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Abstract—With the rise of the Internet of Things, innumerable
sensors and actuators are expected to find their way into homes, of-
fice spaces, and beyond. Electric power metering equipment, mostly
present in the form of smart meters and smart plugs, can thus be
anticipated to be installed widely. While smart plugs (i.e., individual
power monitors attachable to wall outlets) primarily cater to the
user comfort by enabling legacy devices to be controlled remotely,
their power measurement capability also serves as an enabler for
novel context-based services. We realize one such functionality in
this paper, namely the recognition of unexpected behavior and
appliance faults based on observed power consumption sequences.
To this end, we present a system that extracts characteristic power
consumption transitions and their temporal dependencies from
previously collected measurements. When queried with a power
data sequence collected from the appliance under consideration,
it returns the likelihood that the collected power data indicate
normal behavior of this appliance. We evaluate our system using
real-world appliance-level consumption data. Our results confirm
the individual nature of consumption patterns and show that the
system can reliably detect errors introduced in the data within close
temporal proximity to their time of occurrence.

I. INTRODUCTION

Sensing equipment to monitor electrical power consumption

can be expected to become ubiquitous, both due to legislative

reasons (e.g., the European Union Energy Services Directive [1],

enforcing the installation of smart meters) and the benefits they

provide to utilities (e.g., reduced labor cost for taking readings).

In addition to smart meters that capture the aggregate energy

demand of a home, wireless power monitoring devices that

attach to wall outlets (often referred to as smart plugs) are also

gaining popularity among users who want to better understand

their power demand. Consequently, a large volume of power

and/or energy consumption data from residential and industrial

buildings can be anticipated to be collected in the future.

Many services to enrich the users’ understanding of their

energy consumption have been proposed in current research. For

example, the disaggregation of smart meter data is an active

research domain which assists users in determining the energy

consumptions of individual loads from the aggregate [2–4]. Once

appliance-level data is available for at least parts of a building

(e.g., through disaggregation or the use of smart plugs), the

underlying appliance types can be detected [5], energy wastage

be identified [6], or the expected consumption for the entire

dwelling be extrapolated [7]. While these energy-based services

can be leveraged to increase user awareness and/or comfort, the

vast majority of them do not allow for the analysis of real-

time data streams, making the realization of services like the

live detection of anomalous consumption behavior impossible.

In this manuscript we propose a novel data processing method

to detect anomalies in appliance-level power consumption data. It

relies on the unique combination of several data processing steps,

catering to both detection performance and accuracy. Initially, all

collected power consumption data are converted to their symbolic

representations. Secondly, consecutive symbols are combined

into motif s, the primary data entities used by our approach. At

the heart of our solution is the 3-dimensional motif transition

likelihood matrix (MTLM), which captures the likeliness for the

transition between any two motifs at a given temporal distance.

When queried for a motif transition observed in real-time input

data, the MTLM returns the corresponding likelihood and thus

indicates whether an appliance is in a normal state of operation.

We introduce an overview of our system architecture and

its fundamental design considerations in Sec. II, followed by

providing more details on the core feature of our approach, the

MTLM, in Sec. III. We evaluate the system’s capability to detect

erroneous appliance behavior in Sec. IV and summarize related

work in Sec. V. We conclude this paper in Sec. VI.

II. SYSTEM OVERVIEW AND IMPLEMENTATION DETAILS

The core contribution of this paper is a system design to

detect anomalies in electrical power consumption data streams.

We derive the system’s major design drivers from a real-world

example in this section and introduce its overall architecture as

well as highlighting how its components are realized in practice.

A. Fundamental Observations and System Overview

Many electrical appliances show recurring power consumption

patterns across their operation cycles. Let us, e.g., consider a

dishwasher appliance. In Fig. 1a, we have plotted the device’s

power demand for seven of its operation cycles. A high degree

of similarity between the traces is apparent shortly after the

beginning of the appliance’s operation. However, it can also be

observed that the device’s individual operational phases differ in

their durations across the seven dishwashing cycles and thus the

deviations between the individual curves grow larger as time pro-

gresses. This can be predominantly attributed to variations in the

appliance’s environmental conditions (e.g., different inlet water

temperatures or varying numbers of dishes in the appliance).

