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Abstract
The production of top-quark pairs in association with a Z boson offers the opportunity to
study the coupling of the Z boson to the top quark. This coupling is of interest because
it is sensitive to the third component of the weak isospin and the hypercharge of the top
quark. A measurement of the coupling probes the prediction of these parameters of the
Standard Model of elementary particle physics (SM).
This thesis presents studies of the final states containing four electrically charged lep-

tons. This channel is particularly pure but such events are rare. In order to increase
the statistical precision, a deep neural network (DNN) was trained to perform the clas-
sification of events. The preselection is chosen to be loose to increase the acceptance of
four-lepton events. Then, the separation of background and signal events is performed by
the DNN. This way the statistical uncertainty of the cross section measurement is reduced
by 7% to 35% depending on the used configuration for the measurement compared to a
“cut and count” approach.
Within this thesis also the Z boson reconstruction is performed by a DNN instead of

using a simple Z mass window based approach with the aim to increase the reconstruction
efficiency. The reconstruction is required in order to study the coupling.

Zusammenfassung
Die Produktion von Top-Quark Paaren in Assoziation mit einem Z-Boson bietet die Mög-
lichkeit die Kopplung des Z-Bosons an das Top-Quark näher zu untersuchen. Das ist
insbesondere interessant, da die Kopplung von der dritten Komponente des schwachen
Isospins sowie der Hyperladung des Top-Quarks abhängt und so die Vorhersage der Para-
meter des Standardmodells der Elementarteilchenphysik (SM) mithilfe der Messung der
Kopplung überprüft werden kann.
Diese Arbeit präsentiert Studien des tetraleptonischen Kanal, also die Endzustände mit

vier geladene Leptonen. Dieser Kanal ist sehr rein, doch die statistische Unsicherheit in
diesem Kanal ist groß. Zur Erhöhung der statistischen Präzision wurde die Klassifizie-
rung durch ein tiefes neuronales Netz (DNN) vorgenommen, wobei die Akzeptanz von
Ereignissen durch eine schwache Vorselektion zunächst erhöht wird, um die tatsächliche
Klassifizierung von dem DNN durchführen zu lassen. Auf diese Weise kann die statistische
Unsicherheit der Messung des Wirkungsquerschnitts um 7% bis 35% in Abhängigkeit der
verwendeten Messkonfiguration im Vergleich zu einem klassischen Ansatz, welcher ortho-
gonale Schnitte auf relevante Observablen verwendet, gesenkt werden.
In dieser Arbeit wird auch die Rekonstruktion des Z-Bosons mithilfe eines DNN durch-

geführt, anstatt einen einfachen Ansatzes basierend auf der Masse des Z-Bosons zu ver-
wenden, mit dem Ziel die Rekonstruktionseffizienz zu erhöhen. Die Rekonstruktion wird
zur Untersuchung der Kopplung benötigt.
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1. Introduction

The field of particle physics focuses on the description of the smallest pieces of matter: the
elementary particles. The Standard Model of elementary particle physics (SM) constitutes
the best description of the elementary particles and their interactions so far. Even though
there are still observations that cannot be described by the SM such as dark matter, it
is able to describe large parts of our universe on the smallest scales with high accuracy.
With the help of measurements, parameters of the SM can be determined with increasing
precision. This way predictions of the SM are constantly probed, phenomena beyond the
SM can be discovered, and the SM extended.
This thesis focuses on the process of top-quark pair production in association with

a Z boson (tt̄Z) with a final state including four electrically charged leptons. Instead
of using a “cut and count” approach, i.e., defining regions by applying cuts on relevant
observables, a Deep Neural Network (DNN) is used to classify events into signal and
background.
The tt̄Z process is especially interesting, because it offers the chance to measure the

coupling between the Z boson and the top quark. This coupling is sensitive to the third
component of the weak isospin I3 and the hypercharge Y of the top quark, and is therefore
useful to probe the SM’s prediction of these quantities.
To perform such a measurement it is necessary to reconstruct the t−Z system. There-

fore it has to be determined which electrically charged leptons originate from the Z boson
and which do not. To perform the assignment of the leptons to the Z boson, a second
DNN is used instead of using an approach based on the invariant masses of the lepton
pairs. A DNN is capable of taking more kinematic features into account and can use cor-
relations between them. This way it does not follow a strict set of rules for the assignment
like the simple approach does but it is more flexible to adjust its reconstruction based on
specific event kinematics.
In the last step, the results from the classification are used to perform a fit to measure

the signal strength of tt̄Z production, µtt̄Z , and the normalisation of ZZ background
process, NZZ , based on the classifier’s output. These fits are compared to those performed
on the regions defined by a “cut and count” approach. The influence of the statistical
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1. Introduction

and systematic uncertainties are discussed.
In Section 1.1 the SM is introduced briefly. Afterwards the particle which plays the

most important role in the context of this master’s thesis, the top quark, is introduced
in Section 1.2. The process of top-quark pair production is described in Section 1.3 and
the same process in association with a Z boson in Section 1.4. The Lhc and the Atlas
detector are described in Chapter 2. A general overview of DNNs is given in Section 3.1,
followed by the event selection in Section 3.2 and a description of the tetralepton channel of
tt̄Z in Section 3.3. The actual analysis of the presented events starts with the classification
of signal and background events in Section 3.4 followed by the Z boson reconstruction
in Section 3.5. The final part of the analysis is the fit of the inclusive cross section in
Section 3.6. A summary and outlook is given in Chapter 4.

