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Abstract

In this master thesis spiral defect chaos in Rayleigh-Bénard convection of large aspect
ratio cells is studied by means of numerical simulations on graphics cards. We use a
decomposition of the velocity field into toroidal-poloidal fields for periodic domains
to avoid solving explicitly the incompressibility condition and eliminate the pressure
term from the Boussinesq equations. Applying a Galerkin method to expansions of
the flow into Fourier series (horizontal plane) and Chandrasekhar polynomials (verti-
cal direction) we are able to employ the so called pseudo-spectral simulation technique
to solve the equations numerically. The basics of this simulation techniques (apply-
ing fast Fourier transformations) are presented as well as details. To simulate flow in
bounded domains with no-slip boundary conditions in arbitrary direction we employ
a penalization method which allows us to keep the simulation code unchanged (and
therefore efficient) by introducing an additional penalization term. This technique al-
lows us to simulate convection patterns in geometries by far more complex than those
corresponding to periodic boundary conditions. The time-stepping is realized by an
implicit-explicit splitting schema.
To achieve high performance this pseudo-spectral method (including penalization) is
implemented on graphics cards. Therefore we present the basics of CUDA program-
ming and some performance guidelines with respect to the implemented memory man-
agement and usage. Furthermore we have implemented a distributed pseudo-spectral
code to simulate even larger systems, which might exceed the limits of one GPU’s
memory, on multiple GPUs. All implementations have been verified by checking all
operations by comparison to results of a symbolic computing toolbox. These pseudo-
spectral simulations have been used to simulate spiral defect chaos in large aspect ratio
convection cells. Firstly we study the onset of spiral defect chaos as a function of as-
pect ratio and Rayleigh number. Secondly we consider some basic statistical properties
and compare them to two-dimensional turbulent fluid flow. Finally in this master thesis
we have shown that extensive fluid dynamic calculations of significant size can be done
using relatively small resources taking advantage of GPU.
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Introduction

A fluid layer between two plates, heated from below and cooled from above, is one
of the best studied systems in fluid dynamics and the archetype of a pattern forming
system. It is a strongly nonlinear, self-organizing system. It was first studied exper-
imentally by the french physicist Henry Bénard in 1900 (see [1]). A first theoretical
treatment of the problem is due to Rayleigh (see [2]). In honor to Bénard and Rayleigh
this rather simple experimental setup is called Rayleigh-Bénard Convection.

But it is still of great interest to today’s scientists and new effects, patterns, states
are observed every year. This is caused by its self-interacting and strong nonlinear
structure. Since the system is relatively easy accessible experimentally, numerically
and theoretically it is a perfect playground for mathematicians, theoretical and exper-
imental physicists. In particular, one can directly compare numerical simulations and
experiments. It is also considered as a reference problem for the study of transition
to chaos and turbulence in fluid dynamics. In our case a numerical approach will be
presented which considers statistical properties of a specific state of Rayleigh-Bénard
Convection.

Motivation and goals
The goal of this master thesis is to investigate a specific spatio-temporal chaotic state
of Rayleigh-Bénard Convection called spiral defect chaos (SDC). Phenomenologically
this state can be described in the following way: Convection rolls form large spirals
which are rotating and advecting themselves through the fluid layer. They coarsen
over time and might decay. We study spiral defect chaos with respect to the following
questions: Does the horizontal velocity field of the fluid have any features comparable
to two dimensional turbulence, i.e. is there anything like an inverse energy cascade,
scaling of structure functions, scaling of energy spectrum?

For our study we use numerical simulations in which the equations are solved by
means of a so-called pseudo-spectral method which offers high accuracy and high per-
formance on simple domains. We can extend our simulations to flows with more com-
plex boundaries without losses in performance by taking advantage of penalization
methods.

As computational fluid dynamics needs large computing resources and times, high
parallelism is required. A modern approach to high performance computing are graph-
ics cards (GPU). Over the last twenty years they developed from small coprocessors to
large computing units which offer a massive computing performance. Large graphics
cards manufactures provide a way to use this computing performance through a sim-
ple programming interface. Treating the right problem with this approach may speed
up simulation runtimes by a large factor compared to original single CPU or message
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INTRODUCTION

passing interface (MPI) implementations. Therefore an implementation on a graphics
card will be presented. This technology allows large parallelism on a single desktop
computer. Furthermore we present a way to implement a simulation code which uses
multiple graphics cards to run our simulation code on a distributed system. This is
realized by taking advantage of a cooperation of message passing interface and the
programming interface of our graphics cards.

Structure of the thesis
To achieve the goals of this thesis a wide range of topics has to be covered such as fluid
dynamics, numerical analysis, practical implementation on GPUs. For better readabil-
ity these topics are presented in separate chapters.

Chapter 1 considers some theoretical aspects. It presents the basic equations and
some basic properties of them. Furthermore the so-called Boussinesq approximation
will be introduced which simplifies our equations to incompressible ones. Of course
this is only a valid approximation in a specific range. It introduces also the linear
stability analysis which gives some insight why a fluid state is an unstable one. The
last section of this chapter introduces a class of model equations which are widely-used
as a model for pattern forming systems, in particular for Rayleigh-Bénard convection.

Chapter 2 is a chapter about the numerical schema. It introduces some numerical
analysis like Galerkin methods and describes the idea of pseudo-spectral simulations.
An expansion into orthogonal polynomials (Chandrasekhar polynomials) and Fourier
series is presented. Using fast Fourier transformations (FFT) reduces the complexity
which requires some insight into FFT algorithms. As we are considering non-stationary
flows time-stepping methods are also of importance. A number of methods is presented
in this section of the chapter. As comparisons to experimental results and simulations
within "real" domains are of importance a so-called penalization method is presented
which keeps our simulation code almost unchanged by inserting a new nonlinear oper-
ator into the original system of equations.

The following Chapter is separated into two larger parts. At first Section 3.1 dis-
cusses some features of GPU programming. It consists of a short introduction to
graphics cards hardware architecture and an overview of best practices for program-
ming. Knowledge about hardware is absolutely necessary to understand how to orga-
nize memory and code to achieve high computing performance. Section 3.2 considers
some advanced implementation details and demonstrates the process of verification. It
gives a detailed insight into data management and techniques which have been used
to achieve the maximum performance. Furthermore an implementation for multiple
graphics cards through message passing interface is presented.

In Chapter 4 we discuss the results obtained by our numerical simulations. We
study statistical properties of SDC state and furthermore review code performance and
accuracy. The last chapter gives a short summary and an outlook about future work
and open problems.
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Chapter 1

Theory of Rayleigh-Bénard
Convection

This chapter describes the basic ideas of hydromagnetic instability and pattern forma-
tion in case of Rayleigh-Bénard convection. This rather simple experimental setup was
first considered by Henry Bénard. It consists of a more or less thin layer of fluid which
is heated from below and therefore the temperature gradient is adverse. This adverse
temperature gradient leads to an expansion of the fluid at the bottom (which means
that the density will be lower compared to the top). One might clearly guess that this
top-heavy arrangement is becoming unstable.

On the other hand fluid’s viscosity will dissipate energy as soon as the fluid is mov-
ing. Of course this physical process will inhibit the fluid’s tendency to start flowing
around. One might guess again that a hydrodynamic instability can only occur when
the temperature gradient exceeds a certain limit. It is exactly this intuitive presump-
tion which can be figured out by an experiment. Of course it is not that simple and
there are more things than just the temperature gradient which are of importance to
hydromagnetic instabilities. It will be shown later that the so called Rayleigh- and

x y

z

Lx
Ly

Ttop

u f luid,T f luid

Tbottom

∂Ωtop

h = 1

∂Ωbottom

Figure 1.1: Geometry of the fluid layer heated from below. The vertical dimensions are
Lx and Ly and the horizontal height is h = 1 length units (without loss of generality).
The bottom platte is hotter than the one on top of the fluid layer. Both plates are
assumed to be infinitely good conducting plates. The coordinate system of the layer is
placed at 1

2 h.

6



1.1. GOVERNING EQUATIONS

Prandtl-Number,

Ra =
αg∆Td3

νκ

Pr =
ν

κ

which are both dimensionless characteristic numbers, control the instability behaviour.
The coefficients have the following meaning:

α: volume expansion coefficient

g: gravitational acceleration

∆T : temperature difference, i.e.: ∆T = Tbottom − Ttop

d: volume height

ν: kinematic viscosity

κ: thermal diffusivity

For the simulations we use a coordinate indicated as in Figure 1.1 and we will consider
only newtonian fluids, that is the viscosity η is the proportional factor between the shear
rate γ̇ and the shear stress τ. With the fluid’s density ρ we get the following definition
of ν:

η =
τ

γ̇

ν =
η

ρ

The equations of movement for fluids are well known and in case of a Newtonian fluid
they are called Navier-Stokes equations. Together with the heat equation (describing
the evolution of temperature) this is the mathematical framework for the simulations
described in Chapter 2. The next section gives a more detailed outline of the governing
equations.

1.1 Governing equations
The partial differential equation system describing the motion of a fluid is well known.
Reynold’s transport theorem states that for f : Ω× (0,∞)→ R (smooth enough), v(x, t)
a vector field and for every volume V ∈ Ω the following relation holds:

d
dt

∫
V(t)

f (x, t)dx =

∫
V(t)

∂ f
∂t

(x, t) + ∇ · ( f v)(x, t)dx

.
Taking advantage of mass conservation and using Reynold’s theorem with f (x, t) =

ρ(x, t) and v(x, t) = u(x, t) (where u denotes the velocity field) we get the so-called
continuity equation:

∂ρ

∂t
+ div(ρu) = 0 in Ω × (0,∞) (1.1)
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1.1. GOVERNING EQUATIONS

Conservation of linear momentum gives the following three differential equations

∂

∂t
(ρu) + div(ρu ⊗ u) = ρF + divT in Ω × (0,∞) (1.2)

where T is the stress tensor and F = (0, 0,−g)T denotes an external force (in this case
gravity). As T is a symmetric tensor of order 2 and is linear with respect to the velocity
gradient, T can be decomposed as follows (where I denotes the unity tensor and η and
λ are the fluid’s viscosities)

T = 2ηD(u) + λdiv(u) − pI

where p is the normal pressure and D(u) is the so-called deformation tensor:

D(u) =
1
2

(∇u + ∇uT )

The last conservation law applied is the conservation of energy e. Taking advantage
of Reynold’s theorem with f = e leads to (ε is internal energy):

∂e
∂t

+ div(eu) = ρF · u + div(T · u) + div(σ) in Ω × (0,∞)

e = ρε +
1
2
ρ‖u‖2

where σ is a vector field of the form:

σ = ζ∇ε

Assuming that the internal energy ε is proportional to the temperature T and applying
some algebra to the equation of energy conservation will lead to an evolution equation
for the temperature:

ρ

(
∂(cT )
∂t

+ u · ∇(cT )
)

= ηD(u) : D(u) + λ(∇ · u)2 − p∇ · u + ζ∆(cT )

To close the partial differential equation system a fourth equation of state is needed,
describing the relation between pressure, density and energy. We assume it to be of the
following general form:

p = p(ρ, e)

To get a unique solution there are additional boundary conditions which have to
be satisfied. As we consider non-stationary problems we have to consider an initial
condition in Ω for t = t0 and some boundary conditions on ∂Ω for all t > t0. The most
popular ones are Dirichlet, Neumann or Navier-Conditions (see [21], page 9). A more
detailed insight will be given in Section 1.1.2.

These equations are the basic hydrodynamic equations. Of course they are compli-
cated and hard to analyse because of their strong nonlinear structure. In many cases
they can be simplified by taking advantage of some physical simplifications. One of
them is the so-called incompressibility assumption which is the starting point for the
so-called Boussinesq approximation which will be described in the following section.
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1.1. GOVERNING EQUATIONS

1.1.1 Boussinesq Approximation
In many fluid mechanic problems fluid’s velocity magnitude is much smaller than it’s
sound speed, i.e. the Mach number

M =
V
a
<< 1

where a is the sound speed and V is the maximum fluid speed. In this case one can
assume that the density is a constant. The continuity equation (1.1) reduces to:

∇ · u = 0 (1.3)

Of course one has to clarify if this assumption will be correct for hydrodynamic prob-
lems. If we consider equation (1.2) a constant density will lead to a constant external
force for each fluid lump. So modelling hydrodynamic problems by an incompressible
fluid will remove any buoyancy. This is the starting point of Boussinesq’s approxi-
mation which loosely speaking neglects compressibility except for the buoyancy term.
Therefore we expand the density ρ = ρ(T ) in a Taylor series around a specific temper-
ature T0:

ρ = ρ0

(
1 − α(T − T0)

)
+ O

(
θ2

)
θ = T − T0

Neglecting higher order terms in θ, the momentum equation (1.2) now becomes

∂

∂t
(u) + div(u ⊗ u) = ez

(
1 − α(T − T0)

)
−
∇p
ρ0

+ ν∆u

where ez denotes the unity vector in z direction. So the complete partial differential
equation system in case of a Boussinesq approximation in Ω×(0,∞) (neglecting friction
as a heat source, i.e. νD(u) : D(u) = 0) is given by:

∂

∂t
u + div(u ⊗ u) − ν∆u +

∇p
ρ0

= −gez

(
1 − α(T − T0)

)
(1.4)

∂T
∂t

+ u · ∇T − κ∆T = 0 (1.5)

∇ · u = 0 (1.6)
u = u0 in Ω × {0} (1.7)
T = T0 in Ω × {0} (1.8)

1.1.2 Boundary conditions
In case of no-slip boundaries (i.e.: rigid walls) we additionally get the following bound-
ary conditions on ∂Ω × (0,∞):

ui = 0 ∀i ∈ {1; 2; 3}
equation (1.3)︷︸︸︷
⇒

∂

∂z
u3 = 0

9



1.1. GOVERNING EQUATIONS

In case of no-surface-tension boundaries (i.e.: free surfaces) we get on ∂Ω × (0,∞):

∂u1

∂z
+
∂u3

∂x
= 0

∂u2

∂z
+
∂u3

∂y
= 0

u3 = 0

⇒
∂u1

∂z
=
∂u2

∂z
= 0

equation (1.3)︷︸︸︷
⇒

∂2u3

∂z2 = 0

The boundary conditions for the heat equation are the following ones:

T = Tbottom on ∂Ωbottom × [0;∞)
T = Ttop on ∂Ωtop × [0;∞)

One can easily verify that the following functions are stationary solutions of the Boussi-
nesq approximation (1.4) in case of the simple semi-periodic cube given in Figure 1.2:

ũ(x, t) = 0; (1.9)

T̃ (x, t) = Tbottom −
(Tbottom − Ttop)z

d
(1.10)

p̃(x, t) = z + α
(Tbottom − Ttop)z2

2d
(1.11)

One can introduce perturbation functions u′,T ′,p′ around this state:

u = ũ + u′

T = T̃ + T ′

p = p̃ + p′

Nondimensionalizing equations (1.4) and inserting the perturbation ansatz will give the
following system of equations:

1
Pr

(
∂

∂t
(u′) + div(u′ ⊗ u′)

)
− ∆u′ + ∇p′ = RaezT ′ (1.12)

∂T ′

∂t
− u′3 + u′ · ∇T ′ − ∆T ′ = 0 (1.13)

∇ · u′ = 0 (1.14)

These pertubation equations have the following boundary and initial conditions (in case
of no-slip boundaries):

u′ = 0 on ∂Ω × (0;∞) (1.15)
T ′ = 0 on ∂Ω × (0;∞) (1.16)
u′ = u0 in Ω × {0} (1.17)
T ′ = T0 − T̃ in Ω × {0} (1.18)
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1.2. TOROIDAL-POLOIDAL DECOMPOSITION

periodic boundary
periodic boundary

no-slip boundary

x-direction

z-
di

re
ct

io
n

y-direction

Figure 1.2: The simulation domain is a simple semi-periodic cube with different bound-
ary conditions, i.e. no-slip condition in vertical direction and periodic boundary con-
ditions in horizontal direction. Applying expansions into Fourier series and Chan-
drasekhar polynomials leads to a regular discretization grid.

1.2 Toroidal-Poloidal decomposition
For our numerical simulations we will consider a simple cube with periodic boundaries
in the horizontal direction and rigid boundaries in the vertical direction. Let Lx and Ly

be the length of the cube in x and y direction. A sketch of the simulation domain Ω is
illustrated in Figure 1.2.

So the boundary conditions (1.15) and (1.16) will change to:

u′(x, y, 0, t) = u′(x, y, d, t) = 0
T ′(x, y, 0, t) = T ′(x, y, d, t) = 0
u′(0, y, z, t) = u′(Lx, y, z, t)
u′(x, 0, z, t) = u′(x, Ly, z, t)
T ′(0, y, z, t) = T ′(Lx, y, z, t)
T ′(x, 0, z, t) = T ′(x, Ly, z, t)

Many numerical simulation schemata (e.g. Finite Volume Method) for incompress-
ible, non-stationary Navier-Stokes equations suffer from problems to satisfy incom-
pressibility conditions due to insufficient initial conditions for pressure and velocity or
rounding errors (and therefore in many cases a correction step is needed). In case of
a simple periodic cube, [15] and [16] have shown that there exists a decomposition of

11



1.3. LINEAR STABILITY ANALYSIS AND SOME BIFURCATION THEORY

the velocity field u, such that

u = δ f + εg + H

where f : R3 −→ R and g : R3 −→ R are mean free scalar fields and H(z) : R −→
(F(z),G(z), 0)T with:

δ = (∂x∂z, ∂y∂z,−∆2)T

ε = (∂y,−∂x, 0)T

∆2 = ∂2
x + ∂2

y

δ f is the poloidal and εg the toroidal part. One can easily verify that the incompress-
ibility condition ∇ · u = 0 is implicitly correct by this decomposition. Furthermore the
mean flow part (represented by F) is now separated from the rest of the velocity field.
Since

δ · δ f = ∆∆2 f

ε · εg = ∆2g

δ · εg = ε · δ f = 0
< δ f >xy=< εg >xy = 0

we get a new set of equations by applying δ, ε, < · >xy to (1.12), where < · >xy denotes
the average over x-y-plane:

1
Pr

(
∂

∂t
∆∆2 f + δ · div(u ⊗ u)

)
= −Ra∆2T ′ + ∆2∆2 f (1.19)

1
Pr

(
∂

∂t
∆2g + ε · div(u ⊗ u)

)
= ∆∆2g (1.20)

∂T ′

∂t
+ ∆2 f + (u · ∇)T ′ = ∆T ′ (1.21)

1
Pr

(
∂F
∂t

+
∂

∂z
< u1u3 >

xy
)

=
∂2

∂z2 F (1.22)

1
Pr

(
∂G
∂t

+
∂

∂z
< u2u3 >

xy
)

=
∂2

∂z2 G (1.23)

By this decomposition the pressure field is also eliminated which simplifies our numer-
ical schema. As shown in [15] this set of equations is equivalent to the incompressible
Boussinesq equations. The boundary conditions are the following ones on ∂Ωbottom and
∂Ωtop:

f = ∂z f = g = T ′ = F = G = 0 (1.24)

1.3 Linear stability analysis and some bifurcation the-
ory

So far the equations of motion and its boundary conditions are clear. In the introduction
we have given several heuristic arguments suggesting that the simple solution of the
Boussinesq problem, presented in (1.9) to (1.11), becomes unstable. We have also

12



1.3. LINEAR STABILITY ANALYSIS AND SOME BIFURCATION THEORY

seen that the only control parameters are Rayleigh and Prandtl number. Thus, for a
detailed description of instabilities we need to (i) specify the type of instability and (ii)
determine the specific values of Prandtl and Rayleigh number which separate stability
and instability.