Firstly, this observation serves as evidence for the existence of

repetitive temporal patterns in appliance’s power consumptions.
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(a) Superimposed power consumption traces of 7 dishwasher operation cycles
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(b) Visualization of the repetitive nature of the dishwasher’s cycle through
temporally aligning the different phases (dashed lines mark re-alignment points)

Fig. 1. Repetitive power consumption across operation cycles (data from [8])

Secondly, it also highlights that slight temporal deviations are

common and the similarity of appliance power consumption

traces decreases for longer analysis windows. However, through

temporal re-alignment of the segments of the power consumption

activity (at offsets where major changes to the power con-

sumption have occurred), a high amplitude coherence can be

regained for the individual phases, as can be observed in Fig. 1b.

Consequently, we exploit this recurring nature of similar power

consumption patterns across appliance operation cycles (although

possibly with slight differences in their durations) to detect

anomalous consumption. The data flow of our conceived system

has been purposefully designed to this end; it is visualized in

Fig. 2, and we explain it in more detail as follows.

B. Dimensionality Reduction

One major obstacle in the development of energy-based

functionalities is the computational power needed to process

collected power consumption data. Smart meters and smart

plugs often feature amplitudinal resolutions of fractions of a

watt, and most hardware platforms can collect readings once

per second or even more often. In conjunction with the fact

that many appliance types feature operation cycles of several

minutes or hours, enormous amounts of training data may be

required to extract characteristic templates for an appliance’s

operation. Large computing capabilities are required to process

this large corpus of high-resolution data, possibly even rendering

the processing of streaming data impossible in real-time.

We have thus decided in favor of operating on symbolic

representations instead of raw data, because they speed up all

subsequent processing and simultaneously reduce the required

memory overhead drastically. Dimensionality reduction tech-

niques are traditionally being applied to extract key features

from large volumes of input data [9, 10]. However, the specifics

of the scenario under consideration render some widely used

dimensionality reduction techniques (such as Fourier or Wavelet

transforms) inapplicable because they eliminate temporal depen-

dencies from the data. As the temporal sequence of events is

essential to detect anomalies in power consumption patterns, we

have decided in favor of an approach that alters the values of the
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Fig. 2. Overall data flow of the system’s training and recognition phase

signal while retaining their temporal order. More precisely, we

convert the input data to their symbolic representations, i.e., we

map the npow distinct values returned by the power consumption

sensor to a set of lalph symbols (with lalph≪npow).

To ensure that the symbol mapping leads to an accurate

representation of the input time series, we compute the histogram

across previously collected data. We then extract clusters com-

prising the most frequently occurring values from the histogram.

Similar to existing work that relies on symbolic sequences of

power data [11], we apply the DBSCAN algorithm [12] to the

normalized histogram and consecutively allocate symbols to all

resulting clusters as well as all value ranges between the deter-

mined cluster boundaries. By mapping all power consumption

values between the determined boundaries to individual symbols,

the data dimensionality is drastically reduced and measurement

noise is furthermore attenuated as a side effect. The resulting

cluster boundaries when computing and clustering the histogram

of the dishwasher traces from Fig. 1 are shown as dashed lines

in Fig. 3a.