1.1. The Standard Model

The SM [1–11] includes 12 fermions, the gauge bosons and the Higgs boson. The fermions
are spin-1/2 particles and can be further split into leptons and quarks. In addition, leptons
and quarks can be arranged in three generations which comprise two particles each. To
every fermion exists an antifermion which has the same mass but opposite charge. Here,
charge refers to the quantum numbers associated with the generators of a symmetry
group.
A summary of all particles is given in Figure 1.1. The generations of leptons each

include an electrically neutral neutrino, which is massless according to the SM, and a
charged lepton. The first generation consists of the electron e and the electron neutrino
νe, the second one of the muon µ and the muon neutrino νµ, and the third one of the
tau-lepton τ and the tau-neutrino ντ .
The fermions are described by spinors. The spinors can be decomposed into a left- and

a right-handed component referring to the eigenstates of the chirality operators given by

PL = 1
2(1− γ5), PR = 1

2(1 + γ5). (1.1)

The γ5 matrix is defined as γ5 = iγ0γ1γ2γ3 with the Dirac matrices γµ, where µ =
0, . . . , 3. In the relativistic case, the helicity of a particle, i.e., the projection of the spin
on the axis of the direction of translation, equals its chirality.
The left-handed leptons of each generation differ regarding their quantum number of

the third component of the weak isospin. In the following, when using “weak isospin”,
the third component is implied. While neutrinos carry a weak isospin of I3 = +1/2, the

2



1.1. The Standard Model
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Figure 1.1.: The elementary particles of the Standard Model. The upper left part shows
the leptons ordered by generations. The quarks are shown in the lower left
and are ordered the same way. The bosons are split into the gauge bosons
in blue with spin 1 and the Higgs boson in red with spin 0. The electric
charge and spin are listed for all elementary particles. In addition, the
quantum numbers the gauge bosons couple to are given.

electrically charged leptons with a charge of−1, given in fractions of the elementary charge
e, have I3 = −1/2. The same concept can be applied to the left-handed quarks. There,
one distinguishes up-type quarks with an electric charge of +2/3 e and a weak isospin of
I3 = +1/2 and down-type quarks with an electric charge of −1/3 e and a weak isospin of
I3 = −1/2. The first generation comprises the up quark u and the down quark d, the
second generation the charm quark c and the strange quark s, and the third one the top
quark t and the bottom quark b. Right-handed fermions carry a weak isospin of I3 = 0.
This motivates the arrangement into doublets for the left-handed fermions and singlets
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1. Introduction

for the right-handed ones:

QL =
uL
dL

 cL
sL

 tL
bL


uR = uR cR tR

dR = dR sR bR

LL =
νe,L
eL

 νµ,L
µL

 ντ,L
τL


νR = νe,R νµ,R ντ,R

`R = eR µR τR

(1.2)

Since the antiparticles always carry the opposite charge, right-handed antiparticles are
arranged in doublets and left-handed antiparticles in singlets.

In addition to the particles, there are three elementary interactions included in the SM;
the electromagnetic, the weak and the strong interaction. Gravity is not described by the
SM.

The interactions are mediated by the gauge bosons. Gluons are the mediators of the
strong interaction and photons of the electromagnetic interaction. The weak interaction
is split into charged weak interactions, mediated by the electrically charged W+ and
W− bosons, and neutral weak interactions, mediated by the electrically neutral Z boson.
These interactions of the particles and gauge bosons within the framework of the SM are
described by a quantum field theory with an underlying gauge symmetry of the form:

SU(3)C × SU(2)L × U(1)Y . (1.3)

The SU(3)C describes the strong interaction. The gluons couple to the colour-charge C.
Since gluons and quarks are the only particles carrying colour charge, gluons only interact
with quarks or other gluons.

Leptons can only interact via the electroweak interactions which are described by the
SU(2)L × U(1)Y gauge symmetry in the context of electroweak unification [1–3]. The
L indicates the coupling to the left-handed fermions with the weak isospin I3 as the
corresponding quantum number. The weak isospin doublets are affected by the local
gauge transformation of the SU(2)L while the singlets stay untouched. As a consequence,
only the weak isospin doublets can participate in interactions fully described by the gauge
symmetry of the SU(2)L.

The quantum number associated with the U(1)Y is the hypercharge Y . It is defined
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1.1. The Standard Model

via the electric charge Q and the weak isospin of the fermion:

Q = I3 + Y

2 . (1.4)

Interactions described by the U(1)Y also allow the interaction with weak isospin singlets.
The strong interaction and the electroweak interactions are described in more detail in
the following sections.
Even though the Higgs boson does not mediate any of the fundamental forces, it carries

an important role in the SM. Massive particles acquire their mass through the interaction
with the field of the Higgs boson. This procedure is described by the Brout-Englert-Higgs
mechanism [12–15]. Direct mass terms of the electroweak gauge bosons would violate
the gauge invariance of the underlying gauge group. Massive particles that preserve the
invariance are therefore only possible through spontaneous symmetry breaking of the
gauge symmetry of SU(2)L.

1.1.1. The Strong Interaction

The strong interaction is described by the SU(3)C gauge group which couples to the
colour charge C. There are three colour charges, red (r), blue (b), and green (g), and in
addition three anti-colour charges (r̄, b̄, ḡ).
The term “colour charge” should only be understood as a label to describe the three

orthogonal states of the SU(3). The generators of the SU(3) are the Gell-Mann matrices
λα, where α = 1, . . . , 8. The corresponding current of the strong interaction is given by

jµq = ūc†j

[
− 1

2igSλ
αγµ

]
ciu, (1.5)

where u and ū denote the quark wavefunctions and ci/j the colour wavefunction of the
quarks. The eight physical gluons Gµ arising from the theory of quantum chromodynamics
(QCD) [16, 17] are combinations of these orthogonal colour wavefunctions r, b and g:

Gµ = rḡ, gr̄, rb̄, br̄, gb̄, bḡ,
1√
2

(rr̄ − gḡ), 1√
6

(rr̄ + gḡ − bb̄). (1.6)

The strong interaction has an important aspect which makes it stand out compared to
the others. While it is mostly experienced that forces like gravity decrease with increasing
distance in daily life, the opposite is the case for the strong interaction. This behaviour
is known as confinement: quarks cannot be observed as free particles but only as bound
states in colour neutral hadrons. A hadron is colour neutral if it carries either three quarks
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1. Introduction

with a different (anti-)colour charge or two quarks where one quark carries a colour charge
and the other one the corresponding anti-colour charge.

When two quarks are separated from each other, virtual gluons are exchanged between
them and finally a new quark-antiquark pair is created. This process is repeated multiple
times and multiple hadrons are created. This is known as hadronisation.