Some answers can be given within the context of bifurcation theory which is not
restricted to Rayleigh-Bénard Convection but can also give answers to other instability
problems. First of all we consider a simple ordinary differential equation of the form

d
dt

x = f (x)

with x ∈ R and t ∈ R. For different initial/boundary conditions

x(t = t0) = x0

we will get another trajectory x(t). If one assumes x(t) to be the trajectory of a particle
within a force field (somehow represented by f ) one can ask if there is point in space
xequilibrium such that for some different initial conditions a, b, c the trajectory of their
particles tend to xequilibrium in the limit of infinite time:

xa,b,c(t) −→ xequilibrium , t −→ ∞

But what will happen if we introduce some kind of a small perturbation δ to xa(t)?
Does xa + δ −→ xequilibrium still hold? To give an answer to this question we write an
arbitrary trajectory x(t) around the equilibrium state as:

x(t) = xequilibrium + η(t)

The next step is to expand f around the equilibrium state x0:

f (x) = f (x0) + D f |x=xequilibriumη + O(η2)

Assuming that higher order terms are not important since we consider an infinitesimal
perturbation we get the following relation taking advantage of the fact that xequilibrium is
an equilibrium state:

d
dt
η = D f |x=xequilibriumη

This is a linear ordinary differential equation of order 1 and one might decompose
D f |x=x0 into its eigenvalues, i.e. the differential equation can written in the following
form

d
dt
η = λη

, if you assume without loss of generality that η is an eigenvector. Obviously the
solution of this ordinary differential equation is of the form

η(t) = Ceλt (1.25)

where C is a constant adapted to fulfill the boundary conditions. Obviously the follow-
ing relation holds (where R(λ) denotes the real part of λ):

η(t) −→ 0 for t −→ ∞ ⇔ R(λ) < 0

13



1.3. LINEAR STABILITY ANALYSIS AND SOME BIFURCATION THEORY

Figure 1.3: Sketch of three simple stability / instability types ([7]) in phase space. The
first one is an unstable mode, i.e. R(λ) > 0 for the linearization and its eigenvalues
λ. Furthermore in this case I(λ) = 0 (I(λ) denoting the imaginary part of λ) since
there is no spiral around the linearization point. The second case shows a stable mode,
i.e.: R(λ) < 0 and I(λ) = 0 for the linearization. The eigenvalues of the linearization
around the third mode is pure imaginary (R(λ) = 0 and I(λ) , 0) and therefore its
dynamic is periodic.

So the question of a stable equilibrium point xequilibrium reduces to the question if all
eigenvalues of the Jacobian have negative real part in xequilibrium.

In case of Rayleigh-Bénard Convection we have two different control parameters.
Therefore the eigenvalues of the Jacobian of the linearized equation system will depend
on these parameters and the question now turns into the following (assuming that we
study the same fluid which fixes our Prandtl number): Does R(λ(R)) (the real part of
eigenvalues as a function of the Rayleigh number) have a zero crossing as a function
of Ra?

To analyse the stability region of Rayleigh-Bénard Convection in detail we write
equations (1.19) to (1.23) in the following way:

V = (θ, f , g, F,G)T

B
∂

∂t
V = N(V |V) + L(V)

L and B represent linear differential operators and N a bilinear one. So the linearized
problem has the following form (, taking advantage of the fact that the linearized part
of N(V |V) is zero):

B
∂

∂t
V = L(V) (1.26)

As the simulation domain is a periodic cube (in the horizontal directions) V is ex-
pandable as a Fourier series. To analyse the stability of the analytic solution of the
Boussinesq problem given in equation (1.9) the perturbation V is written in the form
(compare to equation (1.25)):

V(x, y, z, t) = V(qx, qy, z, t)ei(qx,qy)·(x,y)T
eλt

Inserting this ansatz into equation (1.26) leads to the following generalized eigenvalue
problem

L · V(qx, qy, z, t) = λ(qx, qy)B · V(qx, qy, z, t)

where L and B are the matrix representations of the linear differential operators. The
vector V(qx, qy, z, t) now keeps the Fourier coefficients of V(x, y, z, t) with respect to the

14
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q

R(λ(q))

Rareduced = 0

Rareduced < 0

Rareduced > 0

q = qc

Figure 1.4: Growth rate of different modes as a function of the reduced Rayleigh num-
ber (see [4]) in case of the first stationary bifurcation. Notice that qc is the first mode
which is becoming unstable, because the real part of its eigenvalue has the first zero
crossing for Rareduced = 0.

horizontal plane. As we are looking for the Rayleigh number at which the bifurcation
from steady state takes place, λ = 0 will lead to:

L · V(qx, qy, z, t) = 0

Solving this equation system with respect to z will lead to a series of exponential func-
tions (a more detailed overview is given in [3] and [9]). This procedure leads to a
critical Rayleigh number of Rac ≈ 1707.8 (see [9], page 52). For higher values the
steady state solution is an unstable one. The growth rate of a mode as a function of the
reduced Rayleigh number

Rareduced =
Ra − Rac

Rac

is plotted in Figure 1.4.

1.4 Further instabilities
A linear stability analysis shows: If the Rayleigh number is increased (and the Prandtl
number is fixed by selecting a certain fluid), a bifurcation takes place at Ra = Rac

and the state given in (1.9) to (1.11) becomes unstable for Ra > Rac. The formerly (for
Ra < Rac) unstable mode consisting of parallel rolls can now itself become stable under
certain conditions. To see this one has to linearize the system of partial differential
equations around this mode consisting of straight rolls. Using the same argumentation
of the last section leads to a differential equation with periodic coefficients (because the
state around which the equations are linearized is itself periodic). By Bloch’s theorem
(see [4]) we know that the solution is of the following form:

η = eλ(Q,q)teiQ·xη(z, t)

The mode of whose instability is investigated is represented by q and Q is the wavevec-
tor of the perturbation. As mentioned before it is again not clear whether the unstable
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1.4. FURTHER INSTABILITIES

mode Q might become itself unstable. If it is unstable, too, a roll pattern made of
this mode Q will never be observed in an experiment or a numerical simulation. The
stability region of the parallel rolls mode is often represented in a graph called Busse-
Balloon. Figure 1.5 shows a cross section of the stability region at Pr = 1.03 with
respect to perturbations of different wavelengths and for different reduced Rayleigh
numbers. RAYLEIGH-BÉNARD CONVECTION 727

SV
OSC

CR

ECK

2 3

0

1

2

3

4

5

!

q/d

Figure 6 The stability boundaries of ISR for r ! 1.03 with experimental data. The

theoretical curves are denoted SV (skewed varicose), CR (cross roll), ECK (Eckhaus), and

OSC (oscillatory). The arrows indicate the path taken while increasing e. Open circles,
before SV-instability; upside-down triangles, after SV-instability; diamonds, onset of OSC-

instability; squares, localized CR-instability for decreasing e; solid circles, numerically
determined boundary for localized CR-instability; triangles, wavenumber of spiral defect

chaos as measured at the maximum of the azimuthally averaged power spectrum. From

Plapp (1997).

instability-boundary by decreasing e sufficiently rapidly so as to avoid pattern
relaxation in the bulk. Surprisingly, three different nonlinear evolutions of the

CR-instability were found. As shown in Figure 9A for e ! 0.80" 0.15, a cross-

roll defect nucleated at one of the sidewalls and propagated in a direction that

increased the wavenumber in the wake. For e ! 0.57" 0.15 the cross-roll defect

left behind a disordered totem-pole-like pattern while moving through the system

(Figure 9B). For e ! 0.25" 0.10 the CR-instability occurred in the bulk (Figure

9C).

These local CR-instabilities were also found in numerical simulations when,

for fixed e, an ISR-pattern was initialized with two oppositely charged disloca-
tions and a wavenumber close to the CR-boundary. The results of the simulations

are as shown by the solid circles in Figure 6. In the simulations, the totem-pole

pattern leads to the nucleation of SDC.

Whereas the bulk instability is similar to the one observed for larger Prandtl

number fluids (Busse & Whitehead 1971), the other two are localized CR-

instabilities. Localized CR-instabilities were first observed by Croquette (1989a);

however, due to the small aspect ratio used in the experiment it was not possible
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Figure 1.5: Stability regions of straight rolls for Pr = 1.03 (from [6]), ε denotes the
reduced Rayleigh number, q the mode number and d the length of the cube. The the-
oretical results are represented by lines, while the experimental results are denoted by
the geometrical shapes. The Figure shows stability boundaries for SV (skew-varicose),
ECK (Eckhaus), OSC (oscillatory), CR (cross-roll) instabilities. The experimental re-
sults are obtained by Plapp (1997): Open circles, before SV-instability; upside-down
triangles, after SV-instability; diamonds, onset of oscillatory instability; square, lo-
calized cross-roll instability; solid circles, numerically verified boundary of cross-roll
instability; triangles, spiral defect chaos.

There are a number of different instabilities. Some instabilities for stripe states are
the following ones (a more detailed overview can be found in [4], section 4.2):

Zig-Zag instability: stationary instability of stripe states with respect to long-wavelength,
transverse modes (i.e.: small Q, traverse with respect to q)

Eckhaus instability: stationary instability of stripe states with respect to long-wavelength,
longitudinal modes (i.e.: small Q, longitudinal with respect to q)

Cross-Roll instability: stationary instability of stripe states with respect to finite-wavelength,
traverse modes (i.e.: finite Q, traverse with respect to q)

Skew-Varicose instability: stationary instability of stripe states with respect to long-
wavelength, skew modes (i.e.: small Q, skew with respect to q)

Furthermore in large aspect ratio systems amplitude and phase might vary over
space. It should be noticed, that this is not an instability of the stripe pattern but a
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1.5. SPIRAL DEFECT CHAOS (SDC)

modulation. In many cases so-called dislocations develop. Dislocations of (stripe)
patterns are phase jumps of phase Φ of the complex amplitude. So dislocations can be
found by a contour integral around the dislocation (where

∮
denotes a contour integral

in a small enough area around the dislocation point):

1
2π

∮
∇Φ · ds = ±1

A more detailed description of interactions of dislocations and its dynamics can be
found in [4].

1.5 Spiral Defect Chaos (SDC)
As mentioned in the previous section parallel rolls states, which are the simplest pat-
terns that are linearly stable at moderate Rayleigh numbers, can become unstable if one
increases the Rayleigh or Prandtl number even farther away from equilibrium. Driven
far enough from the onset some systems show states which are disordered in space
and chaotic in time, i.e. display an irregular behaviour in time, although the system
itself is deterministic (see [4]). One of this states in Rayleigh-Bénard Convection is the
so-called spiral defect chaos (SDC). It occurs in large aspect ratio systems and shows
convection rolls which advect through the fluid layer over time and form spirals of dif-
ferent sizes. These spirals rotate some times before they become unstable and build
other local patterns.

Of course the question arises how we can understand the dynamics of these patterns
and why can we see them? One qualitative way to explain why chaotic states arise is
the following one: As we drive the system farther away from onset the previously stable
patterns like rolls become unstable. In some cases they become unstable to states with
a reduced symmetry. One example are roll patterns which become unstable to zig-zags
as the control parameter is varied over some range. The former stripe pattern is unstable
to these zig-zags and their amplitude starts to grow. After some time their amplitude is
saturated by the nonlinearity. Nevertheless their amplitude can grow up to a value of
the former stripe state’s amplitude. So these instabilities might form new dislocations
and patterns which themselves might become unstable and form new ones, too. Figure
1.6 shows the temperature field of a numerical simulation of a spiral defect chaotic
state in a fluid layer with aspect ratio 50. It is worth mentioning that spiral defect
chaotic states can develop even within the control parameter region in which rolls are
stable. In many cases the question whether a roll state or a spiral defect chaotic state
developes depends on the choice of initial conditions. A simple way to illustrate the
behaviour of pattern forming systems are model equations. The most commonly used
is the Swift-Hohenberg equation which can be extended to show spiral defect chaotic
states, too.

1.6 Model equations of Swift-Hohenberg type
Equations of Swift-Hohenbeg type are model equations, which show simple pattern
formation processes. They were first introduced by Swift and Hohenberg in 1977 (see
[8]). Some simple patterns (stipe states and hexagons) created by numerical simula-
tions in periodic domains are shown in Figure 1.7. Furthermore it can model many
of the spatio-temporal pattern formation processes of Rayleigh-Bénard Convection by
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1.6. MODEL EQUATIONS OF SWIFT-HOHENBERG TYPE

Figure 1.6: Numerical simulation of spiral defect chaotic state (Boussinesq equations)
within a periodic domain for ε = 0.72, Pr = 0.96. The aspect ratio is 50, in both
horizontal directions 1024 Fourier coefficients were used for the simulation. The color
represents the temperature of the fluid. Red represents warm fluid and blue cold one.

means of a simplified model equation. It is not derivable from the macroscopic Boussi-
nesq or Navier-Stokes equations. Actually Swift and Hohenberg themselves introduced
these equations in a different context. To describe more than simple patterns one has to
extend them by additional terms.

The simplest form of this equation type is the following one:

∂

∂t
u(x, y, t) = εu − (∆ + 1)2u − u3 (1.27)

In this case u(x, y, t) is a model function of the fluid’s vertical velocity and is therefore
not a function of the vertical coordinate z. In this case ε is the bifurcation parame-
ter and controls the instability. One can easily show by the following ansatz for the
perturbation

η(x, y, t) = Aeλtei(qx x+qyy)
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1.6. MODEL EQUATIONS OF SWIFT-HOHENBERG TYPE

Figure 1.7: Two stationary patterns obtained by numerical simulations of the simplest
Swift-Hohenberg equation in a periodic domain without mean flow. Since the Swift-
Hohenberg equation has a potential function which never decreases in time, it can only
create stationary patterns.

that the first mode (‖q‖2 = 1) is becoming unstable for ε > 0. This can be obtained by
linearizing equation (1.27) around u = 0 and rewriting the linear differential operator
in Fourier space, which is:

L(u) = −(1 − ‖q‖2)2u

So this equation has the same initial bifurcation properties like the Boussinesq equa-
tions. Of course this simple equation can not describe the complete behaviour of a
fluid layer heated from below in detail. One way to see this is to look for monotonic
functionals. In case of periodic boundary conditions one may consider the following
functional:

F(t) =

∫ ∫
−

1
2
εu2 +

1
4

u4 +
1
2

(
(∆ + 1)u

)2

dxdy (1.28)

Integration by parts and taking advantage of periodic boundary conditions will give:

dF
dt

= −

∫ ∫ (
∂

∂t
u
)2

dxdy < 0

Therefore the function F(t) can only decrease within a periodic domain over time and
one reaches a steady state if the functional reaches its minimum. So equation (1.27)
cannot describe spatio-temporal chaotic states. But it can describe simple states like
stable convection rolls or hexagons.

To describe more than these basic patterns the Swift-Hohenberg model equations
have to be extended by additional terms. They have to represent the so-called mean
flow part advecting patterns through the fluid layer. One option is the following one:

∂

∂t
u + V · ∇u = εu − (∆ + 1)2u − u3 + δu2

V = (∂yζ,−∂xζ)
∆ζ = c · ẑ · ∇u × ∇(∆u)

19



1.6. MODEL EQUATIONS OF SWIFT-HOHENBERG TYPE

hexagons

stripes

“state”

F(t)

Figure 1.8: Shape of a functional given in equation (1.28) (see [4], page 182). There
is some kind of a potential-barrier between stripes and hexagons. Therefore a poten-
tial system like the ordinary Swift-Hohenberg equation cannot describe non-potential,
spatio-temporal chaotic states, which are not transient.

In this case ẑ is a unit vector along the z-axes, ζ represents the stream function, V is the
mean flow and c is a constant representing the strength of the mean flow. It is worth
mentioning that the given equations are invariant with respect to the symmetry u→ −u
and rotations, as one would expect of the Boussinesq equations, too. The added mean
flow term destroys the potential nature of the original Swift-Hohenberg equation (1.27).
Therefore it can describe more complicated patterns and even spatio-temporal chaotic
states. They also describe a pattern state which is visually comparable to spiral defect
chaos. Figure 1.9 shows a spatio-temporal chaotic state similar to spiral defect chaos
obtained by a numerical simulation of Swift-Hohenberg equations (including mean
flow). The discrete equations for two-dimensional simulations of Swift-Hohenberg
type equations in case of a Galerkin method for a periodic domain can be found in
Appendix B.
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Figure 1.9: Numerical simulation of a spatio temporal chaotic state in case of Swift-Hohenberg equation with mean flow. The state obtained is similar
to spiral defect chaos. This figure shows a section of a very large simulation (running also on graphics cards) with periodic boundaries. The complete
set of discrete equations can be found in the appendix.
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Chapter 2

Numerical methods for
Rayleigh-Bénard Convection

Simulating fluid’s motion has many faces. First of all one has to choose a method
appropriate to the simulated physical problem. Common numerical methods like finite
difference (FDM), finite volume (FVM), finite element methods (FEM) are applicable
to complex geometries and are not easy to implement, especially on unstructured grids.
Of course they differ from the mathematical perspective, as FVM and FEM will give
weak solutions while FDM will not.