The actual conversion of raw time series input data to their

symbolic representation is realized by means of a look-up table

derived from the extracted symbol mappings. The mapping

table for the dishwasher example is shown in Fig. 3b. Note

that the symbol alphabet is defined for each appliance type

individually based on its collected historical data. Applying a

symbol mapping to a mismatching appliance type can result in

very atypical symbol sequences; an analysis of such appliance-

specific fitting effects is presented in Sec. IV-B.
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(a) Histogram of the power consumption values encountered throughout a dishwasher’s daily operation

Min. power Max. power Symbol

0 W 20 W A

21 W 115 W B

116 W 128 W C

129 W 1,991 W D

1,992 W 2,096 W E

2,097 W 3,680 W F

(b) Corresponding symbol mapping

Fig. 3. Symbolic representations are allocated based on clustering the histogram and assigning consecutive symbols to each cluster and each gap

C. Motif Extraction

Following the reduction of the value range, we apply a second

preprocessing step and convert groups of consecutively occurring

symbols into motifs. Motifs are symbol sequences of a pre-

determined length lsym (their symbolic length) and represent

the key data entities used through the remainder of this paper.

As motifs incorporate both amplitude information and a signal’s

temporal progress, they are well suited to reflect the observations

made in Sec. II-A in symbolic data while incurring lower

computational efforts for their processing.

In order to speed up subsequent motif processing operations,

motif identifiers i are pre-allocated for each potential motif Mi in

advance. For example, in a setting with lsym=2 and lalph=2, the

symbol sequence AA in the input data will be mapped to motif

M1, AB→M2, BA→M3, and BB→M4. For reference, the used

nomenclature is also given in Table I. Once a lookup table for

these mappings has been created, symbolic data are converted to

their motif representations. This is realized by shifting a window

of length lsym across the historic data sequence and replacing

all subsequences by their corresponding motif identifiers.

III. THE MOTIF TRANSITION LIKELIHOOD MATRIX

Once the input data have been converted to their correspond-

ing motif representation, the motif transition likelihood matrix

(MTLM) is extracted from the motif sequence. The MTLM

models temporal dependencies between motif transitions on

significantly longer time scales than the motif length lsym, up

to an upper limit of w seconds. Thus, it enables our system to

detect anomalous consumption patterns in this window. Choosing

a value for w depends on the appliance under consideration.

For best accuracy, at least one full operational cycle has to

be contained within the window, e.g., any value in excess

of 2200 seconds for the dishwasher shown in Fig. 1a. Note

that the chosen window size has an immediate effect on the

system’s storage and computational demand. The following three

processing steps are executed when populating the MTLM.

TABLE I
NOMENCLATURE USED IN THIS PAPER

Symbol Explanation

lalph Number of entries in the symbol alphabet
lsym Number of symbols in each motif

M Motif, i.e., a sequence of lsym symbols
TMi→Mj

(t) Number of transitions Mi → Mj for time difference t

PMi→Mj
(t) Probability of transition Mi → Mj at time difference t

w Maximum history depth stored in the MTLM

A. Motif Transition Occurrence Collection

Once the input data is present as a sequence of motifs, our

systems counts the transitions between any two motifs Mi and

Mj (with i, j = 1, . . . , l
lsym

alph ) within time window w, as well as

the temporal distance between the motif occurrences. Counted

transitions are stored in a three-dimensional transition occurrence

matrix, whose first dimension is the starting motif Mi (with

i=1, . . . , l
lsym

alph ). In the second dimension we store the ending

motif Mj , and in the third dimension of the matrix we annotate

the time difference between the motif occurrences. In essence,

the occurrence matrix thus contains the number of transition

occurrences between starting and ending motif for all time

differences ∆t between 1 and w epochs (as no transition can

occur within the same epoch, no entry is needed for ∆t=0).

It may appear that generating the occurrence matrix exhibits a

high computational and memory demand, especially when long

motifs or many entries in the symbol alphabet are being used.

While this is correct, the occurrence matrix is only extracted

once from historical data, and significantly less memory and

computations are required throughout the remaining operation

of the system. Furthermore, the matrices in our evaluations

have always been populated very sparsely; when computed for

the dishwasher used in our previous example for an alphabet

length of lalph=6, a symbolic length of lsym=4, and a history

depth of w=60 seconds, only 21,262 out of more than 100

million theoretically possible entries (i.e., only 0.02%) have

been populated in the occurrence matrix. Even when increasing

the history depth to several hours, no more than 0.2% of the

potentially available occurrence matrix entries were populated.

