain, as shown in Fig. 4, confirm that
packet size reductions are possible when only a subset of symbols are stored
within the Huffman tree, while the remaining ones are transferred unencoded.
The selected estimation functions were however neither adaptive to the traffic
(i.e., a priori knowledge about the whole data set was required), nor did they
match the characteristics of the traffic precisely.

As the memory consumption of the code table is linearly dependent on the
number of entries stored within the table, keeping only a subset of input symbols
in the tree can significantly reduce its memory requirement. Besides, when a
smaller number of node IDs must be stored, their size can also be reduced (an
8 bit wide node ID field is sufficient to store up to 128 symbols in the tree). As
a third benefit, the time to restructure the tree when changes in the occurrence
frequencies are encountered also depends on the number of entries, and can in
consequence be improved by reducing the tree size. In the following, we analyze
the effects of confining the Huffman code tree to a limited number of entries.

4.2 Populating the Tree

The main difference between our proposed approach and conventional adaptive
Huffman coding lies in the process of populating the tree. While in AHC, the
NYE node is always present to attach unknown symbols to the tree, the limita-
tion of the number of tree nodes in our algorithm can lead to situations where



NYE (0)

(a) Initial empty tree

(6)

a (6)NYE (0)

(b) 6 times a added

(8)

a (6)(2)

b (2)NYE (0)

(c) 2 times b added

(9)

a (6)(3)

b (2)c (1)

(d) 1 c added, NYE replaced

(10)

a (6)(4)

b (2)d (2)

(e) 2 d added, c replaced

(11)

a (6)(5)

c (3)d (2)

(f) 2 c added, b replaced

Fig. 5. Populating a tree with capacity for 3 symbols with the sequence aaaaaabbcddcc

the NYE node, with its assumed occurrence frequency of zero, is being replaced
by a symbol. We encounter this situation by keeping track of the occurrence
frequencies of the symbols stored in the tree, and replacing the element with the
smallest occurrence frequency in case a more frequent symbol is encountered.

We depict the operation of the proposed implementation in Fig. 5, where an
input sequence of aaaaaabbcddcc and a tree capacity of 5 nodes (equalling 3
symbols) is assumed. The nodes in the tree are labeled with the symbols they
represent as well as their occurrence counter. In the initial phase (Fig. 5a–c),
updates to the code tree are performed identical to AHC, i.e. either the counter
of a symbol present in the tree is incremented, or a new symbol is added to the
tree through the NYE node. In Fig. 5(d) however, the new input symbol c is
encountered in the input sequence, while the limited number of nodes disallows
the NYE to create a new tree node for the symbol. In contrast to AHC, our
approach replaces the NYE by the symbol node; the tree thus loses the inherent
capability of being extended through the NYE node. To still adapt to the input
sequence during runtime, we follow the approach of replacing the node with
the smallest counter value when a symbol with greater counter is present, such
as shown in Fig. 5(e) and 5(f). To allow for this, we keep track of all symbol
occurrence frequencies during runtime. All resulting codes are prefixed by a single
bit indicating if the following bit sequence should be interpreted as a code from
the Huffman tree or as an unencoded symbol. Assuming the tree state depicted
in Fig. 5(f), the letter c would thus be encoded as the binary code 101, where
the 1 bit indicates that the following bits are taken from the code table, and the
01 bits refer to the branches taken to reach the value (0: left, 1: right). Similarly,
symbols not contained in the table, like the numeric digit 2 can be represented
as 000100010, where the first 0 bit indicates that it is followed by an unencoded
symbol, and the 00100010 bits contain the ASCII representation of the digit.

The limited code tree size reduces the algorithm’s resource demands signifi-
cantly, as only codes for the most frequently occurring input symbols are stored,
and less memory and computation time is required when reorganizing the table.



Especially, as each sensor node needs to maintain a Huffman table for each con-
nection, the proposed reduction in terms of memory consumption is essential to
successfully apply AHC in WSNs. Still, the adaptive character is maintained,
allowing for high compression gains.

5 Analysis and Evaluation

Concluding from the compression gain estimates presented in Sec. 3.2, it is ap-
parent that size reductions can already be achieved when using simplified code
length approximations while limiting the number of entries within the tree. In
consequence, we have presented the design of an adaptive Huffman coding algo-
rithm that operates on a limited code tree size. In this section, we analyze its
compression gains when applied to the data sets introduced in Sec. 3. Secondly,
we show the algorithm’s applicability on sensor node hardware by evaluating
both its resource and energy demands. In a third and final step, we verify the
applicability of our algorithm and energy-efficiency in a real-world experiment.