To take advantage of our simple periodic domain in the horizontal directions apply-
ing spectral methods is an appropriate choice. To describe the method in one sentence
one might say, that spectral methods are Galerkin methods which use a representation
of high order (in many cases high order (complex-) polynomials) on a structured grid.
By choosing a high order scheme you will achieve (in many cases) a very high conver-
gence rate (which is in theory higher than any polynomial in 1/N where N denotes the
approximation oder). Compared to other methods like FEM this will lead to an equa-
tion system which is not sparse. So the question arises whether spectral methods are
efficient ones? The answer is yes, due to the fact that there exist fast transformations
for many ansatz functions on simple/periodic domains which reduce the complexity of
the simulation scheme. The following section gives an mathematical motivation of our
numerical simulation schema by introducing weak formulations. Readers who are not
interested in this mathematical background can skip this section and continue reading
with section 2.1.2 which describes the numerical method (pseudo-spectral simulations)
in detail (i.e. the discrete equations and how to calculate the nonlinear operator effi-
ciently).

2.1 Theory and Galerkin Method
Galerkin Methods are heavily used in numerical analysis and theory of partial differ-
ential equations. It is a variational method and the basic idea for many techniques to
solve partial differential equations numerically (e.g. finite volume or finite element
methods). To understand them we have to introduce the so-called weak formulation
which extends the differentiation respectively the definition of a solution in a weaker
sense.
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2.1.1 Weak formulation
In many cases it is well known that partial differential equations do not have a strong
solution. Especially in the cases of continuous but non-differentiable boundary con-
ditions obviously strong solutions cannot exist. So the idea of weak solutions is to
extend differentiation to a so-called weak form such that it includes the strong differen-
tiation and specifies a well defined solution theory. This means that we are looking for
a Hilbert space which is defined in a right way to define differentiation in a weak sense.
Integration by parts is well known from basic analysis. In case of a function u ∈ C1(Ω)
and φ ∈ C∞0 (Ω) ( where C∞0 (Ω) = { f ∈ C∞| f |∂Ω = 0} ) this means:∫

Ω

∂u
∂xi

φdx = −

∫
Ω

u
∂φ

∂xi
dx

So it turns out to use this property to generalize the strong derivative to a weaker form:

Definition 1. Let u ∈ L1
locΩ and g ∈ L1

loc(Ω) such that they satisfy∫
Ω

gφdx = −

∫
Ω

u
∂φ

∂xi
dx

for all φ ∈ C∞0 (Ω) then g is the weak derivative of u with respect to xi. Using the scalar
product of L2(Ω) one may write in a short form:

(g, φ)L2 = −(u, ∂xiφ)L2

By this definition we introduce the following family of function spaces, which are
called Sobolev spaces ( f α denoting the weak derivative of f of order α)

Wk,p(Ω) = { f ∈ Lp(Ω)| f α ∈ Lp(Ω)∀α ∈ Nd : ‖α‖ < k}

where ‖α‖ = α1 + · · ·+αd and f : Ω ⊂ Rd → R. Together with the following definition
Wk,p is becoming a normed function space:

‖u‖Wk,p =


(∑
|α|≤k ‖u‖

p
Lp

)p
if 1 ≤ p < ∞∑

|α|≤k ess supΩ |u
α| if p = ∞

To shorten notations we introduce the following important function space:

Hk(Ω) = Wk,2(Ω)

It is a well known fact, that (see [11], page 249):
For 1 ≤ p ≤ ∞ Wk,p is a Banach space and Hk(Ω) is a Hilbert space with the

following scalar product.

< u, v >Hk(Ω)=
∑
|α|≤k

< Dαu,Dαv >L2(Ω)

To fulfill boundary conditions we have to introduce another function space in the fol-
lowing way

Wk,p
0 (Ω) = C∞0 (Ω)

‖·‖Wk,p
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and of course accordingly:

Hk
0Ω = Wk,2

0 (Ω)

Of course the definition of Wk,p(Ω) is the right one to speak about boundary values.
A priori functions f ∈ Lp(Ω) are only defined almost everywhere in Ω ⊂ Rn. As
∂Ω is only a n − 1 dimensional manifold with Lebesgue measure zero, speaking about
boundary values is not defined. Luckily the so-called trace operator T can be defined
such that (see [11], page 258)

T : Wk,p(Ω)→ Lp(∂Ω)

and for all u ∈ Wk,p(Ω):

‖T (u)‖Lp(∂Ω) ≤ C‖u‖Wk,p(Ω)

Furthermore it can be shown:

u ∈ Wk,p
0 (Ω)⇔ T (u) = 0 on ∂Ω

To study time-dependent partial differential equations an analogous technique with
respect to time derivatives has to be introduced. This can be done by introducing the
so-called Bochner integral which is an integral generalized to Banach space functions.

Definition 2. The function space Lp(0; T ; X), where X is a Banach space, consists of
all measurable function u : [0; T ]→ X where

‖u‖Lp(0;T ;X) =


( ∫ T

0 ‖u(t)‖pXdt
) 1

p

if 1 ≤ p < ∞

ess sup0≤t≤T ‖u(t)‖X if p = ∞

.

In case of Boussinesq equations (1.12) one can introduce the following weak for-
mulation for the momentum equation after taking advantage of integration by parts and
periodic boundary conditions

−
1
Pr

∫ T

0
< u,

∂v
∂t

>L2 dt +

∫ T

0
div(u ⊗ u)vdt+

∫ T

0
∇u : ∇vdt −

∫ T

0
pdiv(v)dt

= Ra
∫ T

0
ezTvdt

0 =

∫ T

0
q · div(u)dt

where the equations have to be fulfilled for p ∈ L2
0(Ω) and for all q ∈ L2

0(Ω).

2.1.2 Galerkin Method
One way to treat partial differential equations numerically are Galerkin methods. The
idea is to find a set of functions which approximates our solution and test function space
with high accuracy (in many cases one can find a dense subset). So each (test-) function
can be represented as a series of these functions. To obtain a numerical schema which
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can be implemented, we truncate this series in an appropriate way and obtain a discrete
set of equations. So for a given differential equation

L(u)(x) = f (x) in Ω

u(x) = u0(x) in ∂Ω

one expands the solution u(x) ∈ X into a finite series:

u(x) =

N∑
i=0

uiφi(x)

In many cases the following relation holds

X = {φ0, φ1, φ2, · · · }
‖·‖X (2.1)

, which means that {φ0, φ1, φ2, · · · } is a dense subset of X. Introducing the residual

r(x) = L(u)(x) − f (x)

the goal is to minimize r(x). Taking advantage of the fact that X is a Hilbert space,
the minimal residual method tries to minimize the residual by introducing a set of
weighting functions

W = {w0,w1,w2, · · · }

and the condition

< w1(x), r(x) >X = 0
...

< wN(x), r(x) >X = 0

The so-called Galerkin method is obtained by projecting onto φi, which means:

φi(x) = wi(x) ∀i ∈ {1, · · · ,N}

This gives an equation system or a system of ordinary differential equations to deter-
mine the coefficients ui.

Expansion into Fourier series

In some cases relation (2.1) is extended by the following condition:

< φi, φ j >x = δi j

‖φi‖X = 1

In such a case a function f ∈ X is represented by a so-called generalized Fourier series
in the following way:

f (x) =

∞∑
i

< f , φi >X φi(x)
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In case of periodic boundary conditions a complete orthonormal system is given by the
following set with the given definition of a scalar product:

C0
L = { f : [0; L]→ R| f (0) = f (L), f ∈ C0} = {e

2πikx
L |k ∈ N}

< f , g >C0
L
= 1

L

∫ L
0 f (x)g(x)dx

So on periodic domains it is obviously a nice way to expand a solution into a Fourier
series of the form

f =

∞∑
k=−∞

f̂ke
2πikx

L

where f̂k are so-called Fourier coefficients. One can show that if a function f is in Cp
L

the truncated Fourier series up to order N

f̃ =

N∑
k=−N

f̂ke
2πikx

L

converges to f asymptotically like (see [20]):

‖ f − f̃ ‖∞ = O(N1−p)

So for a smooth function this means that a truncated Fourier series converges faster than
any polynomial in 1

N . Additionally there are some simple calculation rules regarding
to differentiation:

∂ f
∂x

=

∞∑
k=−∞

2πik
L

f̂ke
2πikx

L

∂2 f
∂x2 =

∞∑
k=−∞

−(2πk)2

L2 f̂ke
ikx
L

Chandrasekhar Polynomials

As presented in the previous section it is reasonable to expand periodic functions into
Fourier series. This is the case for the horizontal directions. Of course the Boussinesq
equations (1.19) to (1.23) depend on the z-coordinate, too. So the question arises how
to expand the vertical dependence. Of course we have to keep in mind, that the different
functions in equations (1.19) to (1.23) have to satisfy different boundary conditions (see
(1.24)). In case of f one has to look for an orthogonal set of functions ψi(z) satisfying:

ψi(−
1
2

) = ψi(
1
2

) = 0 (2.2)

∂

∂z
ψi(−

1
2

) =
∂

∂z
ψi(−

1
2

) = 0 (2.3)

< ψi, ψ j >= δi j (2.4)

The solution of this equation system is well known. The set of orthonormal func-
tions is given by Chandrasekhar polynomials:

ψk(z) =


cosh(λkz)
cosh(λk

1
2 )
−

cosh(iλkz)
cosh(iλk

1
2 )

if k is odd
sinh(λkz)
sinh(λk

1
2 )
−

sinh(iλkz)
sinh(iλk

1
2 )

if k is even
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z

f (z)

ψ1(z)

ψ2(z)

S 1(z)

S 2(z)

z = − 1
2 z = 1

2

Figure 2.1: Plot of the vertical ansatz functions for T ′, f , g, F,G. ψ1 and ψ2 are used for
f to fulfill the boundary conditions (for each ansatz function). This choice of ansatz
functions leads to a system of ordinary differential equations without any additional
algebraic condition.

It is easy to verify that these functions satisfy the requirements and additionally the
following simple relation holds true:

∂4

∂z4ψk(z) = λ4
kψk(z)

Using a bit more functional analysis one can even show that these polynomials consti-
tute a dense subset in an appropriate subspace of functions satisfying (2.2) to (2.4).

2.1.3 Penalization methods
The possibility of direct comparison of theoretical, numerical and theoretical results is
one of the key features of Rayleigh-Bénard Convection. Therefore, it is legitimate to
ask whether simulations in a periodic domain are realistic enough to be compared to
experimental situations. The main reason why numerical simulations in periodic do-
mains are so extensively used is the efficiency they provide for calculating the nonlinear
part by means of fast Fourier transformations. Of course, fast transformation methods
also exist for a number of sets of orthogonal functions on other simple domains such
as cylinders or spheres, such as Tschebychev polynomials on spheres. This approach
is well known and has been in use for a long time (e.g. see [12]). The main disadvan-
tage is the necessity to change the set of ansatz functions every time the geometry of
the problem is changed. More complex geometries are not accessible at all, as neither
the set of “right” ansatz functions nor the corresponding fast transformation method is
known.

To circumvent these problems we apply a so-called penalization method, which is
a method that allows you to simulate more complex geometries without the need to
change large parts of your simulation code. As it is still a spectral code with Fourier
series expansions efficiency is guaranteed. The idea is to introduce new terms into the
Navier-Stokes and heat equation which forces the simulation result to have the correct
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Ω (periodic)

Ω1

Ω2

Ω3

∂Ω1

∂Ω2

∂Ω3

Figure 2.2: Sketch of the simulation domain Ω seen from above. To realize no-slip
boundary conditions on ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 we introduce volume penalizations on
Ω1 ∪Ω2 ∪Ω3 as a function of the penalization parameter ηwhich forces the simulation
result to fulfill the boundary conditions as η → 0. So no-slip boundary conditions do
not affect the choice of ansatz functions and the numerical simulation schema as Ω is
still periodic.

boundary conditions. Of course some analysis has to clarify that the simulation result
is more or less correct.

If one wants to simulate the Rayleigh-Bénard problem within a bounded open do-
main Ω ⊂ [0; Lx]×[0; Ly]×[−0.5; 0.5] (with rigid boundaries on top and bottom) which
is non periodic in the horizontal direction one has to replace the periodic boundary con-
ditions by no-slip conditions on the boundary ∂Ω. First we define the complement of
Ω within the periodic box:

Ωc = [0; Lx] × [0; Ly] × [−0.5; 0.5] \Ω (2.5)

One of the most frequently used penalization method is the L2-penalization in which
we replace momentum equations (1.12) by:

1
Pr

(
∂

∂t
(u′) + div(u′ ⊗ u′)

)
− ∆u′ + ∇p′ = RaezT ′ −

1
η

1Ωc u′ (2.6)

∂T ′

∂t
− u′3 + u′ · ∇T ′ − ∆T ′ = −

1
η

1Ωc T ′ (2.7)

∇ · u′ = 0 (2.8)

where 1Ωc represents the following characteristic function

1Ωc =

1 if x < Ω

0 if x ∈ Ω

and η ∈ R+ and we want to satisfy the following boundary conditions by this penaliza-
tion:

u′ = 0 ∀(x, t) ∈ ∂Ω × [0; T ]
T ′ = 0 ∀(x, t) ∈ ∂Ω × [0; T ]
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Convergence results

The following results show some basic convergence results as η→ 0 and are presented
in [13]. In case of a two-dimensional flow Angot et al. even have shown some rigorous
convergence results and error estimators.

First we want to consider again the following penalized formulation of the incom-
pressible Navier-Stokes equation:

1
Pr

(
∂

∂t
(u′η) + div(u′η ⊗ u′η)

)
− ∆u′η + ∇p′η = RaezT ′ −

1
η

1Ωc u′η

∇ · u′η = 0

By expanding u′η = u + ηũ and p′η = p + η p̃ and some algebraic manipulations (for
details see [13], page 500) one can show, that (where Ωc denotes again the penalization
volume):

1Ωc u = 0 (2.9)
ũ|Ωc + ∇p′|Ωc = 0 (2.10)

∆p′|Ωc = 0 (2.11)
∇ · ũ|Ωc = 0 (2.12)

By equation (2.10) one can verify that ũ satisfies a Darcy-type law in the penalization
volume Ωc. The pressure satisfies a Neumann condition (see equation (2.11)). There-
fore the fluid flow inside the penalization medium follows the flow through a porous
medium.

Furthermore Angot et al. ([13]) have shown in case of a two-dimensional flow that
the sequence (u′η)η, as η tends to zero, converges to a limit u′ with

u′|Ωc = 0

and the limit u′ is the unique solution of the (unpenalized) Navier-Stokes equations in
Ω. Additionally there exists a weak limit in the following way

1
η

1Ωc u′η ⇀ ŭ in W

where W = {φ ∈ L2(0; T ; H1
0(Ω)); ∂tφ ∈ L2(0; T ; H1

0(Ω)); φ(T ) = 0} (see [13]). This
means that u′η is more or less unique in Ωc and not arbitrary in the limit η→ 0.

This simulation technique gives access to complex geometries (without any z-
dependence) and in our cases η = 10−2 is sufficient, to achieve convergence towards
no-slip boundaries. Figure 2.4 shows some simulation results within a bounded cube
and no-slip boundary conditions on all boundaries of the cube. For this simulation the
last three points of the grid (in x and y direction) where penalized.

2.2 The Pseudo-Spectral Method
Employing Galerkin Methods for simulations requires to extract a finite number of
equations that can be implemented in software. Therefore this section describes the
basic discrete equations obtained by the Boussinesq approximation and the poloidal-
toroidal decomposition. Furthermore we consider the penalization methods and show
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how to get the discrete penalizations. The basic idea is to take a finite dimensional
subspace of our solution space. This means representing the solutions of the system of
partial differential equations by truncated Fourier series. We will see in Section 2.2.1
that changing between physical and Fourier space allows us to calculate the nonlinear
operators efficiently. Since we change between physical and Fourier space and we are
working with truncated Fourier series we have to make sure that we get rid of modes
with a wavenumber higher than the highest wavenumber in our truncated Fourier series.
This effect is called dealiasing and is described in Section 2.2.2.

2.2.1 Discrete equations
To obtain the set of discrete equations we expand all functions as a tensor product
representation, i.e.:

T ′(x, y, z, t) =

N∑
k3=1

N1∑
k2=−N1

N2∑
k1=−N2

T̂ ′k1,k2,k3 (t)e
2πik1 x

Lx e
2πik2y

Ly sin(k3π(z + 0.5)) (2.13)

f (x, y, z, t) =

N∑
k3=1

N1∑
k2=−N1

N2∑
k1=−N2

f̂k1,k2,k3 (t)e
2πik1 x

Lx e
2πik2y

Ly ψk3 (z) (2.14)

g(x, y, z, t) =

N∑
k3=1

N1∑
k2=−N1

N2∑
k1=−N2

ĝk1,k2,k3 (t)e
2πik1 x

Lx e
2πik2y

Ly sin(k3π(z + 0.5)) (2.15)

F(x, y, z, t) =

N∑
k3=1

F̂k3 (t)sin(k3π(z + 0.5)) (2.16)

G(x, y, z, t) =

N∑
k3=1

Ĝk3 (t)sin(k3π(z + 0.5)) (2.17)

The choice of vertical ansatz functions leads to an implicit satisfaction of our boundary
conditions. To get the full set of equations one has to insert these series expansions into
equations (1.19) to (1.23).