The strong coupling also depends on the energy range since it has a running coupling
constant. In the low energy range, the coupling is stronger and then decreases with
increasing energy. The coupling constant is approximately given by

α(q2) = α(µ2)
1− α(µ2) 1

3π ln
(
q2

µ2

) (1.7)

with the energy q2 and a reference energy scale µ2. This means in the high energy range
the quarks are less bound through the strong interaction. This concept is called asymptotic
freedom.

1.1.2. The Electroweak Interaction

The electroweak interaction was first described by Glashow [1], Weinberg [2] and Salam
[3] with the gws model. This model unifies the weak and electromagnetic interaction in
the description as a SU(2)L × U(1)Y gauge group. The invariance under SU(2)L local
gauge transformations is satisfied by the three gauge fieldsW k

µ , k = 1, . . . , 3. The physical
fields of the charged W± bosons can be written as a linear combination of W (1)

µ and W (2)
µ :

W±
µ = 1√

2
(W (1)

µ ∓W (2)
µ ). (1.8)

Since the W± bosons arise from the gauge invariance of the SU(2)L, they only couple to
left-handed fermions and right-handed antifermions. This means that the charged weak
interaction mediated by the W± bosons is maximally parity violating.

While the lepton flavour is conserved when interacting via theW± bosons, this is not the
case for quarks. The weak interaction mediated by the W± bosons is the only interaction
changing the quark flavour. In addition it can change the generation of quarks, even
though these processes are suppressed. This behaviour is described by the ckm matrix

6



1.1. The Standard Model

which gives the rotation between the mass eigenstates and the weak eigenstates.
d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vsb

Vtd Vts Vtb



d

s

b

 . (1.9)

Here, d′, s′, b′ denote the weak eigenstates and d, s, b the mass eigenstates.

The coupling to the weak isospin spinor doublets given in Equation (1.2) leads to the
following charged weak currents

jµ− = gW√
2
L̄Lγ

µνL = gW√
2
L̄γµ

1
2(1− γ5)ν, (1.10)

jµ+ = gW√
2
ν̄Lγ

µLL = gW√
2
ν̄γµ

1
2(1− γ5)L, (1.11)

jµ− = gW√
2
Vijū

i
Lγ

µdjL = gW√
2
Vijū

iγµ
1
2(1− γ5)dj, (1.12)

jµ+ = gW√
2
V ∗ij d̄

j
Lγ

µuiL = gW√
2
V ∗ij d̄

jγµ
1
2(1− γ5)ui, (1.13)

where Vij denotes the corresponding ckm matrix element and gW the coupling strength.
The gauge symmetry of the U(1)Y gives rise to the field Bµ which couples to the hyper-
charge Y of the particles. The mixing between W (3)

µ and Bµ defines the physical fields Aµ
and Zµ which mediate the neutral electroweak interaction. Aµ refers to the photon γ and
Zµ to the neutral Z boson.

Aµ = +Bµ cos θW +W (3)
µ sin θW , (1.14)

Zµ = −Bµ sin θW +W (3)
µ cos θW (1.15)

with the weak mixing angle θW . The photon couples to the electric charges of the particles
and this way does not couple to neutrinos and itself since neutrinos and photons are
electrically neutral. The corresponding current is given by

jµem. = geΨ̄γµΨ. (1.16)

with the Dirac spinor Ψ. The neutral weak current of the Z boson is given by

jµZ = 1
2gZΨ̄γµ(cV − cAγ5)Ψ. (1.17)

It couples to charged and neutral fermions. The current shows that the coupling has
a V − A structure which means that the neutral weak interaction has a vector and an

7



1. Introduction

axial-vector component. Within the SM, the coupling parameters cV and cA depend on
the charge and the third component of the weak isospin of the corresponding particle:

cV = I3 − 2Q sin2 θW , (1.18)
cA = I3. (1.19)

One of the greatest achievements of Glashow, Weinberg and Salam was the unification
of the weak and the electromagnetic interaction. The unification is described by the
mixing angle θW , which describes the connection between the coupling constants of the
electromagnetic and the weak interactions. The electromagnetic coupling constant ge is
given by ge = Qe, where Q is the charge of the particle in units of the elementary charge.
The connection of the coupling constants via the mixing angle θW is then given by:

e = gW sin θW = gZ sin θW cos θW . (1.20)

In addition, the mixing angle connects the masses of the Z boson and the W± bosons via

mW = mZ cos θW . (1.21)

1.2. The Top Quark

Even though the idea of a third generation of quarks was already brought up in 1973
by Kobayashi and Maskawa [18], it took more than twenty years to complete the third
generation of quarks with the discovery of the top quark in 1995 by the CDF and DØ
Collaborations at the Tevatron [19, 20]. A first experimental indication for a third
generation of quarks was the discovery of the τ lepton in 1975 [21] which extended the
lepton sector in the SM by a third generation. This supported the idea of the existence
of an additional quark generation. It took two more years until the first quark of the
third generation was discovered: the bottom quark in 1977 [22]. The b-quark is the weak
isospin partner of the top quark in the SM.
The top quark has some properties which make it a unique elementary particle. With

a measured mass of mt = 173.34± 0.27(stat)± 0.71(syst)GeV [23] it is the heaviest ele-
mentary particle in the SM. Due to its high mass, the top-quark decay has a large phase
space and this way decays before it hadronises. This means that there are no hadrons
including top quarks but also that its properties can be studied directly from the decay
products. All other quarks can only be observed as bound states in the form of hadrons
which further decay into bundles of hadrons in the detector.

8



1.3. Top-Quark Pair Production

Figure 1.2.: There are two production modes of a top-quark pair. The left Feynman
diagram and the one in the middle show gluon-gluon fusion, the right
diagram illustrates quark-antiquark annihilation. At the Lhc, where only
protons and no anti-protons are brought to collision, gluon-gluon fusion is
the dominant production mode.

Top quarks can be produced as single top quarks or as top-quark pairs. The studies
of this thesis focus on the production of top-quark pairs in association with a Z boson.
Hence, only pair production is described in detail.