5.1 Analysis of the Compression Gain

We have compressed the four presented data sets with the algorithm and varied
the parameter n, indicating the number of symbols that can be stored in the
tree. We show the sizes of the compressed sequences in Table 1 in comparison
to the uncompressed data, which we use as reference for all following analyses.

Table 1. Output sizes in bytes (and ratio to input) for AHC with limited tree size

#Symbols
PermaSense Glacsweb

Porcupines
in tree (n) active sleep

Reference 591930 (1.0) 27144 (1.0) 89754 (1.0) 89754 (1.0)
1 625211 (1.06) 4903 (0.18) 91172 (1.02) 72816 (0.81)
2 595944 (1.01) 7929 (0.29) 88487 (0.99) 49835 (0.56)
4 567247 (0.96) 7794 (0.29) 84249 (0.94) 34504 (0.38)
8 539434 (0.91) 7766 (0.29) 79065 (0.88) 34940 (0.39)
16 517086 (0.87) 7759 (0.29) 74431 (0.83) 34940 (0.39)
32 510933 (0.86) 7772 (0.29) 70931 (0.79) 34940 (0.39)
64 519592 (0.88) 7807 (0.29) 71884 (0.80) 34940 (0.39)
128 537240 (0.91) 7869 (0.29) 71972 (0.80) 34940 (0.39)

Notably, the achievable compression gains show a strong correlation to the
used data set and its characteristics. However, the number of entries in the code
tree also has a major impact on the compression gain. While very small values for
the symbol count n allow to encode predominant symbols in a very efficient way,
the one bit prefix increases the encoded length of all other symbols. Especially
in the PermaSense and active Porcupine data sets with many different contained
symbols, this even leads to size increases of the output for certain configurations



Table 2. Resource consumption of AHC with limited tree size compared to reference

#Symbols in tree Ref 1 2 4 8 16 32 64 128 256

Flash (bytes)
22800 23838 23932 23936 23936 23936 23936 23936 23926 23918
46.3% 48.5% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7%

RAM (bytes)
5086 6122 6138 6170 6234 6362 6618 7130 8154 10202
49.7% 59.8% 59.9% 60.3% 60.9% 62.1% 64.6% 69.6% 79.6% 99.6%

of n. In contrast, if too large values for n are chosen, the compression gain slightly
degrades as a result of the longer code lengths of rarely occurring symbols.

5.2 Applicability on WSN Hardware

Before analyzing the algorithm’s overall energy consumption, its applicability
on current node hardware has been investigated. We have selected the tmote

sky platform as our reference, comprising a TI MSP430 microcontroller (MCU )
with 48 kilobytes of program Flash and 10 kilobytes of RAM [21]. This platform
also acts as the basis for all further analyses in this paper. To assess the resource
consumption, we have implemented a simple application in the Contiki operating
system [22], which periodically takes sensor readings and transmits them over
the radio. We have compared our variant of the adaptive Huffman coder to
the reference implementation without compression functionality. Results for the
required amount of Flash and RAM are shown in Table 2 and indicate that
the additional amount of resources required by our implementation stays within
reasonable limits when less symbols need to be stored within the tree, even
though an array containing all symbol frequencies is required. With less than
an 1,150 bytes increase in the program memory consumption, and an overhead
of 8 bytes per Huffman table node, the algorithm proves applicable on the used
sensor node hardware, leaving sufficient resources available to the application.

5.3 Energy Analysis

If we consider the computational efforts required to process input symbols and
accordingly restructure the code tree, possible size reductions of radio packets
might be counterbalanced by additional expenses for the processing. To eval-
uate the algorithm’s energy efficiency on real sensor node hardware, we have
performed a detailed energy simulation using MSPsim and COOJA [23] with
the corresponding NullMAC protocol implementation (i.e., the radio transceiver
of the receiver node is always active, so the sender radio only needs to be switched
on during packet transmissions). As discussed in Sec. 1, this particular choice of
the MAC protocol has been made to evaluate the algorithm’s energy demand in-
dependently of any additional effects introduced by the MAC protocol. The sky

node type has been selected, as it also represents the platform we base our prac-
tical experiment on. To allow for reproducible results, we have statically supplied
the data sets to the simulated application, and assumed a lossless wireless chan-
nel as a detailed analysis of the impact of real-world channel characteristics is
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Fig. 6. Energy analysis for the adaptive Huffman coder with limited tree size

beyond the scope of this paper. Assuming a single-hop transmission at a rate of
ten packets per second, we have analyzed the energy requirements of the sender
node only, as only marginal changes occur to the receiver’s energy consumption
when its radio device is not duty-cycled. We have analyzed the algorithm’s en-
ergy consumption and show the corresponding results in Fig. 6. Analog to [23],
we use the current consumptions measured by Dunkels et al. in [24] for our anal-
ysis. We assume an operating voltage of 3V, and radio current consumptions of
20mA in listening, 17.7mA in transmission, and 21µA in the inactive state. For
the remaining platform, we have assumed 1.8mA in the active, and 5.1µA in the
sleep mode.