To abbreviate notations within the nonlinear operators we introduce some tempo-
rary fields u j

i (x, y, k3, t) and T1(k3) to describe the velocity field in the following way
(with S n(z) = sin(nπ(z + 0.5))):

u1 =

N∑
k3=1

∂zψk3 (z)u1
1(x, y, k3, t) + S k3 (z)u2

1(x, y, k3, t)

u2 =

N∑
k3=1

∂zψk3 (z)u1
2(x, y, k3, t) + S k3 (z)u2

2(x, y, k3, t)

u3 =

N∑
k3=1

ψk3 (z)u1
3(x, y, k3, t)

T ′ =

N∑
k3=1

S k3 (z)T1(x, y, k3, t)

By definition of poloidal-toroidal decomposition these temporary variables are given
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by:

u1
1(x, y, k3, t) =

N1∑
k2=−N1

N2∑
k1=−N2

2πik1

Lx
f̂k1,k2,k3 (t)e

2πik1 x
Lx e

2πik2y
Ly

u1
2(x, y, k3, t) =

N1∑
k2=−N1

N2∑
k1=−N2

2πik2

Ly
f̂k1,k2,k3 (t)e

2πik1 x
Lx e

2πik2y
Ly

u1
3(x, y, k3, t) =

N1∑
k2=−N1

N2∑
k1=−N2

((2πik1

Lx

)2
+

(2πik2

Ly

)2
)

f̂k1,k2,k3 (t)e
2πik1 x

Lx e
2πik2y

Ly

u2
1(x, y, k3, t) =

N1∑
k2=−N1

N2∑
k1=−N2

2πik2

Ly
ĝk1,k2,k3 (t)e

2πik1 x
Lx e

2πik2y
Ly + δk1,k2 F̂k3

u2
2(x, y, k3, t) =

N1∑
k2=−N1

N2∑
k1=−N2

−
2πik1

Lx
ĝk1,k2,k3 (t)e

2πik1 x
Lx e

2πik2y
Ly + δk1,k2Ĝk3

By this variables the nonlinear part of the momentum equation becomes:

(u · ∇)u = div(u ⊗ u) =

∂x(u1u1) + ∂y(u2u1) + ∂z(u3u1)
∂x(u1u2) + ∂y(u2u2) + ∂z(u3u2)
∂x(u1u3) + ∂y(u2u3) + ∂z(u3u3)


To calculate the projections onto the horizontal and vertical functions one has to calcu-
late (∂zψi = ψ′i):

• Projections of the linear operators

• Projections of the nonlinear operators

First we consider the projections of the linear operators. The linear operators are given
by:

∂

∂t
T ′ = ∆T ′ − ∆2 f

1
Pr

∂

∂t
∆∆2 f = ∆2∆2 f − Ra∆2T ′

1
Pr

∂

∂t
∆2g = ∆∆2g

1
Pr

∂

∂t
F =

∂2

∂z2 F

1
Pr

∂

∂t
G =

∂2

∂z2 G

Taking advantage of expansions (2.13) to (2.17) the complete set of discrete equations
given in Appendix A is obtained.

Convolutions sums and FFT

As presented in the previous section in many cases one has to evaluate an integral of
the following type:∫ Lx

0

∫ Ly

0

( ∑
−N1≤l1≤N1
−N2≤l2≤N2

f̂l1,l2 e
2πil1

Lx
xe

2πil2
Ly

y
)( ∑
−N1≤m1≤N1
−N2≤m2≤N2

ĝm1,m2 e
2πim1

Lx
xe

2πim2
Ly

y
)
e

2πik1
Lx

xe
2πik2

Ly
ydxdy
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By some simple algebra one can easily show, that this integral equals the following
double sum:∑

−N1≤l1≤N1
−N1≤m1≤N1

l1+m1=k1

∑
−N2≤l2≤N2
−N2≤m2≤N2

l2+m2=k2

f̂l1,l2 ĝm1,m2 =
∑

−N1≤l1≤N1
−N1≤k1−l1≤N1

∑
−N2≤l2≤N2
−N2≤k2−l2≤N2

f̂l1,l2 ĝk1−l1,k2−l2

This is a two dimensional convolution sum which is of complexity O(N2
1 N2

2 ) (in case of
a naive implementation). It is well known that these convolution sums can be evaluated
efficiently by making use of fast transformation methods (i.e. fast Fourier transforma-
tions). In the following we denote the convolution sum given above by(

f̂ ∗ ĝ
)
(k1, k2) =

∑
−N1≤l1≤N1
−N1≤k1−l1≤N1

∑
−N2≤l2≤N2
−N2≤k2−l2≤N2

f̂l1,l2 ĝk1−l1,k2−l2

Denoting by F the fast Fourier transformation and by F −1 the inverse fast Fourier
transformation it is well known that the convolution sum can be calculated as follows:

f̂ ∗ ĝ = F
(
F −1( f̂ ) · F −1(ĝ)

)
In case of a two dimensional fast Fourier transformation each transformation is of com-
plexity O(N1N2logN1N2). In section 2.2.1 we have noticed that the whole numerical
schema is of quadratic complexity O(N2

3 ) with respect to N3. The reason for this com-
plexity is that there exists no fast transformation method for Chandrasekhar polyno-
mials. Since N3 is small, typically N3 = 2, this quadratic complexity is not of great
importance. So the whole numerical schema is of complexity O(N2

3 N1N2logN1N2).

Discrete penalization

To obtain the discrete equations for the penalized equations we apply again the same
technique to decompose the solution u′ into a poloidal, toroidal and mean flow part and
get the following system of equations which has to be solved numerically:

1
Pr

(
∂

∂t
∆∆2 f + δ · div(u ⊗ u)

)
= −Ra∆2T ′ + ∆2∆2 f −

1
η
δ · 1Ωc u′ (2.18)

1
Pr

(
∂

∂t
∆2g + ε · div(u ⊗ u)

)
= ∆∆2g −

1
η
ε · 1Ωc u′ (2.19)

∂T ′

∂t
+ ∆2 f + (u · ∇)T ′ = ∆T ′ −

1
η

1Ωc T ′ (2.20)

1
Pr

(
∂F
∂t

+
∂

∂z
< u1u3 >

xy
)

=
∂2

∂z2 F −
1
η
< 1Ωc u′ >xy (2.21)

1
Pr

(
∂G
∂t

+
∂

∂z
< u1u3 >

xy
)

=
∂2

∂z2 G −
1
η
< 1Ωc u′ >xy (2.22)

Projecting these equations onto the horizontal and vertical ansatz functions gives again
a set of discrete equations which are used to solve the system of partial differential
equations numerically. To shorten notations the next formulas show the projections of
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the penalizations terms. So for the evolution equation for f we get:

1
LxLy

∫ 1
2

− 1
2

∫ Ly

0

∫ Lx

0
δ ·

1
η

1Ωc u′e
2πik1 x

Lx e
2πik2y

Ly ψn(z) =

1
η

N3∑
j=1

(
2πik1

Lx

(
< ∂2

zψ j, ψn > Fx,y{1Ωc u1
1( j)}k1,k2

+ < ∂zS j, ψn > Fx,y{1Ωc u2
1( j)}k1,k2

)
+

2πik2

Ly

(
< ∂2

zψ j, ψn > Fx,y{1Ωc u1
2( j)}k1,k2

+ < ∂zS j, ψn > Fx,y{1Ωc u2
2( j)}k1,k2

)
+ (2π)2|

k
L
|2
(
< ψ j, ψn > 1Ωc u1

3( j)}k1,k2

))
The penalization term for g is given by:

1
LxLy

∫ 1
2

− 1
2

∫ Ly

0

∫ Lx

0
ε ·

1
η

1Ωc u′e
2πik1 x

Lx e
2πik2y

Ly ψn(z) =

1
η

N3∑
j=1

(
2πik2

Ly

(
< ∂2

zψ j, ψn > Fx,y{1Ωc u1
1( j)}k1,k2

+ < ∂zS j, ψn > Fx,y{1Ωc u2
1( j)}k1,k2

)
−

2πik1

Lx

(
< ∂2

zψ j, ψn > Fx,y{1Ωc u1
2( j)}k1,k2

+ < ∂zS j, ψn > Fx,y{1Ωc u2
2( j)}k1,k2

))
The penalization terms for F and G are given by:∫ 1

2

− 1
2

1
η
< 1Ωc u1 >

xy S n(z)

=
1
η

N3∑
j=1

< ∂zψ j, S n > Fx,y{1Ωc u1
1( j)}0,0+ < S j, S n > Fx,y{1Ωc u2

1( j)}0,0

∫ 1
2

− 1
2

1
η
< 1Ωc u2 >

xy S n(z)

=
1
η

N3∑
j=1

< ∂zψ j, S n > Fx,y{1Ωc u1
2( j)}0,0+ < S j, S n > Fx,y{1Ωc u2

2( j)}0,0

Figure 2.4 and 2.3 show some simulation results for penalized simulations. The
first one simulates convection in a rectangular cell with no-slip boundary conditions
in all directions. The result is no longer periodic with respect to the rectangular non-
periodic domain. The second simulation shows convection around a grid of cylinders.
The outer boundaries of the cell are still periodic. In both cases η = 10−2 is sufficient.
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penalization volumes

Figure 2.3: Simulation result in a more complex domain. This example shows the
convection around a 2×3 grid of cylinders. In this case the boundaries of the surround-
ing rectangle are periodic ones. The aspect ratio is Γ = 10 and Ra = 2900, Pr = 1.
128 × 128 modes were used in the horizontal plane. The left graph shows the temper-
ature field at z = 0 (red indicates hot fluid, blue cold fluid) and the right graph shows
the magnitude of the velocity field at z = 0 (red indicates higher magnitudes and blue
indicates zero velocity). The fluid’s velocity and temperature are forced to be zero (in
this case the maximum magnitude of T ′ and |u|2 is smaller than 10−5) by penalization
with η = 10−2.

2.2.2 Dealiasing
In Section 2.2.1 we have presented one of the discrete nonlinear operators (i.e. convo-
lutions). Due to the fact that one has to consider truncated Fourier series in case of a
numerical simulation schema, the results of the nonlinear operator suffer from an error
called “aliasing”. This error source is related to truncated Fourier series and an under-
sampling phenomenon. To illustrate this effect in one space dimension let us consider
two periodic signals u, v represented by a Fourier series (denoting by u j the value of u at
x j =

jLx
N1

where N1 denotes the number of Fourier coefficients and j ∈ {0, · · · ,N1 − 1}):

u j =

N1∑
k1=−N1

ûk1 e
2πik1

Lx
x j

v j =

N1∑
k1=−N1

v̂k1 e
2πik1

Lx
x j

As defined in Section 2.2.1 the result ŝk1 of the nonlinear operator can be calculated as
follows:

ŝk1 =
1

N1

N1−1∑
j=0

u jv je−
2πik1

Lx
x j
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Figure 2.4: Numerical simulation of Rayleigh-Bénard Convection for Ra = 2100 ,
Pr = 0.96 within a bounded domain. To keep the simulation schema nearly unchanged
a penalization technique described in section 2.1.3 with η = 0.01 was used. Notice that
the simulation is executed within the complete domain (including the green boundaries
of the rectangle) while the simulation result is just the inner part of the rectangle. The
penalization terms force the temperature field to tend to zero in the vanishing limit of
η outside of the inner rectangle.

35



2.3. TIME-STEPPING METHODS

Inserting the expansions u j and v j as Fourier series in this definition leads to:

ŝk1 =
∑

l1+m1=k1

ûl1 v̂m1 +
∑

l1+m1=k1±N1

ûl1 v̂m1︸              ︷︷              ︸
aliasing term

(2.23)

The last sum of the right side is the so-called aliasing term. Since this term is cre-
ated by truncation of Fourier series (i.e. N1 < ∞) this is an error term representing a
higher/lower wavenumber of k1 ± N1 as one of wavenumber k1.

Of course we want to avoid aliasing errors in case of numerical simulations, since
we do not have a rigorous error bound for them. The most commonly used techniques
are padding and truncation techniques. The idea is to pad the given vector of Fourier
coefficients with zeroes in such a way that the aliasing term vanishes. The padding tech-
nique therefore adds to the vector given Fourier coefficients zeros of the same length.
It is easy to verify that the aliasing term∑

l1+m1=k1±2·N1

ûl1 v̂m1

is zero for all k1 ∈ {−N1, · · · ,N1}. Of course this technique has the disadvantage of
doubling the length of each transformation. Another technique to avoid aliasing errors
is a truncation technique. First of all we define a new field of Fourier coefficients ŭ and
v̆ in the following way (with M1 ≥

3
2 N1):

ŭk1 =

ûk1 if − M1
2 ≤ k1 ≤

M1
2

0 sonst

In the same way we define v̆k1 . If we now build s̆k1 analogue to (2.23) the aliasing term
vanishes and we get:

ŝk1 = s̆k1 if k1 ≤ |N1/2|

A formal proof of this technique can be found in [12]. Of course this technique has the
advantage of a smaller number of Fourier coefficients compared to the first technique,
but has the disadvantage of an uncomfortable transformation size with respect to many
fast Fourier transformation implementations. Since this is a major drawback in many
cases it is the preferred way to choose a data field of Fourier coefficients of an arbitrary
size fitting to the FFT algorithm and setting the outer one-third Fourier coefficients to
zero before each nonlinear operator evaluation. This algorithm is called two-third rule,
also introduced and described in [12]. Of course this procedure limits the number of
usable Fourier coefficients for a given number of Fourier coefficients up to two-third but
has the advantage of being conform with respect to many fast Fourier transformation
libraries.

2.3 Time-stepping methods
Since the governing, analytic equations (1.19) to (1.23) are time dependent ones and
our semi-discrete equations of the numerical simulation schema are still time dependent
(, as we have discretized them at first with respect to the space coordinates x, y, z), a
time-stepping method is needed. Of course there are different aspects which have to be
considered when choosing a time-stepping method.
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x

f (x)

u(x)

x

f (x)

u(x) · ∂xu(x)

u(x) · ∂xu(x) (alias)

x

f (x)

u(x) · ∂xu(x)

nonlinearity

sampling

Figure 2.5: Visualization of aliasing errors, caused by the second order nonlinearity of
the Navier-Stokes equations and truncated Fourier series (see [14]). The thin grid rep-
resents the sampling points. One can easily verify that the nonlinear operator doubles
the frequency of u. If the result has a frequency which is too high the discretization will
interpret the signal as an alias (the Nyquist-Shannon theorem is not satisfied). Padding
or truncation techniques have to be used to avoid errors of this type.

First of all one has to be aware of the fact that the linear operator is a stiff one (at
least for large N1 and N2, which will be the case for our simulation goals). This can be
seen easily by considering the block-diagonals of the matrix L for T ′ and f (in case of
g the stiffness is obvious, since it is a diagonal matrix):

(
LT ′ LT ′, f

L f ,T ′ L f

)
·



T̂ ′k1,k2,1
...

T̂ ′k1,k2,N3

f̂k1,k2,1
...

f̂k1,k2,N3


Since LT ′ and L f are again diagonal matrices in case of two vertical ansatz functions,
and their smallest and largest eigenvalues are proportional to (N2

1 + N2
2 ) and (N2

1 + N2
2 )2,

this is indeed a stiff operator.
Therefore a time-stepping method which is appropriate for stiff ordinary differential

equations is required in this case. In many cases one might choose a fully implicit
method, which has the disadvantage to invert the complete operator

B−1
(
L + V

)
in each iteration. Of course calculating the inverse of B−1L can be done once in parallel
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before starting the simulation. As the matrix B−1L has to be inverted for each pair
(k1, k2) independently, this is not too problematic. Nevertheless calculating the inverse
of the complete operator B−1(L + V) is too complex since the nonlinear part is even
more complex and couples mode pairs (k1, k2) with other mode pairs (k′1, k

′
2). So a

time-stepping method is needed which offers a large stability region, but avoids the
necessity to calculate the inverse of the complete or nonlinear operator. There are two
choices by which this needs can be satisfied:

• choosing a explicit method, which has a sufficient large stability region

• choosing a method which treats linear and nonlinear part differently

The first one leads to a time-stepping method which is called Exponential Time Differ-
encing and the second one to a splitting method. Both methods can achieve different
orders and are described in the following sections.

2.3.1 Exponential Time Differencing
Exponential Time Differencing (ETD) is an explicit time-stepping method (introduced
for example in [17]). Lets rewrite our systems of ordinary differential equations again
in the following abstract way:

∂tV = B−1L · V + B−1N(V)

To derive exponential time differencing (ETD) method we use an integrating factor
e−B−1Lt (where B−1L is our matrix representation of the linear differential operator).
Integration over a time-step of length h from tn+1 = tn + h will give:

[V(tn+1)e−B−1Lh − V(tn)]e−B−1Ltn =

∫ tn+1

tn
e−B−1LtN(V(t))dt

⇔ V(tn+1) = V(tn)eB−1Lh + eB−1Lh
∫ tn+1

tn
e−B−1LtN(V(t))dt

So the different versions of Exponential Time Differencing are derived by different
approximations of the integral. In case of fourth order Runge-Kutta method we get the
following

an = VneB−1Lh/2 + L−1B[eB−1Lh/2 − I]N(Vn)

bn = VneB−1Lh/2 + L−1B[eB−1Lh/2 − I]N(an)

cn = aneB−1Lh/2 + L−1B[eB−1Lh/2 − I][2N(bn) − N(Vn)]

Vn+1 = eB−1LhVn + [αN(Vn) + 2β[N(an) + N(bn)] + γN(cn)]

where:

α = h−2(B−1L)−3[−4 − B−1Lh + eB−1Lh[4 − 3B−1Lh + (B−1Lh)2]]

β = h−2(B−1L)−3[2 + B−1Lh + eB−1Lh(−2 + B−1Lh)]

γ = h−2(B−1L)−3[−4 − 3B−1Lh − (B−1Lh)2 + eB−1Lh(4 − B−1Lh)]

Those terms α, β and γ are higher order variants of eh−1
h . So they suffer from can-

cellation errors for small h. Du and Zhu in [18] suggest an approximation of this term
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by a complex contour integral. Since α, β and γ are fixed for fixed h we chose to calcu-
late them once by high precision arithmetics (using MPFR, see [24]) and use them as
constants during simulation.

As you can see from the previous equations a matrix exponential of the form eB−1Lx

with x ∈ Rn has to be calculated. Since this is a more complex task for matrices
which are not diagonal, we chose to use this method only for simulations of Swift-
Hohenberg equations (in this case the linear part is diagonalized by choosing Fourier
series expansions in both space directions). In case of the Boussinesq equations this
procedure is much too complex (with respect to the algorithm and memory usage)
and so we chose to take advantage of other time-stepping techniques, which are called
splitting methods. These methods will be described in the following section.

2.3.2 Splitting Methods
Splitting methods are time-stepping methods which treat the linear and the nonlinear
part in a different way. We consider again the following abstract form of our system of
ordinary differential equations:

∂tV = B−1L · V + B−1N(V)

Since we have a stiff linear differential operator L and a nonlinear differential operator
N we use an implicit method for the linear part and an explicit method for the nonlinear
part. So the algorithm looks like this:

We use V(tn) as an input for our time stepping method and apply an implicit schema
to it. So we get an intermediate field, for example by a simple implicit Euler method
(where h denotes the step size):

Ṽ(tn) = V(tn−1) + hB−1L · Ṽ(tn)

This intermediate field Ṽ(tn) is then used as input for the explicit time-stepping method
of the nonlinear part. For example a second order Adams-Bashforth method can be
used:

V(tn+1) = Ṽ(tn) + h
(3
2

B−1LṼ(tn) −
1
2

B−1LV(tn−1)
)

In case of Boussinesq equations we use a simple implicit Euler method for the
implicit part and a second order Adams-Bashforth method for the explicit part. We
apply the nonlinear time-stepping method after the linear one, as the nonlinear part
forces to fulfill the boundary conditions (if a penalization method is applied).