1.3. Top-Quark Pair Production

A top-quark pair consists of a top quark and an antitop quark. There are two different
production modes: gluon-gluon fusion and quark-antiquark annihilation which are shown
in Figure 1.2. In proton-proton collisions at high energies the gluon-gluon fusion is the
dominant production mode. This is because antiquarks are only available as sea quarks.
The number of sea quarks carrying a small fraction of the total momentum is much smaller
than the number of sea gluons. At high energies even a small fraction of the total energy is
sufficient to produce a top-quark pair. Therefore, more gluons than quark-antiquark pairs
that are capable of producing a top-quark pair are available. The Lhc operates at energies
of the order of magnitude of 1TeV and proton-proton collisions are studied. Hence, about
90% of the top-quark pairs are produced via gluon-gluon fusion. The dominant decay
process of a top quark is the decay into a W boson and a b-quark. Decays into other
quarks are possible, but are highly suppressed by the off-diagonal entries of the ckm
matrix. The top quark is the only quark that has a larger mass than the W boson. This
means, while all other quarks can only decay into a virtual W boson, the W boson from
the top quark is on-shell so that the process is not suppressed. TheW boson either decays
into two quarks or into a charged lepton and the corresponding neutrino. The decay into
hadrons is called the hadronic decay and into leptons the leptonic decay.
Since two W bosons emerge from the decay of a top-quark pair, this leads to three

different combinations. When both W bosons decay into quarks, this is called the all-
hadronic decay, when both decay into leptons, the dilepton decay. A mixture of both

9



1. Introduction

Figure 1.3.: The branching ratios of the decays of the W bosons in the decay of a
top-quark pair.

decay modes is referred to as `+jets. The branching ratios of the W boson decays are
shown in Figure 1.3.

1.4. Top-Quark Pair Production in Association with
a Z boson

During the production and decay of a top-quark pair, all quarks, leptons and W bosons
can radiate a Z boson. Of most interest for this work are those events, where the Z boson
couples directly to the top quark, because the coupling between the top quark and the
Z boson is sensitive to the third component of the weak isospin I3 and the hypercharge
Y of the top quark. This can be seen in the following Lagrange density which can
be obtained from the current given in Equation (1.17) with the vector and axial-vector
coupling parameters cV and cA given in Equations (1.18) and (1.19):

L ∝ ū(pt)[γµ(ctV − ctAγ5)]v(pt̄)Zµ (1.22)

with the spinors u and v of the top and antitop quark, respectively, and the field Zµ

describing the physical Z boson. The analysis of top-quark pair production in association
with a Z boson (tt̄Z) offers the opportunity to probe the SM prediction of this coupling.
Contributions beyond the SM may change the strength and structure of the coupling

10



1.4. Top-Quark Pair Production in Association with a Z boson

Figure 1.4.: A top-quark pair decays in most cases into a W boson and a b-quark. The
additional Z boson decays into two leptons. Depending on the decay of
the W bosons, the tetra-, tri- and dilepton channel is distinguished. The
coupling of the top quark and the Z boson is marked with a red dot.

which would lead to deviations between the measurement and the SM prediction.
From an experimental point of view, usually only final state topologies, where the Z

boson decays into two electrically charged leptons are considered. Decays into quarks
or neutrinos are not taken into account. This leads to the three different topologies
depending on the W boson decays which are shown in Figure 1.4. Depending on the
number of electrically charged leptons, the decay channels are labelled as the dilepton,
trilepton and tetralepton channels.
This thesis deals with the tetralepton channel. Since four-lepton final states are in gen-

eral rare, the tetralepton channel benefits from a high purity. However, as a consequence,
statistics in this channel are also low as shown in Figure 1.3. Only in 9% of the cases both
W bosons decay leptonically. The trilepton and dilepton case carry similar branching
ratios with 45% and 46%, respectively.
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2. Experimental Setup

The experimental setup of the Large Hadron Collider (Lhc), the Atlas detector with
its different components and the definition of the reconstructed objects is given in the
following sections.

2.1. The Large Hadron Collider

The Lhc is the most powerful hadron collider in the world and is nowadays capable
of accelerating protons up to a beam energy of 6.5TeV. It is located at the European
Organisation for Nuclear Research (Cern, French: Conseil Européen pour la Recherche
Nucléaire) in Geneva, Switzerland but also crosses the French border. The circular collider
has a circumference of 26.7 km and is located approximately 100m under the surface. This
location provides a natural shielding from particles not originating from the collisions like
cosmic radiation.
Before the collider ring was used for proton-proton collisions, the Large Electron-

Positron Collider (Lep) was placed in the tunnel of the Lhc and used for the collision of
electrons and positrons.
Until now data at the Lhc has been taken in two runs: Run 1 took place between

2010 and 2012 with protons at a centre-of-mass energy of 7 and 8TeV. For Run 2 (2015-
2018) the centre-of-mass energy was increased to 13TeV. At four collision points detectors
observe particles originating from high energetic collisions. The four experiments are
called Atlas [24], Cms [25], Alice [26] and Lhcb [27]. An overview of the Cern complex
including the Lhc and its preaccelerators is given in Figure 2.1. Before the accelerated
hadrons are entering the Lhc, they pass some smaller accelerators. This way they already
enter with a beam energy of 450GeV to be then accelerated even further until a centre-
of-mass energy of 13TeV is reached. After that, packages of particles, known as bunches,
are brought to collision.
While Lhcb and Alice are specialised in the studies of b-quark physics and heavy-ion

physics, respectively, the Atlas and Cms experiments are multi-purpose experiments and
can be used for a wide range of measurements. The largest detector at the Lhc is the
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Figure 2.1.: A schematic overview of the Cern complex including the Lhc and its
preaccelerators. © Cern

Atlas detector which is discussed in the following section.

2.2. The ATLAS Detector

The Atlas detector has a diameter of 25m, a length of 45m and a weight of about
7000 tons. A schematic illustration of it can be seen in Figure 2.2.
It is arranged in a cylindric way around the beam pipe and can this way cover nearly

the whole solid angle. This design motivates the position definition via angular variables.
One of them is the pseudo rapidity η defined as

η = − ln
[
tan θ2

]
(2.1)

with the angle θ between the particle track and the beam axis. For particles close to the
beam line, the pseudorapidity η diverges and is zero for particle tracks orthogonal to the
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Figure 2.2.: A schematic illustration of the Atlas detector showing its different layers
used for the particle detection. To get an impression of the size of the
detector, two people are drawn for comparison. © Cern

beam line. The azimuth angle φ is defined as the angle between the particle track and
the axis pointing from the detector to the centre of the Lhc tunnel. The Atlas detector
is symmetric in φ.