B. Motif Transition Likelihood Matrix Generation

The next step in the process of generating the MTLM is real-

ized by applying a column-wise normalization to the matrix. This

transformation is formulated in Eq. (1) and executed for all origin

motif identifiers i and destination identifiers j. A visualization of

the resulting normalized transition probabilities for source motif

AAAB and w=600s for the dishwasher appliance is shown in

Fig. 4.

PMi→Mj
(t) =

TMi→Mj
(t)

∑l
lsym

alph

k=1 TMi→Mk
(t)

∀i, j = 1, . . . , l
lsym

alph (1)

This normalized matrix is already sufficient to determine the

likeliness of an appliance’s likeliness of normal operation, as will

be described in Sec. III-C. However, one more processing step

is being applied to eliminate the dominance of self-transitions

during device inactivity, i.e., transitions between two occurrences
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Fig. 4. Transition likelihood plot for the dishwasher’s transitions originating from motif AAAB (annotations omitted for transitions with low probabilities)

of the first motif (AAAA→AAAA). Our approach considers

their occurrence frequencies when normalizing the transition

probabilities, but subsequently disregards all transitions between

these motifs in the likelihood computation. The reason for

suppressing these transitions is based on the fact that they

carry little informational value, as these self-transitions almost

exclusively occur when an appliance is in standby mode or off.

C. Motif Sequence Likelihood Determination

With the MTLM established, our system is ready to detect

the likelihood of power consumption motif sequences observed

in live data. This process is visualized in the right-hand part of

Fig. 2. It shows that the same preprocessing steps (described

in Secs. II-B and II-C) are being applied to input data. Once

its series of motifs has been extracted, however, they are being

compared against the transition probabilities modeled in the

MTLM in order to determine the likeliness that the encountered

motif sequence originated from the trained appliance.

For the sake of computational simplicity, we have decided in

favor of a multiplicative computational model. It operates on an

input sequence composed of L motifs (without loss of generality

we assume L>w here), indexed by their time of collection with

M(t=L) denoting the most recently encountered and M(t=0)
the oldest collected motif. The probability computation for a

single time instance λ is then shown in Eq. (2).

P (λ) = 1−

w−(L−λ)
∏

τ=1

(

1− PM(t=λ−τ)→M(t=λ)(τ)
)

(2)

The rationale behind computing the converse probability is

simple, and best motivated by comparing it to a multiplicative

model (such as P=
∏

PM(t=w−τ)→M(t=w)(τ)). In this case,

a single unlikely transition (i.e., with very small probability)

would immediately bring the overall output close to zero and

thus classify the appliance operation as unusual. In the chosen

converse model, the opposite case is true: More likely observed

transitions lead to a smaller product term and thus the result of

the computation increases. For the computation of the overall

likeliness of anomalous operation, we use Eq. (2) to compute

the aggregate likeliness for all motifs leading up to a given

motif M(t=λ) and repeat the computation for all time instances

between L−w+1 and L. The equation to compute the overall

likeliness as the arithmetic mean across the window w is

formulated in Eq. (3).

Ptotal =
1

w

L
∑

λ=L−w+1

P (λ) (3)

IV. EVALUATION

Once our system has pre-computed the transition matrices

for all appliance types under consideration, it is ready for

operation. By supplying it with appliance power consumption

motif sequences, the estimated likelihood of normal device

operation, Ptotal is computed based on Eq. (3). We demonstrate

the system’s capability of detecting unusual power consumption

patterns in the following subsections.

A. Input Data Selection

As our system has been developed to operate on appliance-

level data collected by smart plugs, we have sourced our data

from the Tracebase [8]. This data set features more than 1,500

power consumption traces collected from more than 100 different

appliances. Before we use the traces in our evaluation, we apply

an interpolation step in order to ensure that all data share the

same temporal resolution of 1Hz sampling rate. A second filter-

ing step is subsequently applied to remove erroneous outliers, to

facilitate the operation the histogram clustering algorithm.