In case of this implicit-explicit splitting method the step size can be nearly arbitrary
large (typically one can choose up to h = 0.05tν, where tν = d2/κ denotes the vertical
diffusion time). Of course one has to choose the step size with respect to accuracy,
i.e. to satisfy different numerical properties, like the well known CFL condition, which
states that a fluid particle should not move farther than the minimal distance between
two grid points.
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Chapter 3

Implementation of
Pseudo-Spectral Methods on a
GPU

This Chapter describes the implementation of pseudo-spectral methods on graphics
cards. We use NVIDIA’s graphics cards programming interface CUDA to show how
a pseudo-spectral method is implemented efficiently on a GPU. The first Section 3.1
describes some general details of a graphics card’s processing unit which have to be
known if you want to implement algorithms on a GPU. Section 3.2 uses this knowledge
to show our spectral simulations as an implementation example.

3.1 GPU architecture
CUDA (computing uniform device architecture) is NVIDIA’s approach towards high
performance computing. It allows the developer to use the massive parallel architecture
of a GPU for his own purpose. This is possible by using some additional programming
language bindings (e.g. C, C++, FORTRAN) and a specific CUDA compiler (namely
NVCC) which extends the features of the general compiler (like GCC on Linux sys-
tems). To achieve a nice speed-up of your simulation code compared to original CPU
implementations a deeper knowledge of a GPU’s hardware architecture is an absolute
requirement. This enables the programmer to write efficient codes for GPUs. Therefore
the next section introduces the basic features of a GPU hardware and explains how to
use them in a way to get their highest performance. There are a number of applications
which already have shown the performance of graphics cards for scientific simulations.
Some of them are:

• molecular dynamics (see [27])

• simulations of Lattice-Boltzmann equations (see [25])

• finite difference methods in electrodynamics (see [26])
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3.1.1 Execution unit architecture
A GPU is a hierarchical, massive parallel execution unit. This means that the large
execution unit (which is the GPU) is subdivided into smaller execution units which
are called Multi-Cores. They are subdivided again into smaller units which are called
CUDA-Cores (see [22]). All in all the execution unit structure can be summarized as
follows:

GPU: largest logical execution unit, consists of many Multi-Cores

Multi-Core: execution unit, consists of many CUDA-Cores

CUDA-Core: smallest logical execution unit

Of course the CUDA-Cores itself is a small execution unit, which has some of the
basic features of a processor like an arithmetic logical unit (ALU), several registers,
etc.. They will not be presented here, because they are not accessible in many cases
and their utilization is controlled by the CUDA driver API (a more detailed description
of this topic is given in [22]).

Figure 3.1: Layout of a CUDA GPU. Each GPU consists of multiple Multi-Cores. All
Multi-Cores have access to the global memory of the GPU. A Multi-Core has many
CUDA-Cores and all of them have access to the shared memory. The CUDA-Cores
themselves have several registers and some local memory.

3.1.2 Memory architecture
The memory architecture of a CUDA GPU is closely related to the structure of its
execution units. Therefore each hierarchical layer has its own memory layer which is
only accessible by a single unit of this layer and all of its subunits. Therefore a graphics
card has three memories which are the following ones:

global memory: largest memory, which is accessible by the whole GPU (including all
Multi-Cores and CUDA-Cores)

shared memory: smaller memory, which is accessible by a single Multi-Core (includ-
ing all CUDA-Cores)
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local memory: smallest memory, which is accessible by a single CUDA-Core

Of course there are a number of registers which are accessible by a CUDA-Core, but
they are of less importance to a software developer, as their utilization is generally
managed by the CUDA driver API. Figure 3.1 summarizes the hardware architecture
of a single GPU showing its execution units, together with their memory layers.

The reason to use different memory layers is a rather simple one. As the different
layers are spatially more or less close to their execution units, the latency and so their
bandwidth are different ones. Therefore the developer is obliged to make use of local
and shared memory as much as possible. Of course this requires a well organized data
structure to ensure that the data is accessible from the different execution units at any
time if there is a need to read or update them.

3.1.3 CUDA C/C++

One way to make use of a GPU’s computing power is to use an extended version of
C/C++. So the developer can use normal C/C++ code and can introduce some specific
CUDA code which handles memory transfer and CUDA kernels to achieve the required
computations.

One should mention that different graphics processors support different compute
capabilities. Different capabilities support themselves different features like double
precision floating point operations (compute capability ≥ 1.3), support of object ori-
ented design, etc.. All of these features are described in [22]. Since code with higher
compute capabilities is not executable on graphic cards which support only a lower
one, we chosen to use configuration files which specify the level of support. Therefore
the developed code is executable on all CUDA enabled devices which support CUDA
1.0 and higher.

In general all functions/methods are separated into three classes:

host functions: Functions which are executed by the host (i.e. the CPU). They are
callable only from other host functions and not from any device function. They
are defined by the “__host__” macro. The nvcc compiler separates this code part
from the device code and uses the system’s C-compiler to compile the code into
object files.

global functions: Functions which are executed by CUDA devices (i.e. the GPU) and
are callable only from host functions. These functions are not callable from other
global or device functions. Global functions are defined by the “__global__”
macro. The nvcc compiler separates global and device functions from host code
and compiles them for the specific CUDA target platform.

device functions: Functions which are executed by the CUDA device and are callable
from all other global or device functions, but not from other host function. These
functions are defined by the “__device__” macro.

To take advantage of the large amount of CUDA cores we use a large amount of
threads, each of them running on a different CUDA core. Which CUDA core executes
a specific thread is determined at runtime. Therefore the programmer should never as-
sume any order of thread execution. Threads are logically ordered in blocks and blocks
themselves are ordered into grids. This hierarchy is clearly related to the execution unit
architecture and to the memory architecture, i.e. a block (consisting of many threads)
is running on a single Multi-Core and therefore has access to shared memory of this
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Multi-Core unit. Of course each thread within this block has its own local memory and
some registers which are only accessible by this thread. The whole grid is running on a
single GPU and therefore all threads within this grid have access to the global memory
of this CUDA device. One can imagine a block as a one, two or three dimensional array
of threads, and a grid as a one, two or three dimensional array of blocks (the dimension
of the grid-/block-array can be specified by the programmer).

To specify how many threads per block and how many blocks per grid are used a
global function call has to be configured. This means that each time a global function
is called from a host function two vectors (each consisting of up to three elements) of
dim3-type have to be used to specify dimensions of grids and blocks. Listing 3.1 shows
a small example how this configuration is realized within the source code.

/ ∗ a f u n c t i o n which i s e x e c u t e d on t h e CPU ( h o s t )
∗ and e x c l u s i v e l y c a l l a b l e from t h e CPU ( h o s t )
∗ /

_ _ h o s t_ _ void a _ h o s t _ f u n c t i o n ( ) {

/ / . . . some p r e v i o u s code e x e c u t e d on t h e CPU

/ / . . . c r e a t e d i m e n s i o n s o f g r i d
dim3 g r i d _ d i m = c r e a t e _ g r i d _ d i m e n s i o n s ( d a t a _ s i z e ) ;
/ / . . . c r e a t e d i m e n s i o n s o f b l o c k
dim3 block_dim = c r e a t e _ b l o c k _ d i m e n s i o n s ( d a t a _ s i z e ) ;

/ / . . . c a l l t h e g l o b a l f u n c t i o n
/ / . . . n o t i c e t h a t da ta i s a p o i n t e r t o d e v i c e memory
a _ g l o b a l _ f u n c t i o n <<<gr id_dim , block_dim >>>( d a t a )

/ / . . . o t h e r h o s t code

}

Listing 3.1: A global function call from a host function has to be configured to specify
dimensions of blocks and grids and the number of threads.

CUDA C/C++ is a single-instruction-multiple-data model (SIMD model), i.e. each
CUDA-Core executes the same code but all of them have different data. Of course a
mechanism is needed to provide the possibility to handle different tasks on different
CUDA-Cores. Therefore the programmer has to include an algorithm to distinguish
between the different CUDA-Cores to specify a certain task for a CUDA-Core. CUDA
provides a simple mechanism to realize this, which works in the following way: Within
each global and device function the following built-in identifiers are accessible:

threadIdx: Identifier for a thread within a block (i.e. within the array of threads).
ThreadIdx has three properties threadIdx.x, threadIdx.y, threadIdx.z to identify
the position of a thread within a block.

blockIdx: Identifier for block within a grid (i.e. within the array of blocks). BlockIdx
has three properties blockIdx.x, blockIdx.y, blockIdx.z to identify the position of
a block within a grid.
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blockDim: Identifier representing the size of the current block. The three sizes are
represented by blockDim.x, blockDim.y, blockDim.z.

gridDim: Identifier representing the size of the current grid. The three sizes are rep-
resented by gridDim.x, gridDim.y, gridDim.z.

Since the numerical simulation of Rayleigh-Bénard Convection requires to handle a
large number of Fourier coefficients (in x and y direction) a simple algorithm is used to
figure out which thread handles a specific Fourier coefficient. Listing 3.2 describes this
algorithm which is used for the numerical simulation and is an easy way to determine
a thread to handle a specific Fourier coefficient.

_ _ d e v i c e _ _ i n t g e t _ g l o b a l _ i n d e x ( ) {
re turn t h r e a d I d x . x + t h r e a d I d x . y∗ blockDim . x + t h r e a d I d x

. z ∗ blockDim . x∗ blockDim . y + b l o c k I d x . x∗ blockDim . x∗
blockDim . y∗ blockDim . z + b l o c k I d x . y∗ blockDim . x∗
blockDim . y∗ blockDim . z ∗ gridDim . x + b l o c k I d x . z ∗
blockDim . x∗ blockDim . y∗ blockDim . z ∗ gridDim . x∗ gridDim . y
;

}

Listing 3.2: Device function used to figure out which thread handles a specific Fourier
coefficient. This simple function returns a unique integer number for each thread
between zero and the total number of threads. As there are as many threads as
matrix entries it is easy to determine which thread is responsible for a specific Fourier
coefficient.

It is worth mentioning that each host thread is able to handle only a single GPU.
Conversely a single graphic processor is accessible by up to four host threads, but data
from one host thread which is located on the GPU is not accessible to any of the other
threads accessing the same GPU. Therefore a simulation using multiple GPUs has to
use the host memory to exchange data between different GPUs even if the GPUs are
located in the same machine. If the GPUs are distributed across different machines
a fast interconnect has to be used to reduce latency, because of data transfers. One
standard way to implement multi GPU support is to use OpenMP (in case of multiple
graphic cards within the same machine), Message Passing Interface (MPI, in case of
graphic cards distributed across different machines) or a combination of both (hybrid
parallelization).

3.1.4 Streams and parallel execution
Graphics cards are massive parallel processors. As a large amount of threads is ex-
ecuted on them, concurrency is not guaranteed between different threads. Since syn-
chronization (i.e. waiting for other threads to reach a certain position in the code) slows
program execution down, graphics cards are in favor to load the next kernel even be-
fore the previous kernel has finished completely and some CUDA-Cores become idle.
Of course there might be some threads of the previous kernel which have not finished
their execution at this timepoint. This feature provides maximal parallelism. In some
cases this feature is not wanted, as the result of a previous kernel launch is an input
of the later one. Therefore program execution should wait as long as the previous ker-
nel is executed and all threads have finished their execution. This blocking feature
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can be realized by calling the cudaThreadSynchronize function. This procedure forces
the graphics card to finish all kernels before returning from cudaThreadSynchronize
function. The major disadvantage is that any parallelism between different kernels is
completely destroyed, but in some cases this feature is needed, because a kernel call
needs the complete output of a previous kernel.

Therefore the CUDA-API provides so-called streams as a possibility to increase
parallelism, but to avoid race conditions. To take advantage of streams you add sev-
eral kernels to a stream and start the stream. This procedure assures that kernels are
executed in the right order without any race conditions (i.e. all kernels in a stream are
executed serially). Streams (except for the default stream) are always executed asyn-
chronously, i.e. the kernel call will return immediately and so multiple streams can
be executed at the same time. Streams are identified by the cudaStream_t structure.
Listing 3.3 gives a small example how to implement stream creation and execution
of kernels within its context. Streams are used in many cases to calculate the linear
operator since the different linear parts for f , g, θ, F,G can be computed in parallel.

/ / . . . p r e v i o u s h o s t code
. . .

/ / . . . c r e a t e s t r e a m s
c u d a S t r e a m _ t s t r e a m [ num be r_o f_ s t r ea ms ] ;
f o r ( i n t i = 0 ; i < nu mb er_ o f _s t r e ams ; ++ i )

c u d a S t r e a m C r e a t e (& s t r e a m [ i ] ) ;

/ / . . . e x e c u t e k e r n e l s and add them t o d i f f e r e n t s t r e a m s
f o r ( i n t i = 0 ; i < nu mb er_ o f _s t r e ams ; ++ i )

a _ g l o b a l _ f u n c t i o n <<<gr id_dim , block_dim , s t r e a m [ i ]>>>(
d a t a ) ;

/ / . . . s y n c h r o n i z e a l l s t r eams , s i n c e s t r e a m s are e x e c u t e d
a s y n c h r o n o u s l y

c u d a T h r e a d S y n c h r o n i z e ( ) ;

/ / . . . o t h e r h o s t code
. . .

Listing 3.3: CUDA streams are used to increase parallelism and to avoid hardcoded
synchronization. This increases the performance and assures right execution order of
different threads.

In some cases (often caused by making use of shared memory) a smaller synchro-
nization level is needed, because cudaThreadSynchronize synchronizes all threads of
the complete GPU. Furthermore this synchronization technique is accessible exclu-
sively from host code. Therefore the CUDA-API provides a more subtle synchroniza-
tion process which is also accessible from code which executed on the CUDA device.
Calling the __syncthreads function within a global or device function forces all threads
within the same block to synchronize to this point. This function is very important
to calculate scalar-products or reduce-summations for example (which is necessary to
calculate structure functions and energy spectra).

Another important feature which is available since CUDA 1.1 and higher are atomic
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functions. Suppose we want the threads of a block to access and modify the same
variable (for example every thread increases the variable by one). Since all threads
are executed asynchronously it may happen that one thread (say thread 2) reads out
the value to modify the variable just after another thread (say thread 1) has read the
same value, but before writing the new result back. Now thread 1 writes his result
back to the memory and thread 2 will do the same. This leads to incorrect data, since
the update of thread 1 is lost. Atomic functions remedy this problem, since they are
executed without any interruption. In the described example the function atomicAdd is
the right function to use. The complete set of atomic functions and a way to program
other atomic functions are described in [22].

3.2 Efficient implementation
This section describes the implementation of spectral methods on graphics cards in de-
tail. We apply theory of Chapter 2 and knowledge of Section 3.1 to present a specific
implementation. Although it is a specific implementation for Rayleigh-Bénard Con-
vection it is an example of how to parallelize other numerical methods on GPUs. One
of the basic questions is the data management as figured out in the previous chapter.
Therefore the following section describes the data flow and the data management in de-
tail and presents their level of efficiency. Furthermore the following sections describe
some other aspects of software engineering. As some basic object oriented aspects of
C++ (as far as possible in combination with CUDA) were used to implement the simu-
lation method, these will be presented as well. Another point is the CUDA fast Fourier
transformation library CuFFT which was used as an FFT library within this project.

3.2.1 Data flow and structure
As described in Section 3.1 data management is one of the important topics in pro-
gramming graphics cards. So this is the first point which has be considered. It could
not be overemphasized that using a nice data structure which takes advantage of the
hierarchical structure of GPU memory is a key to a well performing simulation.

The workspace of the simulation are the Fourier coefficients f̂ (k1, k2, i), ĝ(k1, k2, i),
T̂ ′(k1, k2, i), F(i),G(i) of functions f , g,T ′, F,G given by equations (1.19) to (1.23).
The discrete expansions (2.13) to (2.17) lead to a discrete set of equations and pro-
jections of the linear and nonlinear parts, presented in the previous chapter, require
computation of N2

3 two dimensional convolutions. So the idea is to arrange the Fourier
coefficients as a three-dimensional array for each function. Each layer of an array holds
the Fourier coefficients for the horizontal plane. Using for example the temperature co-
efficients, Figure 3.2 shows how data is ordered within global memory of the GPU.
This arrangement allows simple pointer arithmetic and batched fast Fourier transfor-
mations, too. By making use of real FFTs the memory amount is roughly reduced by
a factor of one-half compared to a complex to complex transformation. Of course the
Fourier coefficients of f , g, F,G are ordered in a similar way and take advantage of
these features, too.

So these are the data fields which are used for simulation operations. Of course
the linear operator is easy to compute, as it is only a simple matrix-matrix product in
Fourier space. Equation system (A.12) gives the mathematical equation system (in case
of f and T ′) and it is obvious, that there is only a coupling of the Fourier coefficients
for different vertical ansatz function number (indicated by the third index in equation
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k3 = 1

k3 = n

k3 = N3

k1

k2

T̂ (2, 1, n)

Figure 3.2: Data structure of temperature field within the global GPU memory. Other
data arrays are structured in a similar way. This arrangement allows easy pointer arith-
metic to iterate through the data. Moreover batched fast Fourier transformations are
possible.

(A.12)). The discrete equations for ĝ, F,G are simple pointwise operations in Fourier
space. Therefore it is a natural approach to use one thread per Fourier coefficient to
calculate its linear part. A more complicated approach has to be used to calculate the
nonlinear part. As described in Section 2.2.1 it is the goal to compute nonlinearities in
physical space by a simple pointwise multiplication and to use fast Fourier transforma-
tions to switch between physical and Fourier space. As we are only investigating mod-
erate Rayleigh and Prandtl numbers (i.e. considering only weak turbulent convection)
the number of vertical ansatz functions is typically small and in our case N3 = 2 is suffi-
cient. Therefore we use fast transformation methods of complexity O

(
N1N2log(N1N2)

)
in the horizontal plane and use simple iterative method of complexity O(N2

3 ) for trans-
formations in the vertical plane. This is still efficient, as fast transformation methods
are slower than naive implementations for a small number of coefficients N3, because
fast transformation methods require an additional constant time for calculations. The
idea is therefore to leave all data (i.e. the Fourier coefficients) inside the global memory
and iterate over all vertical ansatz functions in a double loop executed on the CPU, as
described e.g. in equation (A.15).