The particles produced in the collisions have to pass different layers of the detector
which are optimised to measure individual properties of the particles sequentially. First,
the particles pass the Inner Detector (ID) which consists of multiple layers and measures
the direction, the momentum and the charge of the passing particles. The pixel detector
is its first component. With its 92 million electronic readout channels, the pixels, it is
capable of measuring the tracks of the passing particles that produce single hits. The
second part is the semiconductor tracker which is a silicon microstrip tracker consisting of
multiple modules that are arranged in four concentric barrels. The readout strips every
80 µm are used to provide a position measurement. The third component is the transition
radiation tracker. It is based on the principle that radiation is emitted at the boundary
of two media with a different refraction index. By measuring the deposited energy in
the form of radiated photons, the tracker is, for example, used to differentiate between
different particle types.

After that the particles enter the calorimeter system. It is designed to stop most parti-
cles so that their entire energy is deposited in the calorimeter. Two types of calorimeters
are distinguished: the electromagnetic calorimeter, which measures the energy of electrons
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and photons when interacting with matter, and the hadronic calorimeter, which does the
same with hadrons when they interact with atomic nuclei.
In the electromagnetic calorimeter, high energetic electrically charged leptons and pho-

tons create electromagnetic showers. Through interaction with atomic nuclei, the photon
converts into an electron-positron pair. This process is called pair production. These high
energetic electrons and positrons radiate new photons via bremsstrahlung and the pro-
cess is repeated. This way the particles create a cascade until the energy of the particles
becomes too low to continue pair production and photon radiation.
The electromagnetic calorimeter used in Atlas is a sampling calorimeter. This means

the calorimeter consists of active layers that are used to measure the deposited energy
and absorbing layers where the shower is created. As an active medium liquid argon is
used, the absorbing layers are made from metal like tungsten, copper or lead.
The hadrons usually pass the electromagnetic calorimeter and enter the hadronic calori-

meter. There, the hadrons can interact electromagnetically, but the dominant interaction
is the strong interaction. This way a cascade of hadrons is created. It ends when the
energy of the created hadrons is too low to create new hadrons via the strong interaction.
The hadronic calorimeter is designed as a sampling calorimeter, too, and comprises ab-

sorbing layers of steel and active plastic scintillating tiles. While electromagnetic calorime-
ters can also be designed as homogenous calorimeters, this is not of practical use for the
hadronic calorimeters. In a homogenous calorimeter one material is used as the active
and the absorbing material at the same time. Therefore, a compromise between both
properties has to be made. The reason why only electromagnetic calorimeters are realised
as homogenous calorimeters is the large difference between the radiation length X0 for
the electromagnetically interacting particles in the electromagnetic calorimeter and the
nuclear interaction length λ for the strong interactions in the hadronic calorimeters. Due
to the larger nuclear interaction length λ hadronic calorimeters need to be much larger
than electromagnetic calorimeters and therefore homogenous hadronic calorimeters would
simply need too much space.
Neutrinos cannot be stopped in the calorimeter system since they do not interact with

matter. Also muons pass the calorimeters even though they interact with matter, because
they are minimum ionising particles. They normally still leave a trace in the calorimeter.
The Magnet System bends the tracks of the particles and makes it possible to measure

the charge and the momentum of the particles, which can be determined via the deflection
radius. The system consists of the Central Solenoid Magnet and the Toroid Magnet, com-
prising the Barrel Toroid and the End-cap Toroid. The solenoid magnet has a thickness
of only 4.5 cm to make sure that the interaction of the magnet with the studied particle is
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kept as low as possible while providing the momentum measurement. The toroid magnet
is especially used to determine the muons momentum.
The outermost part is the Muon Spectrometer. While all other particles besides muons

and neutrinos are stopped in the calorimeter systems, muons are detected by the muon
spectrometer since they are the only particles interacting with matter reaching it. The
spectrometer consists of different components. The components leave some space in-
between to provide a track measurement of the muons. They also measure the deflection
radius of the muons in the magnetic field to measure the muon’s charge and momentum.

2.3. Object Definitions

When talking about any particle in the context of an analysis, one normally refers to the
reconstructed four-momentum of the particle based on the trace it leaves in the detector.
For the reconstruction, there are criteria for each particle that have to be passed. The
definition of the reconstructed particles used in the studies of this thesis is given in this
section.
Electrons: electrons are identified via energy clusters in the calorimeter matched with

one or multiple tracks in the ID. They need to have a transverse momentum of pT > 7GeV,
and |η| < 2.47 is required. If the pseudorapidity of the electron candidate lies in a range of
1.37 < |η| < 1.52, it is discarded because this is the transition region between the endcap
and the barrel of the electromagnetic calorimeter where the efficiencies of the measurement
are decreased. The track of an electron candidate needs to have |z0 sin θ| < 0.5mm and
|d0|/σ(d0) < 5. Here, z0 describes the longitudinal impact parameter with respect to the
reconstructed primary vertex, and d0 is the transverse impact parameter with respect to
the beam axis. The uncertainty of d0 is denoted as σ(d0). These criteria make sure that
the candidate originates from the primary vertex and this way suppresses contributions
from electrons that are not part of the primary collision or candidates that fake electrons.
For electrons the “MediumLH” identification criteria defined in Ref. [28] are applied.
Muons: muons are identified due to their tracks in the muon spectrometer and the

calorimeter. These traces are matched with tracks in the ID that lie in a pseudorapid-
ity range of |η| < 2.5. The requirement for the transverse momentum of pT > 7GeV
is identical to the one used for electrons. Tracks associated with muons need to fulfil
|z0 sin θ| < 0.5mm and |d0|/σ(d0) < 3 to ensure that the muon originates from the colli-
sion of the primary vertex. Muons have to pass the “Medium” identification requirements
defined in Ref. [29].
Both, muons and electrons, need to fulfil isolation criteria to suppress the contribution
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of fake leptons such as leptons originating from hadron decays. To do so, a cone is defined
around the lepton candidates with a radius of ∆R =