B. MTLM Adaptation to the Underlying Appliance Type

Before using the data for our analysis of the system’s capac-

ity to detect anomalous behavior, we investigate how closely

MTLMs can adapt to the underlying appliance type. To this

end, we have supplied the system with the input data from eight

typical household appliances. We have chosen lsym=4 symbols

per motif and selected w such that all transitions of at least

one complete activity cycle were available when constructing

the MTLM. Subsequently, we have computed the average Ptotal

values when testing further traces against each stored MTLM.

The results are shown in Table II, where the appliance types

used to extract the MTLM are listed in the leftmost column,

and the data sets for which we have requested the system to

return a likelihood estimation are presented in the top row. The

table entries show the Ptotal value for each MTLM, showing the

selectiveness of our systems for some trained appliances (e.g.,

the bean-to-cup coffee maker). However, the results in the table

also indicate that MTLM entries are not always specific to one

given appliance type, but corresponding motifs can partially also

be found in the power consumptions of other appliances.

C. Anomalous Consumption Detection

Next, we assess the system’s performance when it is con-

fronted with anomalous appliance behavior. To this end, we have

manually introduced errors to two trace files in order to quantify

the detection delay of our system. We visualize the traces in



TABLE II
Ptotal VALUES WHEN MATCHING APPLIANCE TRACES AGAINST OTHER APPLIANCE’S MTLMS

Average Ptotal score when comparing this appliance type with the MTLM
MTLM of appliance type CM DW FR KE MW RE SM WM

Bean-to-cup coffee maker (CM) 99.9 % 10.0 % 0.9 % 0.0 % 0.6 % 0.5 % 0.0 % 2.9 %
Dishwasher (DW) 4.3 % 21.2 % 97.3 % 4.3 % 8.9 % 98.6 % 5.5 % 8.8 %

Freezer (FR) 5.1 % 18.2 % 97.5 % 8.5 % 9.0 % 97.5 % 5.6 % 7.9 %
Kettle (KE) 0.0 % 13.1 % 81.9 % 8.5 % 8.4 % 71.2 % 5.3 % 4.3 %

Microwave oven (MW) 2.6 % 18.2 % 97.4 % 8.4 % 9.1 % 98.5 % 5.6 % 8.4 %
Refrigerator (RE) 1.9 % 23.4 % 44.4 % 67.8 % 60.2 % 98.7 % 4.9 % 77.3 %

Sandwich maker (SM) 0.0 % 9.9 % 81.2 % 8.1 % 8.4 % 71.1 % 5.6 % 4.1 %
Washing machine (WM) 99.9 % 21.2 % 97.5 % 4.3 % 9.0 % 98.7 % 5.6 % 10.2 %

which the anomalies shall be recognized in the top graphs of

the diagrams in Fig. 5. In our example, we use two excerpts of

a refrigerator’s power consumption, to which we have added

two types of faults. Firstly, we simulate a continuous motor

operation as shown in Fig. 5a. This situation could, e.g., occur

as a result of poor insulation or leaving the refrigerator door

open. Secondly, we assess the temporary disconnection of the

appliance from mains, shown in Fig. 5b, which can be observed

in practice when, e.g., de-frosting the device. The values of Ptotal

for the two test cases are plotted in the lower parts of the figures

using continuous lines. Successively, as more and more motif

transitions match the entries in the MTLM, the value of Ptotal

changes correspondingly. The clearly visible drop in Ptotal is an

indicator for anomalous consumption, and by simply applying a

threshold value (e.g., 0.5), the automated detection of anomalies

is facilitated.

D. Performance Comparison to Value Averaging

At last, we compare our proposed anomaly detection scheme

to the alternative approach of monitoring an appliance’s mean

power consumption. To minimize fluctuations of the resulting

averaged value, the averaging window length needs to be aligned

with the duration of the appliance’s regular activity period; we

have consequently used a sliding averaging window of 12,000

seconds length in our evaluation.