The algorithm to calculate the nonlinear operator of f , g,T ′, F,G therefore has the
following structure: First u1

1(i), u1
2(i), u1

3(i), u2
1(i), u2

2(i), ∂xT1(i), ∂yT1(i),T1(i) are calcu-
lated for all i ∈ {1, · · · ,N3} using fast Fourier transformations. In a loop we build all
convolution sums in physical space, i.e. build u1

1(i) · u1
1( j), u1

1(i) · u1
2( j), · · · and apply

inverse fast Fourier transformations to them. Using the values of the scalar products,
which appear in the nonlinear discrete equations, the nonlinear operator can be calcu-
lated by a pointwise addition / multiplication inside the surrounding loop. The whole
algorithm is summarized in Figure 3.3. Green nodes indicate that this step of the algo-
rithm is calculated on the GPU, while red ones are executed on the CPU. The data stays
for the whole algorithm (including linear/nonlinear operator and time-stepping) within
global GPU memory. To increase parallelism we have used stream execution wherever
it is possible. Additionally the execution performance is increased by making use of
shared memory. Of course this performance optimizations have only little effect, as the
most time consuming operation is the (inverse) fast Fourier transformation. In addition
this influence decreases as the system size in the horizontal plane increases.
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3.2. EFFICIENT IMPLEMENTATION

Calculating the penalization term is (logically) included in the nonlinear term, al-
though it is a linear operator. The reason to implement it in this way is a relative
simple one. As the penalization requires to compute convolution sums in Fourier space
/ pointwise products in physical space of the type

1Ωc u1
1(i), 1Ωc u1

2(i), · · ·

one is able to reuse outputs of Fourier transformations of u1
1(i) to reduce the number of

transformations. As we assume the penalization mask to be a function of the horizontal
coordinates, i.e. 1Ωc = 1Ωc (x, y), the memory for the penalizations terms has to have
the dimension N1 × N2. The algorithmic part of the penalization is described in figure
3.3 by the left most column.

3.2.2 Object oriented design
The simulation software is programmed in CUDA-C/C++. To allow a maximal reusabil-
ity and take advantage of object oriented programming techniques, C++ features were
used as much as possible. As the different versions of CUDA support different lev-
els of object orientation not all features could be used. A detailed description of the
supported features is given in [22].

Data fields in Fourier and physical space are represented by matrix classes. Both
data fields can be realized as matrices in host and in device memory. The data fields are
therefore handled by the following four classes: matrix_host, matrix_host_physical,
matrix_device, matrix_device_physical. All of them inherit from matrix class. Ma-
trix classes which keep their data in host memory are used only for initialization and
input and output to disk. All classes have methods to execute simple algebraic manip-
ulations like scaling, addition and multiplication of matrices. Furthermore the Fourier
representations have methods to calculate first derivative, laplacian, and many more.

Operators are split into two classes: Linear and nonlinear ones. The linear ones in-
herit from class linear_operator and nonlinear operators from class nonlinear_operator.
All operator classes provide the calculate_operator interface, which applies the opera-
tor to the given input. Furthermore linear operators provide a method to get their matrix
representation. A more detailed overview about the most important classes and their
inheritance tree can be seen in Figure 3.4.

3.2.3 CuFFT
Since an efficient implementation requires a well performing fast Fourier transforma-
tion, we chose to use the CUDA FFT library CuFFT, which is delivered together with
the CUDA software development kit (SDK). This library offers one, two, three and ar-
bitrary dimensional transformations. Since CuFFT 3.0 this library uses shared memory
which speeds transformations up by a large factor. Compared to CPUs its peak and
average performance during transformations is significantly higher (see [23]), if a spe-
cific transformation size is reached. Since all transformations and other computations
for the numerical simulations are executed by the GPU, memory transfers to the CPU
can be ignored completely.

As many other CPU versions of fast Fourier transformations (like FFTW library)
CuFFT is working with transformation plans. So the procedure to calculate a Fourier
transformed of a given data field is the following one: First create a CuFFT transfor-
mation plan, which specifies the size of the transformation, the type and whether there
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input:
f̂ , ĝ, θ̂, F,G
∀(k1, k2, i)

F −1

build
u1

1(i), u1
2(i),

u1
3(i) and

u2
1(i), u2

2(i)
,T1(i)

geometry info

∀i ∈
{1, · · · ,N3}

∀ j ∈
{1, · · · ,N3}

build
u1

1(i) · u1
1( j),

u1
1(i)·u1

2( j), · · ·

F

build u1
1(i) ·

∂xT ( j), · · · ,
· · ·

F

build 1Ωc ·u1
1(i)

F

sum fourier
coefficients

pointwise for
vertical ans.
func. i/i, j

Figure 3.3: Flowchart representing the evaluation of the nonlinear operator, including
penalizations. States with a green lining are completely calculated within the GPU
environment. Red ones are controlled by the host. i.e. the CPU.
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matrix

matrix_devicematrix_host

device_operator

linear_operator nonlinear_operator

B−1L-operator
nonlinear_operator
_toroidal_poloidal

penalization_operatordomain_infogeometry_info

splitting_step timestepping

explicit_stepimplicit_step

etdrk4adams_bashforthimplicit_euler

matrix_writer gnuplot_writer

vtk_writer

Figure 3.4: Class diagram of the simulation package. Classes with a green lining
keep their data within the global memory of the GPU, while red linings indicate data
storage within the RAM of the CPU. The dashed lines represent inheritance, while
solid lines represent directed associations. Notice that except for input and output all
operations are executed on the CUDA device. As moving data from host memory to
device memory is a very slow operation, this bottleneck does not affect performance
of the code except for input and output operations. The diagram shows only the most
important classes.

50



3.2. EFFICIENT IMPLEMENTATION

will be a batched transformation (which speeds up repeated transformations of the same
datasize). In a second step make use of the created transformation plan and apply trans-
formation algorithms to the given data field. In-place and out-of-place algorithms are
possible. In a third step destroy created CuFFT plans and make use of Fourier coef-
ficients. Listing 3.4 gives you a short example how fast Fourier transformations with
CuFFT can be implemented.

/ ∗

∗ a f u n c t i o n which needs t h e f o u r i e r t r a n s f o r m e d o f f
∗ /

_ _ h o s t_ _ void a _ h o s t _ f u n c t i o n ( m a t r i x _ d e v i c e ∗ f ) {

/ / c r e a t e c u f f t p lan
i n t num_x = 2∗ ( f−>g e t _ d i m e n s i o n ( ) . a t ( 0 ) −1) ;
i n t num_y = f−>g e t _ d i m e n s i o n ( ) . a t ( 1 ) ;
c u f f t P l a n 2 d (& c 2 r _ p l a n , num_y , num_x , CUFFT_C2R ) ;

/ / e x e c u t e t h e p lan
cuf f tExecC2R ( c 2 r _ p l a n , f−> g e t _ d a t a ( ) , f _ p h y s i c a l ) ;

/ / d e s t r o y c u f f t p lan
c u f f t D e s t r o y ( c 2 r _ p l a n ) ;

}

Listing 3.4: Example of usage of CUDA’s fast Fourier transformation library (CuFFT).
The transformation process is separated into three steps: Create then execute and de-
stroy the CuFFT plan. The transformation size is always a logical transformation size
(in case of complex to real and real to complex transformations the number of samples
in physical space).

It is worth mentioning that all CuFFT transformations (unlike most other fast Fourier
transformation libraries) are not normalized. Therefore we work with correct Fourier
coefficients in Fourier space and apply a normalization factor in physical space. The
transformation factor in case of a two dimensional transformation is (where Nreal

1 de-
notes the number of columns of the Fourier coefficient matrix and Nreal

2 its rows):

1
2(Nreal

1 − 1)Nreal
2

This means that applying a backward transformation after a forward transformation to
some data field will not deliver the same data field. CuFFT also supports streamwise
execution to increase parallelization and can be executed in single or double precision.

CuFFT’s maximum performance can be achieved, when two requirements are full
filled (see [23]):

• data fits into CUDA’s shared memory algorithm

• the logical data size is a power of a single factor

The maximum performance is achieved if data size is a power of two. In this case
shared memory use is optimized for smaller sub-transformations, which increases mem-
ory bandwidth compared to global memory use. In cases of arbitrary transformation
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size a mixed radix FFT algorithm is applied which typically has lower performance
and less accuracy (see [23]). Later CuFFT versions (> 3.0) implement special algo-
rithms for real to complex transformations which reduce the number of computations
and memory usage by a half. Until now CuFFT supports only a single GPU.

3.2.4 Verification
Of course the questions arises how to check whether any implementation is working
correctly. Since there are nearly no analytic solutions known (at least within the in-
teresting Rayleigh number range) it is not easy to check whether an implementation is
correct or not. Therefore we chose to make use of computer algebra systems (in this
case Mathematica) and apply the same operators B, L,N to some simple test cases and
project the results on our vertical and horizontal ansatz functions. For example one
can define T ′, f , g, F,G in an arbitrary way as a tensor product of Fourier series and
Chandrasekhar functions. The same initial conditions are implemented in our fully nu-
merical simulation. For example the Fourier coefficients of the nonlinear operator of f
can be checked by calculating the following projections:

1
LxLy

∫ Lx

0

∫ Ly

0
δ ·

(
(u · ∇)u

)
e

2πik1 x
Lx e

2πik2y
Ly ψn(z)dxdydz

The results obtained by symbolic computations with Mathematica were compared to
numerical results obtained by a simulation step. Numerical and symbolic results differ
only by a value which is in the range of numerical accuracy of single or double preci-
sion. This procedure was realized for the complete set of equations, including linear
operator L and nonlinear operator N and the inverse of the linear operator B as well.

This verification has shown, that all discrete equations and their implementations
are correct. Furthermore it should be mentioned that rotational and translational in-
variance of the analytic equations is inherited to the discrete equations. Rotational
invariance can be checked numerically by setting all Fourier coefficients to a specific
value. In this case all operators have to deliver again the same value for all modes with
the same wave number.

3.2.5 Distributed implementation
To be able to simulate even larger systems we chose to implement a distributed version
of the spectral simulation code which uses multiple graphics cards. Of course this
enables to you use multiple graphics cards per computer as well, as graphics cards
in different computers connected by a network. The data transfer is realized by the
so-called message passing interface (MPI).

Currently there are some limitations with respect to multi-GPU programming. First
of all there is no support to copy data from one GPU to another one without using host
memory, even if they are located in the same computer. A second problem is that each
host thread is dedicated to exactly one GPU at a specific time point and vice versa
GPU memory which is available to a host thread is not available to another one. These
limitations restrict asynchronous data transfer between two different GPUs, since it is
not possible to implement this by making use of multiple threads. Nevertheless a dis-
tributed implementation is still worth it as the system size increases. One of the most
important questions is again the data management, of course. To clarify data flow, con-
sider one time-step of f̂ : To compute f̂ (k1, k2, n, tn+1) we have to calculate the linear and
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nonlinear operator. The first one requires knowledge of f̂ (k1, k2, 1, tn), f̂ (k1, k2, 2, tn)
and T̂ (k1, k2, 1, tn), T̂ (k1, k2, 2, tn). The linear operator is therefore dependent on four
other data entries, which have the same mode number with respect to the horizontal
plane. The nonlinear operator requires to know more, since the fast Fourier transfor-
mation is a global operation. Therefore data organization should be adjusted in such
a way, that each GPU keeps the data required to compute the linear operator and to
reduce data transfer for Fourier transformations.

/ ∗ a f u n c t i o n which i s e x e c u t e d on t h e CPU ( h o s t )
∗ c a l c u l a t e s a 2D−FFT o f g i v e n i n p u t da ta
∗ /

_ _ h o s t_ _ void a _ h o s t _ f u n c t i o n (CUDA_FLOAT_REAL∗ da ta , i n t
my_mpi_id , i n t n u m b e r _ o f _ m p i _ p r o c e s s e s ) {

/ / . . . c a l c u l a t e r2c 1D−FFT row−by−row by GPU
. . .
/ / . . . copy t h e da ta t o h o s t
. . .

/ / . . . d i s t r i b u t e t h e da ta
f o r ( i n t i = 0 ; i < num_neighbours ; i ++){
/ / . . . send p r o c e s s i
MPI_Isend ( mpiSendBufferRowOrdered + i ∗ o f f s e t , o f f s e t

∗2 , MPI_CUDA_FFT_DATATYPE , i , TAG, MPI_COMM_WORLD,
s e n d _ r e q u e s t ) ;

/ / . . . r e c i e v e p r o c e s
MPI_Irecv ( mpiRece iveBuf fe rColumnOrdered+ i ∗ o f f s e t ,

o f f s e t ∗2 , MPI_CUDA_FFT_DATATYPE , i , TAG,
MPI_COMM_WORLD, r e c e i v e _ r e q u e s t ) ) ;

}

/ / . . . copy back t o GPU
. . .
/ / . . . c a c u l a t e c2c 1D−FFT column−by−column by GPU
. . .

}

Listing 3.5: A simple example of message passing interface to distribute data to
different MPI processes. To increase performance and avoid deadlocks asynchronous
data transfer is needed.

One easily verifies that a two dimensional Fourier transformation can be imple-
mented by first transforming each row and then take this intermediate result and apply
a column-by-column transformation to it. So each GPU handles a specific number of
complete columns of the coefficient matrix in Fourier space and a specific number of
complete rows of the coefficient matrix in physical space. By this realization it is guar-
anteed that at least one one-dimensional transformation can be executed without any
data transfer to other GPUs. Figure 3.5 shows the procedure used to transform real
data in physical space to complex data in Fourier space and Listing 3.5 shows how a
CUDA-MPI implementation of a two-dimensional Fourier transformation looks like.
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To verify correctness of our implementation we chose again to verify it by some sim-
ple test cases and compare results to the single GPU implementation (this is possible,
since this has already been verified). The results obtained by the distributed implemen-
tation are the same as the ones obtained by the single GPU implementation regarding
numerical accuracy of the system.
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Figure 3.5: Memory management in a distributed system implementation. Notice that
in real space (real data, double or single precision, indicated by the blue color) each
GPU holds a complete row and in Fourier space each GPU holds a complete column
(complex data, double or single precision, indicated by the orange color). The dimen-
sion of the Fourier coefficient matrix is roughly halved, but the Fourier coefficients are
complex.
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Chapter 4

Simulations

After verifying (as far as possible) that all simulation results are correct we have used
numerical simulations to study some properties of spiral defect chaos.

Due to the fact, that memory of consumer graphics cards is limited, the system size
is in general limited by the amount of global memory which is available. In our case
we have used a GTX 470 (a card of NVIDIA’s Fermi architecture) with 1280 mega
bytes of memory. This allows us to simulate systems with 1024 × 1024 × 2 degree of
freedoms. In the following sections some physical results, as well as some performance
considerations, are presented.

4.1 Onset of SDC
First of all we have studied onset of spiral defect chaos in detail. Since spatio-temporal
chaotic states in Rayleigh-Bénard Convection are still poorly understood, it is still un-
clear which parameter controls onset of spiral defect chaos in a convection layer. Figure
4.3 shows some experimental results about onset of spiral defect chaos. One notices
immediately that spiral defect chaos occurs for small reduced Rayleigh numbers in
large aspect ratio systems, while for small aspect ratios a high reduced Rayleigh num-
ber is necessary. For Γ ≥ 70 it is already found for Rareduced ≥ 0.2 and for Γ ≤ 50,
Rareduced ≥ 0.6 is needed. The transition takes place in a relatively sharp area around
Γ = 60. It seems that these experimental results do not depend on the exact geometry
of the fluid layer (with respect to both horizontal directions).

Therefore we decided to check the onset border of spiral defect chaos as a function
of aspect ratio Γ for Pr = 1 at first. Based on experimental results (see Figure 4.3) we
chose seven aspect ratios and for each aspect ratio again three Rayleigh numbers; one
above, one below and one on the onset border of spiral defect chaos (based on Figure
4.3). To simulate a bounded cube with no-slip boundary conditions in all directions,
we use the penalization method presented in section 2.1.3 with η = 10−2.

Of course the question arises how to check if spiral defect chaos develops at a given
parameter triple (Γ,Ra, P). The idea is to force the system to build spirals if it is pos-
sible for the given parameters by an appropriate choice of initial conditions. Therefore
we use a special initial condition, straight convection rolls with two dislocations. This
forces the convection pattern to create transverse rolls, which might create spirals and
spiral defect chaos. An initial condition with two dislocations can be created (in case of
a periodic domain) by selecting a specific mode k = (k1, k2) and modulating its phase
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4.1. ONSET OF SDC

Figure 4.1: Simulation results in a convection cell with aspect ratio Γ = 100 at
t = 2000tν. The Prandtl number is one and the Rayleigh number is 2900. The simula-
tion used 1024 × 1024 modes in the horizontal plane. For a GTX 470 (current single
GPU testing system) this is the maximum grid size. Simulations on GPUs with more
global memory expand these limits and distributed simulations can even simulate large
systems. The detail on top shows the structure of the convection rolls (isosurfaces of
temperature perturbation with respect to the stationary state, blue indicates cold and
red hot fluid).
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(as seen in section 1.4 dislocations are singularities of phase’s gradient),

exp
(
i
(
k1 · x + k2 · y ± Φ

(
(x, y)T − (x1, y1)T )

± Φ
(
(x, y)T − (x2, y2)T )))

(4.1)

where (x1, y1) and (x2, y2) represent the places of both dislocations and Φ denotes ar-
gument of the complex plane to introduce a phase jump if

(
(x, y)T − (xi, yi)

)
→ 0.

(x1, y1)

(x2, y2)

Figure 4.2: Initial condition to check if spiral defect chaos develops. Inserting two
dislocations within the temperature field forces the convection pattern to develop trans-
verse rolls between both dislocation points. If spiral defect chaos is not a transient state
for the given parameters, the spiral will not vanish as time increases.

Figure 4.2 shows a small example of the initial conditions in a periodic box of
aspect ratio Γ = 10. Of course the wavelength of the pattern is adapted to the given
aspect ratio. The whole list of simulation parameters used to investigate onset of spiral
defect chaos at Pr = 1 in a square cell is shown in Table 4.1.

Figure 4.12 shows some simulation results in a square cell with no-slip boundary
conditions in all directions. It shows, that for Ra = 2595 and Ra = 2664 it is a transient
state (if existent), but for Ra = 2698 spirals develop and advect through the cell. The
simulation results are plotted at t = 5000tν. Of course it is not completely clarified if
spiral defect chaos is a transient state for larger Rayleigh numbers, too.