√
(∆η)2 + (∆φ)2. For electrons, the

radius is determined as the minimum of ∆R = 10/pT and ∆R = 0.2. Within this cone the
transverse energy and the transverse momentum excluding the electron itself must be less
than 6% of the transverse energy and transverse momentum of the electron candidate,
respectively [28]. For muons, the cone radius is defined as the minimum of ∆R = 10/pT
and ∆R = 0.3 for a muon with pT < 50GeV; for a transverse momentum larger than
50GeV, the cone radius is fixed to ∆R = 0.2. The transverse momentum within this
cone without the muon candidate plus 0.4Eneflow

T must be smaller than 4.5% of the muon
candidate’s transverse momentum, where Eneflow

T is defined as the neutral particle-flow
objects in a cone with ∆R = 0.2 [29].
Jets: jets consist of bunches of hadrons that are created in the process of hadronisation.

Since they comprise multiple particles, multiple tracks in the detector are included. The
jet reconstruction is done by matching preselected tracks with one topological cluster and,
based on a calculation of the expected energy, more clusters can be added to recover the
full shower energy. The clustering is done with the anti-kt algorithm [30] with a cone
radius of ∆R = 0.4. The jet candidates have to fulfil pT > 25GeV and |η| < 2.5. In
addition, the EMPFlow jet vertex tagger (JVT) [31] is applied to jets with a pT < 60GeV
to reduce the effects from multiple collisions within the same bunch crossing known as
pile-up.
Jets including b-hadrons (b-jets): b-jets are identified using the machine-learning based

DL1r high-level tagger [32]. There are different working points (WP) calibrated, which
are defined as the efficiency to tag true b-jets. Calibrated WPs exist at 60%, 70%, 77%
and 85% operating efficiency as measured in tt̄ Monte-Carlo events.
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3. Classification and Reconstruction
of tt̄Z Events Using Deep
Learning

This analysis comprises two parts: the classification of tt̄Z events and the Z boson recon-
struction. The classification and reconstruction are done by two separate Deep Neural
Networks (DNNs). Afterwards the results from the classification DNN is used for the
measurement of the inclusive cross section of tt̄Z.
The focus of this analysis is the tetralepton channel of tt̄Z. Since this channel is partic-

ularly pure but has a limited number of signal events, the main aim of the classification
is to keep the purity while increasing the statistical precision of the measurement by in-
creasing the signal acceptance. Hence, only a loose preselection of events presented in
Section 3.2 is applied. This way more events pass the selection and are used for the
training of the DNN.
Afterwards, the signal region can be defined by using the output of the classification

DNN. DNNs have the advantage that they do not simply apply orthogonal cuts on relevant
observables but are able to take correlations between observables into account. With the
help of the classification DNN as many signal events as possible, which may otherwise
be lost when using a “cut and count” approach, should be kept. At the same time the
background contribution is kept small such that the channel maintains its purity.
The Z boson reconstruction is performed by a DNN which is trained to assign the

leptons originating from the Z boson to it. The aim is to outperform previously used
strategies which simply used the invariant masses of all leptons for the assignment. This
approach is described in more detail in Section 3.5. The Z boson reconstruction DNN
may be able to increase the number of correctly assigned Z boson lepton pairs, because
it does not only look at each invariant mass separately but can base its prediction on the
event as a whole. This means it can either take other kinematics besides the invariant
masses into account or it can correlate the invariant masses with each other and this way
find certain schemes, e.g., regarding the distribution of invariant masses, which are useful
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Figure 3.1.: Logical computations performed with neurons. The neuron C is active as
soon as it receives at least two pulses simultaneously. The neurons A and
B can either send none, one, two or an inhibit pulse. The inhibit pulse
lowers the signal to be able to create the “not” computation.

for the assignment.

3.1. Deep Neural Networks

Neural networks are a powerful tool which, especially over the last years, gained more and
more interest in science and our daily life. The inspiration was given by biological neurons.
McCulloch and Pitts presented a simplified computational model of the functionality of
biological neurons already in 1943 [33]. This simplified model, known as artificial neuron,
has one or more binary inputs and one binary output. This way it is able to perform
simple logical computations like “and”, “or” and “not” as shown in Figure 3.1.
The simplest artificial neural network, meaning a network that can learn from its ex-

perience, is the perceptron invented in 1957 by Frank Rosenblatt [34]. It consists of one
layer of linear threshold units (LTU). A single LTU is shown in Figure 3.2. These units
take several weighted inputs, sum them up and output a step function. This way it is ca-
pable of performing simple binary classification. This idea was further enhanced by using
multiple layers with modified units, which are explained in more detail in the following.
The first layer of a neural network is the input layer and the last one the output layer.

All layers in between are called hidden layers. Neural networks with one input layer, at
least two hidden layers and one output layer are called deep neural networks. The input
layer is used to present the network all available information that it should base its pre-
diction on. The output layer provides the network’s prediction. In case of a classification
DNN, the network calculates a probability for every case it should distinguish. The dif-
ferent cases are referred to as classes. In this thesis both, the classification and Z boson
reconstruction, is based on separate probabilities for each class. For a binary classifica-
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Figure 3.2.: A linear threshold unit sums the inputs xi weighted with wi. The output
is given by a step function, i.e., is zero if the threshold of the step function
is not passed and 1 if the weighted input is larger than the threshold. A
perceptron consists of a layer of linear threshold units.

tion, as performed for the classification of signal and background events, one probability
is calculated. Then, a probability close to one refers to class A and a probability close to
zero to class B. For the Z boson reconstruction, multiple classes are used such that each
class i has its own probability pi, and the class k with pk = max({pi|i = 0, . . . , Nclasses})
with the number of classes Nclasses is chosen.
The layers consist of nodes. A node is an instance where all inputs are summed up.