It is evident that the use of trees with a limited number of nodes can effec-
tively lead to reductions in the packet sizes, as observed through the reduced
amount of energy spent on radio transmissions in Fig. 6(a). It can be seen that
savings in radio energy of more than 50% are achieved for the Glacsweb and
Porcupine sleep data sets. In case of the PermaSense and both Porcupine data
sets, the reduced packet sizes lead to a consistent decrease in radio energy. Only
in case of Glacsweb data, the great number of input symbols with low frequency
leads to the assignment of long codes, resulting in a degraded compression ra-
tios when larger code tree sizes are used. On the contrary, an increase in MCU
utilization occurs due to the additional processing needs, as shown in Fig. 6(b).
Again, the Porcupine sleep data sets exposes behavior different to the other ones,



as only five symbols need to be placed in the tree. For the other data sets, a rise
in the MCU energy demand is clearly visible, indicating the increased amount of
energy required for for management and restructuring of the trees. The overall
energy requirements, depicted in Fig. 6(c) however still prove that for the limited
code tree size adaptive Huffman coder, energy gains can be observed for three
of the four data sets when appropriate tree sizes, i.e. sizes in the range of 1 to
16 symbols, are chosen.

5.4 Real-world Experiment

To verify if the simulation results match the algorithm’s real behavior, we have
set up a real-world experiment using two tmote sky devices. The first node was
configured as a sender node and supplied with the Glacsweb data set. Blocks of
data were read from the Flash memory, compressed using the presented adaptive
Huffman coder with limited code tree sizes, and transmitted over the radio. To
limit the energy budget available to the node, we have connected its battery
terminal to a boost converter powered by a supercapacitor. To allow for compa-
rable measurements, we have put the same charge on the supercapacitor prior
to each run of the experiment. A receiver node with no energy restrictions was
also part of the experiment, and was used to count the number of transmitted
packets in the used indoor environment. Both were configured to use NullMAC,
thus allowing to compare the results to the previously performed analyses. The
results of the real-world experiment with the Glacsweb data set are indicated in
Table 3 and confirm that the algorithm’s behavior on real hardware resembles
the observed energy simulations for the given data.

Table 3. Number of packets transmitted using the AHC coder with limited tree size

#Symbols in tree Ref 1 2 4 8 16 32 64 128

Sent packets 4733 6832 6668 6609 5991 5947 4979 4496 2581
Runtime gain 0% 44.3% 40.9% 39.6% 26.6% 25.6% 5.2% -5.0% -45.5%

6 Conclusion

In this paper, we have investigated the traffic characteristics of wireless sensor
networks, and determined highly non-uniform symbol distributions in packet
payloads; in all of our analyzed data sets, the better part of packets is comprised
of a small number of different symbols only. We have shown that encoding these
symbols in an efficient way, i.e. by applying adaptive Huffman coding, consider-
able compression gains can be achieved. To improve the applicability of existing
adaptive Huffman coding algorithms on wireless sensor nodes, we have presented
a lightweight version of the AHC algorithm, operating on Huffman code trees
with a limited number of nodes. Our simulation results show that even when
only a small number of symbols are stored in the code tree, overall energy gains



can be achieved while maintaining the algorithm’s applicability on sensor nodes.
Our observations from a real-world experiment confirm these simulation results.

When application level data needs to be compressed, solutions that target
to compress large chunks of data at a time are often unsuited for WSNs. While
compression solutions for a dedicated application might allow for significant
savings, they require developers to spent time and efforts on the implementation
and integration. To take this burden off the programmers, we have shown that
generic solutions can be designed to yield high compression ratios while being
energy efficient, even when the structure of data is unknown in advance.

It is common knowledge that links in WSNs are susceptible to packet losses
and variable link qualities [25]. Those issues have been addressed by existing
data compression mechanisms using retransmissions [6] or fault tolerance ex-
tensions [5]. Although not directly related to the algorithm design, we plan to
integrate suitable means to cope with the characteristics of real radio channels.
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