The complete set of simulation results with respect to onset of spiral defect chaos
is presented in Figure 4.4. In our simulations spiral defect chaos developed only for
aspect ratios larger than 20. The line is only a visual hint and the results are obtained
for square cells. One easily notices again the tendency of lower Rayleigh numbers in
high aspect ratio cells and the sharp bend of the onset boundary around aspect ratio 60.

4.2 Statistical properties of SDC
Almost all theories of turbulence are statistical ones. As we want to compare the spiral
defect chaos state to two dimensional turbulent flow, one has to investigate comparable
statistical properties of our convection problem. One of the workhorses of turbulence
theory is the structure function of order p. Is is defined in the following way

S p(r) =< | f (x + r) − f (x)|p >

where f denotes a scalar field and < · > the so called ensemble average. In case of
a simple periodic cube one can easily show that convection patterns and convection
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aspect ratio (Γ) Ra Pr ∆t modes cell type η

20
2596 1 0.005 256 × 256 square cell 0.01
2681 1 0.005 256 × 256 square cell 0.01
2732 1 0.005 256 × 256 square cell 0.01

40
2595 1 0.005 512 × 512 square cell 0.01
2664 1 0.005 512 × 512 square cell 0.01
2698 1 0.005 512 × 512 square cell 0.01

50
2562 1 0.005 512 × 512 square cell 0.01
2647 1 0.005 512 × 512 square cell 0.01
2698 1 0.005 512 × 512 square cell 0.01

60
2305 1 0.002 1024 × 1024 square cell 0.01
2391 1 0.002 1024 × 1024 square cell 0.01
2476 1 0.002 1024 × 1024 square cell 0.01

70
2066 1 0.002 1024 × 1024 square cell 0.01
2135 1 0.002 1024 × 1024 square cell 0.01
2220 1 0.002 1024 × 1024 square cell 0.01

80
2049 1 0.002 1024 × 1024 square cell 0.01
2135 1 0.002 1024 × 1024 square cell 0.01
2186 1 0.002 1024 × 1024 square cell 0.01

100
2015 1 0.002 1024 × 1024 square cell 0.01
2100 1 0.002 1024 × 1024 square cell 0.01
2186 1 0.002 1024 × 1024 square cell 0.01

Table 4.1: List of all simulation parameters used to investigate onset of spiral defect
chaos as a function of aspect ratio Γ and Rayleigh number. The geometry is a square
box with no-slip boundary conditions in all directions. η represents the penalization
parameter.
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RAYLEIGH-BÉNARD CONVECTION 751

Figure 31 The onset es of SDC as a function of aspect ratio C and Prandtl number r for
circular cells (except where noted). (a): r ! 1; Solid circles: C ! 29, 70, and 109 (from

J Liu, KMS Bajaj, and G Ahlers, unpublished); open circle: C ! 40 (from Ecke & Hu

1997); triangle: C ! 52 and 60 (from Hu et al 1995c); square: C ! 75 (from Morris et

al 1996); upside-down triangle: c ! 50 for a square cell (from Cakmur et al 1997a). The

solid line is a guide to the eye. (b): C ! 30 (triangles) and C ! 70 (circles). The open

circles are for pure gases, and the solid circles are for gas mixtures. After Liu & Ahlers

(1996).

7.1 Onset

The onset value es of SDC decreases as C increases. This is shown in Figure 31a.
The influence of cell geometry on es appears to be weak. For example, for r !
1 Hu et al (1995c) and Cakmur et al (1997a) found nearly the same value es for
a circular and a square cell with the same C ! 50. There seem to be two regimes

with different es. For C ! 50 the onset occurs near es ! 0.6, whereas for C ' 70
SDC is found already for e ' 0.2. As can be seen in the figure, the transition

from one regime to the other occurs over the relatively small C-range from 50 to
70. There is no indication that es approaches zero as C becomes large, as had

been suggested by Li et al (1998). The SDC onset also has an interesting depen-

dence on r. Using mixtures of gases, it was possible to reach r-values as small
as 0.17 (Liu & Ahlers 1996). Results for two values of C are shown in Figure
31b. The data suggest that es remains finite with a value close to 0.1 as r vanishes.

7.2 Spatio-temporal Evolution of SDC

For circular cells of C ! 40 and 78, the mean wavenumbers "q# obtained by
Fourier analysis of images are shown in Figure 21. Since, at small e, large- and
small-aspect-ratio systems are subject to different wavenumber-selection mech-

anisms (see Sect. 6.4), the SDC onset is also different. The results suggest that
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Figure 4.3: Reduced Rayleigh number at which SDC sets in as a function of Prandtl
number (σ) and aspect ratio (Γ) ([6], page 751). The left diagram shows experimental
results for σ = 1 and the right one for Γ = 30 (triangles) and Γ = 70 (circles) and open
circles represent pure gas, while solid ones represent gas mixtures. The geometric
shapes in the left diagram have to be interpreted in the following way: solid circles,
Γ = 29, 70, 109 (Liu, Bajaj, Ahlers, unpublished); open circle, Γ = 40 (Ecke, Hu,
1997); triangle, Γ = 50, 60 (Hu, 1995); square, Γ = 75 (Morris, 1996); upside-down
triangle, Γ = 50 square cell (Cakmur, 1997). The onset of SDC seems to be a function
of the aspect ratio and does not depend on the geometry of the fluid layer ([6]).

properties are homogenous, since the governing equations are invariant with respect
to rotations and translations. Therefore ensemble averages will equal volume averages
and the structure function of order p can be rewritten in the following form:

S p(r) =
1
V

∫
V
| f (x + r) − f (x)|p

where V is the observed volume.

4.2.1 Structure functions
In case of a two dimensional phenomenon the volume V has to be replaced by the in-
terrogation area A. This is the case for spiral defect chaos, as the vertical dependence is
not important and the chosen numerical approach uses only a small number of vertical
ansatz functions. Therefore this numerical approach technique is not sufficient to study
vertical statistical properties.

So we are studying two dimensional statistical properties of SDC. The interesting
fields are therefore u1, u2, u3 and the temperature field T ′. To compute them numeri-
cally we take advantage of the Parseval-Plancherel-Theorem. The structure function of
order p of the temperature field is given by:

S T ′
p (r) =

1
LxLy

∫ Lx

0

∫ Ly

0
|T ′(x + rx, y + ry, z = 0) − T ′(x, y, z = 0)|pdxdy
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Figure 4.4: Onset of spiral defect chaos as a function of aspect ratio and Rayleigh
number. The simulation parameters are described in Table 4.1. We have used initial
condition 4.1 to check if spiral defect chaos develops. For Γ = 20 no spiral defect
chaos can be obtained for the given Rayleigh numbers.

Taking advantage of the Fourier expansion of T ′ we write:

T ′(x + rx, y + ry, z) − T ′(x, y, z) (4.2)

=

N1∑
k1=−N1

N2∑
k2=−N2

( N3∑
k3=1

T̂ ′(k1, k2, k3)
(
e

2πik1rx
Lx e

2πik2ry
Ly − 1

)
S k3 (z)

)
e

2πik1 x
Lx e

2πik2y
Ly (4.3)

=

N1∑
k1=−N1

N2∑
k2=−N2

T̂ ′
z
r(k1, k2)e

2πik1 x
Lx e

2πik2y
Ly (4.4)

So we can rewrite this difference as a Fourier series. To build the integrand one has to
transform the given series into physical space and apply | · |p to this field. This field is
again a periodic one with respect to the cube length in x and y direction. So we rewrite
this new field by a Fourier series expansion:

|T ′(x + rx, y + ry, z) − T ′(x, y, z)|
p
2 =

N1∑
k1=−N1

N2∑
k2=−N2

T̂ ′
z
r, p

2
(k1, k2)e

2πik1 x
Lx e

2πik2y
Ly

Taking advantage of the Parseval-Plancherel-Theorem and the upper Fourier series ex-

61



4.2. STATISTICAL PROPERTIES OF SDC

pansion the integral of the structure function can be rewritten as follows:

1
LxLy

∫ Lx

0

∫ Ly

0
|T ′(x + rx, y + ry, z) − T ′(x, y, z)|

p
2 |T ′(x + rx, y + ry, z) − T ′(x, y, z)|

p
2

=

N1∑
k1=−N1

N2∑
k2=−N2

T̂ ′
z
r, p

2
(k1, k2)T̂ ′zr, p

2
(k1, k2)

=

N1∑
k1=−N1

N2∑
k2=−N2

|T̂ ′
z
r, p

2
(k1, k2)|2

In the same way one calculates the difference for first component of the velocity
field:

u1(x + rx, y + ry, z) − u1(x, y, z)

=

N1∑
k1=−N1

N2∑
k2=−N2

( N3∑
k3=1

2πik1

Lx
f̂ (k1, k2, k3)

(
e

2πik1rx
Lx e

2πik2ry
Ly − 1

)
∂zψk3 (z)

+
2πik2

Ly
ĝ(k1, k2, k3)

(
e

2πik1rx
Lx e

2πik2ry
Ly − 1

)
S k3 (z)

)
e

2πik1 x
Lx e

2πik2y
Ly

Therefore one may write:

|u1(x + rx, y + ry, z) − u1(x, y, z)|
p
2 =

N1∑
k1=−N1

N2∑
k2=−N2

ûz
1,r, p

2
(k1, k2)e

2πik1 x
Lx e

2πik2y
Ly

And by the same arguments:

1
LxLy

∫ Lx

0

∫ Ly

0
|u1(x + rx, y + ry, z) − u1(x, y, z)|

p
2 |u1(x + rx, y + ry, z) − u1(x, y, z)|

p
2

=

N1∑
k1=−N1

N2∑
k2=−N2

ûz
1,r, p

2
(k1, k2)ûz

1,r, p
2
(k1, k2)

=

N1∑
k1=−N1

N2∑
k2=−N2

|ûz
1,r, p

2
(k1, k2)|2

Figure 4.5 shows structure functions of the velocity field at z = 0 (as a function
of x, y) obtained by a numerical simulation of spiral defect chaotic state in a periodic
domain of length 200 (i.e. Γ = 100). We have used 1024 × 1024 × 2 modes. The
structure function is shown for 10 ≤ r·N

L ≤ 512, since there is obviously a correlation
for small r·N

L as the pattern is formed of convection rolls. Figure 4.6 shows the structure
function of the temperature field at z = 0 for the same simulation parameters.

4.2.2 Energy spectrum
Another very important statistical quantity is the energy distribution with respect to
the different scales or modes k. In two-dimensional, homogenous, isotropic turbu-
lence there are different ranges of the energy spectrum in which you will find a power-
law behaviour. Compared to three-dimensional turbulence the unique feature of two-
dimensional turbulence is its inverse energy cascade, i.e. smaller scales transfer energy
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Figure 4.5: Second order structure function of velocity field. The data is obtained by a
numerical simulation with N = N1 = N2 = 1024,Γ = 100, L = Lx = Ly = 200, Pr =

1,Ra = 2900, t = 5000 in a periodic domain for random initial conditions. The data is
plotted for r ∗ L/N = 10, · · · , 512.

to larger ones. To compare spiral defect chaos to two-dimensional turbulence we study
the energy spectrum of the velocity field at z = 0 (where D0(k) denotes the disk with
radius k around 0) :

E(k) =

∫
∂D0(k)

| ̂ui,z=0(k1, k2)|2dk1dk2 (4.5)

In our periodic cube this means:

E(k) =
∑

k2≤k2
1+k2

2<(k+1)2

| ̂ui,z=0(k1, k2)|2 (4.6)

Figure 4.7 shows the energy spectrum of the horizontal velocity components at
z = 0. The simulation parameters are still N = N1 = N2 = 1024, Pr = 1,Ra = 2900,
Γ = 100 and the simulation domain is a periodic cube. In addition to the unstable
modes at k ≈ 100, modes with low mode number become active. These modes advect
the spirals through the fluid layer and represent a mean flow with low wavenumber.
Additionally Figure 4.8 shows that part of the amplitude of f and g that play a part in
u1 and u2. A curve fit within 10 ≤ k ≤ 90, 120 ≤ k ≤ 200 and 250 ≤ k ≤ 300 of type
c1kc2 gave:

• for 10 ≤ k ≤ 90: c1 = 2.2814 · 10−3, c2 = −0.32284

• for 120 ≤ k ≤ 200: c1 = 64.6631, c2 = −14.9294

• for 250 ≤ k ≤ 300: c1 = 118.3618, c2 = −24.6229
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Figure 4.6: Second order structure function of temperature field. The data is obtained
by a numerical simulation with N = N1 = N2 = 1024,Γ = 100, L = Lx = Ly =

200, Pr = 1,Ra = 2900, t = 5000 in a periodic domain for random initial conditions.
The data is plotted for r ∗ L/N = 10, · · · , 512.

Furthermore we have considered the enstrophy at z = const:

ω = ∇ × (u1, u2)T

By some simple algebraic manipulation one can show:

ω = −∆2g

So we get an evolution equation for g and by taking advantage of divergence theorem
and periodic boundary conditions we can show:

∂t

∫ Lx

0

∫ Ly

0
ω(x, y)dxdy = 0

Therefore we calculated the amplitude spectrum of the enstrophy, too. The results are
shown in Figure 4.9. Two different regions with potential power-law behaviour can be
seen. A curve fit of type c1 · kc2 for 1 ≤ k ≤ 30 and 120 ≤ k ≤ 180 gave the following
coefficients:

• for 1 ≤ k ≤ 30: c1 = 1.62253 · 10−6, c2 = 2.00178

• for 120 ≤ k ≤ 180: c1 = 171365350 · 106, c2 = −8.35548

For relatively low mode numbers k ≤ 30 the fit has shown a k2 scaling behaviour for
the enstrophy amplitude spectrum. This suggests a k0 scaling for the energy spectrum
(shown in Figure 4.7, curve fit gives c2 = −0.32284 within this range).
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Figure 4.7: Energy spectrum of horizontal velocity component u1, u2 at z = 0 in log-
log coordinates. The data is obtained by a numerical simulation with N = N1 = N2 =

1024,Γ = 100, L = Lx = Ly = 200, Pr = 1,Ra = 2900, t = 5000 in a periodic domain
for random initial conditions. The subplots show the numerical data divided by the
fitted data (starting from left top: power-law fit for 10 ≤ k ≤ 90, 120 ≤ k ≤ 200,
250 ≤ k ≤ 300). The fitted curves are of c1kc2 type and the fitted coefficients are:
c1 = 2.2814 · 10−3, c2 = −0.32284 for k ∈ [10; 100]; c1 = 64.6631, c2 = −14.9294 for
k ∈ [120; 200]; c1 = 118.3618, c2 = −24.6229 for k ∈ [250; 300]
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Figure 4.8: Parts of the amplitude spectrum of f and g that play a part in u1, u2 at
z = 0 in log-log coordinates. The data is obtained by a numerical simulation with
N = N1 = N2 = 1024,Γ = 100, L = Lx = Ly = 200, Pr = 1,Ra = 2900, t = 5000 in a
periodic domain for random initial conditions.

4.3 Code performance and scalability
Currently the code offers the possibility to simulate systems with 1024×1024×2 modes
(test system has 1.2 GB of global memory). So one can achieve very high aspect ratios.
By making use of implicit explicit time-stepping methods step sizes up to h = 0.05tν
are possible (independent of the number of modes, assuming that the CFL is fulfilled).
A single time-step at maximum systemsize takes less than one-third of a second. This
simulation speed points out performance of our code. Of course this highly related
to data management within global memory space of the GPU. So increasing size of
global memory will give access to large systems. Nevertheless you will reach a point
where the number of degree of freedoms becomes to large for global memory. In such
a situation one has to use our distributed implementation to interchange data between
different GPUs.

In our testing system with two GPUs in a single machine (each of them having 1 GB
global memory space) we are able to double system size in each direction, i.e. 2048 ×
2048× 2 modes. In this situation each GPU handles roughly 1024× 2048× 2 degree of
freedoms and fast Fourier transformation is the only global operation which requires
MPI activities. Of course this reduces performance and the performance benefit of
GPUs compared to CPUs is reduced, as additional data management is required.

To review code performance we decided to execute several simulation tests. In
order to check weak and strong scaling we used a GPU cluster consisting of 10 com-
puting nodes, each of them having access to a S1070 Tesla GPU. As already mentioned
there are two different scaling tests:

weak scaling: Considers runtime of a simulation with a fixed number of degree of
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Figure 4.9: Amplitude spectrum of enstrophy ω = ∇ × (u1u2)T at z = 0 in log-log
coordinates. The data is obtained by a numerical simulation with N = N1 = N2 =

1024,Γ = 100, L = Lx = Ly = 200, Pr = 1,Ra = 2900, t = 5000 in a periodic
domain for random initial conditions. The dashed lines represent a linear fit in log-log
coordinates. The left curve is fitted for 1 ≤ k ≤ 30 and the right one for 120 ≤ k ≤ 180.
The subplots show the numerical data divided by the fitted data. The fitted curves are
of c1kc2 type and the fitted coefficients are: c1 = 1.62253 · 10−6, c2 = 2.00178 for
k ∈ [1; 30]; c1 = 171365350 · 106, c2 = −8.35548 for k ∈ [120; 180]
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freedoms per GPU as the number of graphics cards is varied.

strong scaling: Considers runtime of a simulation with fixed system size as the num-
ber of graphics cards is varied.

In case of weak scaling we have used 1024 × (NGPU · 1024) × 2 degree of freedoms
for each computing node (where NGPU denotes the number of GPUs) and used 2, 4,
6, 8 computing nodes. Figure 4.10 shows the test results. The results show a nice
scaling behaviour, but this can be related to relatively small system size in our test
cases (compared to the single GPU capabilities). Since copying from device to host
memory and vice versa is an expensive operation, its relative cost with respect to a
whole computing step decreases.
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Figure 4.10: Weak scalability of distributed implementation for 2, 4, 6 and 8 GPUs,
obtained by some tests in a GPU cluster with S1070 Tesla cards. The runtime is nor-
malized with respect to the double GPU test.

The system size for strong scaling tests is 2048 × 2048 × 2 and the tests were
executed by 2, 4, 6, 8 GPUs, too.Figure 4.11 shows the results of the strong scalability
test cases. All runtimes are normalized with respect to the double GPU test case. Again
is not clear whether the system size influences the scaling behavior or not.