All layers comprise multiple nodes except the output layer which can comprise only one
node in the case of a binary classification. In general the number of nodes in the output
layer depends on the number of classes the DNN should distinguish. The nodes of layer
i are connected to nodes of layer i− 1 and i + 1. If they are connected to every node of
the neighbouring layers, the network is called fully connected.
In addition, each layer has a bias node which is used as a linear shift by adding an

input independent bias term between 0 and 1. It helps to keep a layer active when the
input values are close to 0 so that the output of that layer would be close to 0 as well.
The bias node is connected to every node of the following layer.
The connections between the nodes of neigbouring layers carry weights. The weights

and the bias term are modified during the training of a DNN such that the networks
prediction is improved.
For the training, labelled instances are used so that the true class of each instance is

known. To be able to evaluate the modifications made during the training a metric to
describe the network’s performance is needed. This metric is the loss function J(~θ) which

21



3. Classification and Reconstruction of tt̄Z Events Using Deep Learning

compares the DNN output with the true label. In the case of a binary classification as
performed for the classification of signal and background events, the binary cross entropy
J(~θ)bin is used given by

J(~θ)bin = 1
m

m∑
i=0

[
yi log (ŷi) + (1− yi) log (1− ŷi)

]
(3.1)

with the DNN prediction ŷi and the label yi of instance i in the training sample of size
m and the vector of weights including the bias term ~θ. For a multi-class classification as
used for the Z boson reconstruction the categorical cross entropy J(~θ)multi is used:

J(~θ)multi = 1
m

m∑
i=0

Nclasses∑
j=0

yi,j log (ŷi,j) (3.2)

with the DNN prediction ŷi,j and the label yi,j of instance i of class j and the number of
classes Nclasses.
The input of one node is given by the output of the nodes of the previous layer that

it is connected to, but with the connection weight applied. The output of a node is
calculated by the activation function. The Rectified Linear Unit function ReLU(z) given
in Equation (3.3) is used as the activation function for the hidden layers in this thesis.
For the output layer the sigmoid function σsig(z) given in Equation (3.4) is used for
binary classification, for multi-class classification the softmax function σsoft(~z)i given in
Equation (3.5) is used.

ReLU(z) = max (0, z), (3.3)

σsig(z) = 1
1 + exp (−z) , (3.4)

σsoft(~z)i = exp (zi)∑Ninputs
j=0 exp (zj)

(3.5)

with the total sum z of weighted inputs, the vector of weighted inputs ~z and the number
of inputs Ninputs. z is used if the layer comprises only one node, e.g., for a binary classifier
or when the outputs of each node in one layer are independent from each other as for
the ReLU activation function. The vector ~z is used if the outputs of the nodes are not
independent as for the softmax function where the outputs add up to 1. The output of
node i is then described by σsoft(~z)i
The sigmoid activation function has the advantage that it does not diverge for large

inputs but gives a value between 0 and 1, and this way can be easily used for binary
classification. The softmax function is the counterpart for the multi-class classification.
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Input layer

Hidden layer

Output layer

Dropout layer

Figure 3.3.: Structure of a DNN with an input layer, multiple hidden layers and one
output layer. During training, dropout layers can be used. The network
is fully connected, i.e. each node is connected to every node of the two
neighbouring layers.

Similar to the sigmoid function it provides a value between 0 and 1 but in addition it
makes sure that the sum of all outputs is 1. Therefore the output of a layer using the
softmax function can be interpreted as a probability distribution for the different classes.
During training, additional layers, the dropout layers, can be used to regularise the

network to avoid that certain node connections gain a much higher impact than others
[35]. In every training step every node in a dropout layer has a probability p to be dropped
out, i.e., it does not receive any input and therefore does not produce any output. The
connections to these nodes remain unchanged in this training step. In the next training
step it has the same chance to be dropped out again. This procedure is only applied
during the training, for the evaluation and application of the network it is no longer used.
Another regularisation technique to avoid vanishing and exploding gradients is batch

normalisation [36]. The regularisation is done by zero centering and normalising and
then scaling and shifting each input before or after the activation function is applied.
To perform the zero centering and the normalisation the mean value and its standard
deviation are calculated. To obtain the rescaled and normalised input vector, the mean
is subtracted and the difference is divided by the standard deviation. Afterwards the
input vector is scaled by an output scale parameter vector and shifted by the output shift
parameter vector which contains the offset of every input of the layer. The scale and shift
parameters are additional training parameters and therefore increase the complexity of
the network which results in longer training times per epoch.
A schematic overview of an example structure of a DNN is given in Figure 3.3. The used

framework for the architecture of the DNN is Tensorflow [37]. The optimiser used to
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update the connection weights is the Nadam optimiser [38] which is the Adam optimiser
[39] but with incorporated Nesterov momentum [40] using the principle of stochastic
gradient decent (SGD).

To get an unbiased sample of training instances, the instances are weighted in a way
that every class is represented equally. To achieve this, the weight factor wij of instance i
of class j is modified as

wij −→
wij∑Nj

i wij
(3.6)

with the total number of events Nj in class j. This way it can be avoided that the DNN
prefers one class due to the larger number of training instances and tends to classify new
instances as this preferred class. The input variables xi are scaled to a value between 0
and 1 like

xi −→
xi −min (x)

max (x)−min (x) . (3.7)

To validate the DNN, k-fold cross validation is used. This means that all events are split
into k statistically independent subsets (folds) of equal size. Afterwards, k − 1 folds are
used for the training. The remaining one is used as a testing fold. From these k − 1
folds, 20% of the events are set aside. They are only used as a validation subset. Both,
the validation subset and the testing fold, are not used for the training of the DNN.
The validation subset is used for an unbiased validation while the model is still in the
process of training. The testing fold is used for the evaluation of the DNN after the
training is finished. In total this means that the training is performed on a fraction of
(k−1)/k(100%−20%) of the total number of samples. Every fold is once used as a testing
fold such that the training procedure is repeated k times. This way k separate DNNs are
trained. For the evaluation of the DNNs the events from each fold are classified by the
DNN where the corresponding fold was the testing fold and therefore not used for the
training. This way the evaluation is always performed on events the DNNs have not yet
seen. For the actual application the classification is done by taking all DNNs into account
and providing one complete prediction.