The mean values of the refrigerators’ power consumptions

are shown as dashed lines in the lower subgraphs of Figures

5a and 5b. While they show similar trends to the MTLM-based

probability, it needs to be noted that they only allow for anomaly

detection when threshold consumption levels to discriminate

normal from anomalous appliance operation have been defined.

As these values must include a safety margin (e.g., due to

the variations of the refrigerator’s period length), their careful

selection is not always easy. Moreover, the averaging function

inherently introduces a delayed response to changes, whereas

our MTLM-based approach quickly recovers; this is particularly

visible in Fig. 5b when the refrigerator recommences operation.

V. RELATED WORK

The computational analysis of household energy consumption

data is looking back on more than 20 years of history. In his early

work [13], George Hart has shown how characteristic features

can be extracted from household aggregate power levels, and

linked to the (de)activation of specific appliances. Despite its

limitation to identify the presence of ON/OFF appliances (i.e.,

devices that result in an equal change of their power consump-

tion when switched on and off), it has inspired manifold new

research results on disaggregating home energy consumption and

providing new services. Several approaches have been presented

to extract and efficiently store patterns in power consumption

data in both the time and the frequency domain in order to

infer contextual information. For example, [14] and [15] convert

load data to the frequency domain in order to infer load types.

While the analysis of the signal’s spectral components speeds

up the processing times, characteristic temporal dependencies

are inherently eliminated when choosing this approach. As a

result, time series analysis has gained an increasing impact,

e.g., [16, 17], because it allows for the exploitation of the

rich temporal dependencies in the data. The large computational

overhead of operating on raw time series data has been addressed

in research as well, e.g., by means of converting data to their

symbolic approximations [18, 19], reducing their temporal reso-

lution by means of chunking [11], or solely operating on events

extracted from the data [20]. While our presented approach also

relies on symbolic representations of time series data, we do

not reduce the temporal resolution any further to maintain data

fidelity and the possibility to quickly react to anomalies.

Orji et al. have presented another approach to detect anomalies

in power consumption data in [21], but require data collected

at high sampling rates to analyze higher-frequency harmonics

in the signal. The FailureSense system [20] models the typical

reporting interval of sensors and their dependencies in order

to detect unexpected data transmission characteristics. Atypical

sensor data patterns are subsequently being used to determine

sensor faults, although anomalies in the actual data values are

not considered in the paper. Operating on a daily scale, the

work by Seem [22] shows how the extraction of features from

24-hour long traces can be leveraged to determine abnormal

energy consumption in buildings. Shorter time scales, like the

ones used in this paper, are however not supported. Finally,

our approach can be seen as an instance of pattern mining as

well. Sequential pattern mining [23, 24] assumes that pre-known

patterns are contained in the signal, however without temporally

bounding their potential occurrences based on historical data.

Our approach extracts occurrence sequences from historical data

precisely, and thus confines the potential location of a normal

event occurrence more tightly than standard pattern mining

approaches. It furthermore differs from [25], in which motif

mining is successfully applied to support load disaggregation

algorithms, but does not target the detection of anomalies.
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(a) Refrigerator with continuous motor operation
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(b) Refrigerator with unexpected stopping and resuming of motor

Fig. 5. Correlation between input data and value of Ptotal for two sample anomaly cases

VI. CONCLUSIONS

We have presented an approach to detect anomalies in power

consumption data collected by smart plugs. By operating on

motifs, its computational burden is significantly lower than

when operating on raw time series data. The core idea behind

our approach lies in determining the dependencies and typical

time differences between motif transitions and storing these

values in a motif transition likelihood matrix. Subsequently, any

power sensor data stream can be compared against the expected

motif transitions for a given appliance type, and anomalies can

be quickly detected at low computational overhead. We have

confirmed the practical viability of our approach and evaluated

its performance using appliance-level data collected from real-

world refrigerating devices. Its application in emerging scenarios

like smart homes can thus be envisioned to contribute to the

safety and security of users.
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