Of course our tests were limited in computing time and computing resources and so
we were not able to run more tests and benchmarks to clarify scaling behavior exactly.
Therefore both cases should be investigated a bit more in future to see which is the
most efficient way to use multiple GPUs. One desirable goal would be to split out
the complete runtime into three different parts: (i) data manipulation on GPU, (ii)
copy data from GPU to host memory and vice versa, (iii) distribute data through PCI
bus and/or interconnect. This would show which part of the application is the most
time consuming one. In a future work these results can be needed to optimize code’s
performance to circumvent this bottleneck.
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Figure 4.11: Strong scalability of distributed implementation for 2, 4, 6 and 8 GPUs,
obtained by some tests in a GPU cluster with S1070 Tesla cards. The runtime is nor-
malized with respect to the double GPU test.
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Figure 4.12: Numerical simulation of SDC onset for fixed aspect ratio Γ = 40 and
different Rayleigh numbers (Ra = 2595, 2664, 2698) at t = 5000tν in a cell with no-
slip boundaries. We have used parameters of Table 4.1. As you can see in the first two
simulations SDC seems to be a transient state. The third simulation still evolves new
spirals (even for larger times). This is the onset of SDC.
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Chapter 5

Conclusions and outlook

This master thesis has shown how well pseudo-spectral methods perform on graphics
cards. We have presented a way in which a simulation package can be implemented
on GPUs and how it can be verified to ensure correct simulation results. Until now
we can simulate large systems on a single graphics card and even larger systems on a
distributed system. Considering the single graphics card implementation we can access
system dimensions which have exclusively been accessible to large clusters before. Of
course this is related to the massive parallelism of a GPU and the fact that no data has
to be transferred to the RAM of the CPU. Up to now simulation dimensions are limited
only by the size of global memory. So switching to another graphics card version like
NVIDIA’s Tesla series may again increase the dimension of the system which we can
simulate. Since these cards have up to 8 GB of memory and our testing system has
only 1.2 GB this should enable us to increase the system size by a large factor.

Furthermore we presented a way how to simulate systems which exceed the lim-
its of a single graphics card’s memory. We have implemented a distributed version
of our simulation package which uses message passing interface in conjunction with
CUDA to increase the performance. As shown all operation are nearly pointwise, ex-
cept the fast Fourier transformation. Therefore we apply a simple version of a dis-
tributed CUDA-MPI fast Fourier transformation which uses row-by-row and column-
by-column, one-dimensional transformations to implement two-dimensional transfor-
mations. The complete implementation has been verified in the same way as the single
graphics cards implementation was. Of course this data transfer reduces the average
computing performance of the system per time.

We have seen that there is a number of patterns which can be simulated quite well,
of course one of them is the spiral defect chaos state (which was one of the goals of
this thesis). This enables us to study its statistical properties in detail. It is only limited
by the computing time and performance. Nevertheless this simulation package offers
better insight into the complete dynamic of the system. Some of them have already
been investigated in this thesis. At first we have studied onset of sprial defect chaos as
function of aspect ratio and Rayleigh number. We have verified several experimental
results for a specific cell geometry (in this case a simple square). Furthermore we
have investigated some simple statistical properties like structure functions and energy
spectra.

To simulate non-periodic, bounded domains with no-slip boundary conditions in all
directions we have employed a so-called penalization method. This method introduces
an additional penalization term instead of changing the complete numerical simula-
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tion schema (including its simulation domain). This method works quite well in our
cases and the penalization parameter is not too small and causes in general not too
many problems. We have shown that this method allows as to simulate rather complex
geometries like an array of disks or any other geometry.

Of course there is still a number of open questions. We want to mention some of
them here, since they may be a starting point for some future work. In general we
can separate them into two different sections. The first one is considering the par-
allelization on multiple GPUs. Until now asynchronous data transfer is possible for
CUDA and MPI. Since we use them in conjunction and there are still some limitations
of CUDA and the number of host threads, it is rather time-consuming to implement a
complete asynchronous data transfer covering the complete chain of data transfer from
one GPU to another. This will be available with the upcoming 4.0 release of CUDA
and any MPI implementation by accessing the same GPU data with multiple threads.
Furthermore there are some performance modifications which can be implemented to
increase performance of the distributed two-dimensional fast Fourier transformation.
This will increase the performance of the complete system and allows to run simula-
tions faster. So this topic covers the implementation of two-dimensional fast Fourier
transformations on GPUs and is directed to scientific computing.

The second topic covers the physical interpretation of spiral defect chaos. Since
there has only been a limited amount of time available to study statistical properties of
spiral defect chaos after implementing the algorithms on a GPU, there is still a large
number of topics in that area. Of course one would be to investigate of any kind of
cascade further in detail: For example to study the influence of no-slip boundaries (in
the horizontal plane) on statistical properties like structure functions or energy spectra
and to clarify isotropy by considering the S O2-decomposition. Another topic can be
to compute

∫
ûû · ∇udk analogue to two dimensional turbulent flow (, which generates

the energy cascade there in case of homogenous, isotropic turbulence).
Furthermore this simulation package offers the possibility to study new patterns in

complex geometries. To introduce new geometries one only has to implement a new
mask (which represents the penalization term in the algorithm). Another possibility
would be to increase the number of vertical ansatz functions or to replace them by
an arbitrary number of Tschebychev polynomials to be able to simulate convection at
higher Rayleigh numbers (i.e. extending the code from weak turbulent to fully turbulent
domain).

Particle distribution and movement can be another interesting topic. One can study
the influence of spiral-defect chaos to the distribution of particles or a passive scalar
field as a function time. Of course it is possible to seed the fluid with particles of a
specific mass or without mass. The influence of spirals on the particle distribution with
respect to the large scale is not clear.

All in all this simulation package offers many further possibilities and shows how
well a pseudo-spectral method is performing on a GPU. Relatively big simulations
are now possible on “small” machines. In the near future performance of GPUs will
still increase even more, so that calculations on GPUs will become more and more
important. Our pseudo-spectral simulation is one of the well performing examples on
GPUs.
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Appendix A

Discrete equations for
Rayleigh-Bénard Convection

The following set of discrete equations can be obtained by a Galerkin ansatz in all
directions (taking two ansatz functions in vertical direction and an arbitrary number in
both horizontal direction). The basic Boussinesq equations are:

1
Pr

(
∂

∂t
∆∆2 f + δ · div(u ⊗ u)

)
= −Ra∆2T ′ + ∆2∆2 f (A.1)

1
Pr

(
∂

∂t
∆2g + ε · div(u ⊗ u)

)
= ∆∆2g (A.2)

∂T ′

∂t
+ ∆2 f + (u · ∇)T ′ = ∆T ′ (A.3)

1
Pr

(
∂F
∂t

+
∂

∂z
< u1u3 >

xy
)

=
∂2

∂z2 F (A.4)

1
Pr

(
∂G
∂t

+
∂

∂z
< u1u3 >

xy
)

=
∂2

∂z2 G (A.5)
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The linear part of this differential equation system is given by the following equa-
tions. For T ′ we get:

1
LxLy

∫ 1
2

− 1
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∫ Ly

0
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0
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2πik1 x
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(A.6)

For f we get:
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For g we get:
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For F we get: ∫ 1
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For G we get: ∫ 1
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Written as a system of differential equations the linear part becomes (for T̂ ′, f̂ ):

B · ∂tV = L · V (A.11)

Where B, L,V denote the following matrices:

B =
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...
...
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DISCRETE EQUATIONS FOR RAYLEIGH-BÉNARD CONVECTION

The nonlinear operators are the advective derivative of the momentum and temper-
ature equations:

div(u ⊗ u) · (1, 0, 0)T

=∂x

N3∑
n,m=1

ψ′nψ
′
mu1

1(n)u1
1(m) + 2ψ′nS mu1

1(n)u2
1(m) + S nS mu2

1(n)u2
1(m)

+ ∂y

N3∑
n,m=1

ψ′nψ
′
mu1

2(n)u1
1(m) + ψ′nS mu1

2(n)u2
1(m) + S nψ

′
mu2

2(n)u1
1(m)

+ S nS mu2
2(n)u2

1(m)

+ ∂z

N3∑
n,m=1

ψnψ
′
mu1

3(n)u1
1(m) + ψnS mu1

3(n)u2
1(m)

div(u ⊗ u) · (0, 1, 0)T

=∂x

N3∑
n,m=1

ψ′nψ
′
mu1

1(n)u1
2(m) + ψ′nS mu2

1(m)u1
2(n) + S nψ

′
mu1

1(m)u2
2(n)

+ S nS mu2
1(n)u2

2(m)

+ ∂y

N3∑
n,m=1

ψ′nψ
′
mu1

2(n)u1
2(m) + 2ψ′nS mu1

2(n)u2
2(m) + S nS mu2

2(n)u2
2(m)

+ ∂z

N3∑
n,m=1

ψnψ
′
mu1

3(n)u1
2(m) + ψnS mu1

3(n)u2
2(m)

div(u ⊗ u) · (0, 0, 1)T

=∂x

N3∑
n,m=1

ψ′nψmu1
1(n)u1

3(m) + S nψmu2
1(n)u1

3(m)

+ ∂y

N3∑
n,m=1

ψ′nψmu1
2(n)u1

3(m) + S nψmu2
2(n)u1

3(m)

+ ∂z

N3∑
n,m=1

ψnψmu1
3(n)u1

3(m)

(A.14)
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DISCRETE EQUATIONS FOR RAYLEIGH-BÉNARD CONVECTION

The projection of the nonlinear part of θ is given by:

1
LxLy

∫ 1
2

− 1
2

∫ Ly

0

∫ Lx

0
[u · ∇θ]e

2πik1 x
Lx e

2πik2y
Ly S n(z)

=

N3∑
i, j=1

< (ψ′iS j), S n > Fx,y{u1
1(i)(∂xT1( j))}k1,k2

+

N3∑
i, j=1

< (S iS j), S n > Fx,y{u2
1(i)(∂xT1( j))}k1,k2

+

N3∑
i, j=1

< (ψ′iS j), S n > Fx,y{u1
2(i)(∂yT1( j))}k1,k2

+

N3∑
i, j=1

< (S iS j), S n > Fx,y{u2
2(i)(∂yT1( j))}k1,k2

+

N3∑
i, j=1

< (ψiS ′j), S n > Fx,y{u1
3(i)(T1( j))}k1,k2

(A.15)

Calculate the projections whereFx,y denotes the two dimensional Fourier-Transformation
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DISCRETE EQUATIONS FOR RAYLEIGH-BÉNARD CONVECTION

with respect to the x-y plane:

1
LxLy

∫ 1
2

− 1
2

∫ Ly

0

∫ Lx

0
δ · [div(u ⊗ u)]e

2πik1 x
Lx e

2πik2y
Ly ψn(z)

= −
(2πk1)2

L2
x

( N3∑
i, j=1

< ∂z(ψ′iψ
′
j), ψn > Fx,y{u1

1(i)u1
1( j)}k1,k2

+ 2 < ∂z(ψ′iS j), ψn > Fx,y{u1
1(i)u2

1( j)}k1,k2+ < ∂z(S iS j), ψn > Fx,y{u2
1(i)u2

1( j)}k1,k2

)
−

k1k2(2π)2

LxLy

( N3∑
i, j=1

< ∂z(ψ′iψ
′
j), ψn > Fx,y{u1

2(i)u1
1( j)}k1,k2

+ < ∂z(ψ′iS j), ψn > Fx,y{u1
2(i)u2

1( j)}k1,k2

+ < ∂z(S iψ
′
j), ψn > Fx,y{u2

2(i)u1
1( j)}k1,k2+ < ∂z(S iS j), ψn > Fx,y{u2

2(i)u2
1( j)}k1,k2

)
+

2πik1

Lx

( N3∑
i, j=1

< ∂2
z (ψiψ

′
j), ψn > Fx,y{u1

3(i)u1
1( j)}k1,k2+ < ∂2

z (ψiS j), ψn > Fx,y{u1
3(i)u2

1( j)}k1,k2

)

−
k1k2(2π)2

LxLy

( N3∑
i, j=1

< ∂z(ψ′iψ
′
j), ψn > Fx,y{u1

1(i)u1
2( j)}k1,k2

+ < ∂z(ψ′iS j), ψn > Fx,y{u2
1( j)u1

2(i)}k1,k2

< ∂z(S iψ
′
j), ψn > Fx,y{u1

1( j)u2
2(i)}k1,k2+ < ∂z(S iS j), ψn > Fx,y{u2

1(i)u2
2( j)}k1,k2

)
−

(2πk2)2

L2
y

( N3∑
i, j=1

< ∂z(ψ′iψ
′
j), ψn > Fx,y{u1

2(i)u1
2( j)}k1,k2

+ 2 < ∂z(ψ′iS j), ψn > Fx,y{u1
2(i)u2

2( j)}k1,k2+ < ∂z(S iS j), ψn > Fx,y{u2
2(i)u2

2( j)}k1,k2

)
+

2πik2

Ly

( N3∑
i, j=1

< ∂2
z (ψiψ

′
j), ψn > Fx,y{u1

3(i)u1
2( j)}k1,k2

+ < ∂2
z (ψiS j), ψn > Fx,y{u1

3(i)u2
2( j)}k1,k2

)
+

(2π)3ik1|
k
L |

2

Lx

( N3∑
i, j=1

< (ψ′iψ j), ψn > Fx,y{u1
1(i)u1

3( j)}k1,k2

+ < (S iψ j), ψn > Fx,y{u2
1(i)u1

3( j)}k1,k2

)
+

(2π)3ik2|
k
L |

2

Ly

( N3∑
i, j=1

< (ψ′iψ j), ψn > Fx,y{u1
2(i)u1

3( j)}k1,k2

+ < (S iψ j), ψn > Fx,y{u2
2(i)u1

3( j)}k1,k2

)
+ (2π)2|

k
L
|2
( N3∑

i, j=1

< ∂z(ψi, ψ j), ψn > Fx,y{u1
3(i)u1

3( j)}k1,k2

)
(A.16)
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DISCRETE EQUATIONS FOR RAYLEIGH-BÉNARD CONVECTION

The projection of the nonlinear part of g is given by:

1
LxLy

∫ 1
2

− 1
2

∫ Ly

0

∫ Lx

0
ε · [div(u ⊗ u)]e

2πik1 x
Lx e

2πik2y
Ly S n(z)

= −
(2π)2k1k2

LxLy

( N3∑
i, j=1

< (ψ′iψ
′
j), S n > Fx,y{u1

1(i)u1
1( j)}k1,k2

+ 2 < (ψ′iS j), S n > Fx,y{u1
1(i)u2

1( j)}k1,k2

+ < (S iS j), S n > Fx,y{u2
1(i)u2

1( j)}k1,k2

)
−

(2πk2)2

L2
y

( N3∑
i, j=1

< (ψ′iψ
′
j), S n > Fx,y{u1

2(i)u1
1( j)}k1,k2

+ < (ψ′iS j), S n > Fx,y{u1
2(i)u2

1( j)}k1,k2

+ < (S iψ
′
j), S n > Fx,y{u2

2(i)u1
1( j)}k1,k2

+ < (S iS j), S n > Fx,y{u2
2(i)u2

1( j)}k1,k2

)
+

2πik2

Ly

( N3∑
i, j=1

< ∂z(ψiψ
′
j), S n > Fx,y{u1

3(i)u1
1( j)}k1,k2

+ < ∂z(ψiS j), S n > Fx,y{u1
3(i)u2

1( j)}k1,k2

)
+

(2πk1)2

L2
x

( N3∑
i, j=1

< (ψ′iψ
′
j), S n > Fx,y{u1

1(i)u1
2( j)}k1,k2

+ < (ψ′iS j), S n > Fx,y{u2
1( j)u1

2(i)}k1,k2

+ < (S iψ
′
j), S n > Fx,y{u1

1( j)u2
2(i)}k1,k2

+ < (S iS j), S n > Fx,y{u2
1(i)u2

2( j)}k1,k2

)
+

(2π)2k1k2

LxLy

( N3∑
i, j=1

< (ψ′iψ
′
j), S n > Fx,y{u1

2(i)u1
2( j)}k1,k2

+ 2 < (ψ′iS j), S n > Fx,y{u1
2(i)u2

2( j)}k1,k2

+ < (S iS j), S n > Fx,y{u2
2(i)u2

2( j)}k1,k2

)
−

2πik1

Lx

( N3∑
i, j=1

< ∂z(ψiψ
′
j), S n > Fx,y{u1

3(i)u1
2( j)}k1,k2

+ < ∂z(ψiS j), S n > Fx,y{u1
3(i)u2

2( j)}k1,k2

)

(A.17)
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The nonlinear parts of F and G are given by:∫ 1
2

− 1
2

∂z < u1u3 >
xy S n(z)

=

N3∑
i, j=1

< ∂z(ψ′iψ j), S n > Fx,y{u1
1(i)u1

3( j)}0,0

+ < ∂z(S iψ j), S n > Fx,y{u2
1(i)u1

3( j)}0,0

(A.18)

∫ 1
2

− 1
2

∂z < u2u3 >
xy S n(z)

=

N3∑
i, j=1

< ∂z(ψ′iψ j), S n > Fx,y{u1
2(i)u1

3( j)}0,0

+ < ∂z(S iψ j), S n > Fx,y{u2
2(i)u1

3( j)}0,0

(A.19)
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Appendix B

Discrete equations for
Swift-Hohenberg model

The discrete equations in case of Swift-Hohenberg model are much easier since the
problem “neglects” the vertical component, as it is a two-dimensional model equation.
Again taking advantage of a Fourier series expansion you can easily verify that the
analytic equations are diagonalized by Galerkin method and Fourier expansions. We
start again from the following set of equations:

∂

∂t
u + V · ∇u = εu − (∆ + 1)2u − u3 + δu2 (B.1)

V = (∂yζ,−∂xζ) (B.2)
∆ζ = c · ẑ · ∇u × ∇(∆u) (B.3)

Expanding u and ζ into Fourier series leads to:

∂

∂t
û(k1, k2) = εû(k1, k2) −

(
|
k
L
|2 + 1

)2
− Fx,y{∂yζ∂xu − ∂xζ∂yu + δu2 − u3}k1,k2

(B.4)

−|
k
L
|2ζ̂(k1, k2) = c ·

(
Fx,y{∂xu ·

(
∂y∂

2
xu + ∂3

yu
)
}k1,k2

)
(B.5)

It is obvious that these equations are more simple than the complete Boussinesq equa-
tions. Nevertheless it shows many of the pattern forming processes.
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