To construct a DNN that makes reliable predictions for different sets of training in-
stances, overtraining should be avoided. Overtraining means that the DNN is trained
in a way, that it provides precise predictions for the training instances, but is not able
to generalise well so that the predictions for unseen data are significantly worse. There
are different mechanisms to prevent overtraining. The general principle known as “early
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stopping” is to stop the training before the DNN becomes sensitive to statistical fluctua-
tions in the training set. In this case, the training stops if the improvement is less than a
threshold ∆min regarding the loss function evaluated for the validation subset for nearlyst.epochs

epochs. If this condition is not fulfilled after the maximal number of epochs nmax
epochs, the

training stops, too.

3.2. Event Selection

The selected events for this analysis have to pass the following criteria. All events need
to have a primary vertex and be part of the good run list which, for example, ensures
that all detector parts were fully operational when the event was recorded. Exactly 4
electrically charged leptons are required, one or two of which must be matched with the
single lepton or dilepton trigger, respectively. At least one opposite sign same flavour
(OSSF) lepton pair needs to be part of the event. The leading and sub-leading leptons,
i.e., the two leptons with the two highest transverse momenta, need to have pT values of
at least 17GeV and 10GeV, respectively. The remaining two leptons automatically have
pT values of at least 7GeV since this is the minimal pT required in the object definition
of electrons and muons.
The number of jets is restricted to be between 2 and 4. More jets only occur with a

small rate in tt̄Z final states. The upper bound is also motivated by the potentially worse
modelling in regions with higher jet multiplicities. At least one b-jet passing the 85%
WP of the DL1r high-level tagger is required. Also, the leptons assigned to the Z boson
need to have an invariant mass mZ

`,` in a window around the Z mass of mZ ± 20GeV with
mZ = (91.1876 ± 0.0021)GeV [41]. mZ

`,` is defined as the invariant mass of two leptons
closest to the Z boson mass in the event. In addition the corresponding leptons need to
have an opposite electric charge and the same flavour.
The event selection is chosen to be looser than the selection in the latest analysis

performed by Atlas [42], because the classification of events into signal and background
events is performed by the classification DNN. The main differences are the wider window
of ±20GeV instead of ±10GeV around mZ in which the invariant mass mZ

`,` has to be,
the looser lepton pT cuts and the dropped Emiss

T cuts, which were used to suppress the ZZ
background introduced in the next section. Another difference is the cut on the number
of jets. At least two jets were required but no upper restriction was used. Therefore this
cut is looser than in the presented selection used for the classification DNN.
For the DNN the number of unweighted Monte-Carlo (MC) events is important, because

this determines the size of the training set. In Table 3.1 the signal and background
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Table 3.1.: Number of unweighted MC events for the tt̄Z and background samples for
the classification DNN and the tt̄Z samples for the Z boson reconstruction
DNN.

Sample Number of unweighted
MC events

tt̄Z (class. DNN) 63569
background (class. DNN) 197023

tt̄Z (reco. DNN) 64195

events with the presented selection applied are listed. These are the training samples for
the classification DNN. The tt̄Z events with the selection used in the previous Atlas
analysis applied are shown, too, because these are the training events for the Z boson
reconstruction DNN. The shown numbers include all events, i.e., also those events which
are used as a validation subset or as the testing fold. The number of events used for the
actual training procedure is therefore (k − 1)/k(100% − 80%) of the numbers given in
Table 3.1 with the number of folds k as described in detail in the previous section.
Table 3.1 shows, that the number of unweighted tt̄Z events is smaller for the presented

selection than for the tight selection used in the latest Atlas analysis. This is caused by
the tighter cut on the number of jets. Nevertheless, Figure 3.8 shows that the weighted
number of events is still increased by applying the presented selection. Since this selection
is used to open up the acceptance for the weighted events, it is still referred to as “loose
selection” even if the acceptance is not increased for the unweighted MC events.

3.3. The Tetralepton Channel

In the tetralepton channel, both W bosons from the top quarks decay into electrically
charged leptons and the corresponding neutrinos. The Z boson decays into an electrically
charged lepton pair of the same flavour with opposite electric charge. If the Z boson decays
into τ leptons, only the final state electrons and muons will be reconstructed. Then the
leptons originating from the τ lepton decays do not need to have the same flavour. If the
τ lepton decays into hadrons, the event is not part of the tetralepton channel, because
only final state leptons are taken into account. Since the fraction of events where the Z
boson decays into two τ leptons passing the preselection is of the order of magnitude of
a few per mille, these events are not treated differently in both DNNs.
The main background processes are the production of a top quark and a W boson

in association with a Z boson (tWZ) and diboson production with two Z bosons (ZZ)
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Figure 3.4.: The main background processes to tt̄Z. On the left the production of a
top quark and a W boson in association with a Z boson (tWZ) and on the
right diboson production with two Z bosons (ZZ) and additional jets.

including additional jets. Here, one distinguishes light jets, c-jets and b-jets. While c-jets
originate from c quarks, light jets originate from any quark besides c and b quarks or
gluons. In this analysis especially b-jets are needed so that ZZ and tt̄Z have similar
final states. Both background processes are shown in Figure 3.4. Besides ZZ and tWZ,
top-quark pairs in association with a Higgs boson (tt̄H) and events with fake leptons are
part of the background. Fake electrons are, for example, additional photon emissions that
shower in the electromagnetic calorimeter and are mistaken for electrons. Muons can be
faked by charged hadrons whose lifetime is long enough to reach the muon spectrometer.
Fake events are, for example, tt̄Z events of the trilepton channel with an additional
fake lepton, so that these events pass the selection of the tetralepton channel. Other
background processes with lower impact like diboson production with two W bosons in
association with a Z boson are grouped together as “Others”.
In the tetralepton channel different regions are distinguished. The differentiation is

made based on the flavour of the leptons of the W bosons. If both leptons have the same
flavour, the region is called the same flavour (SF) region. If they have a different flavour,
the event is part of the different flavour (DF) region. This differentiation is made due
to the different background compositions: ZZ is the main background in the SF region
while it is negligible in the DF region, because in most cases ZZ decays into two OSSF
lepton pairs. The only cases where the ZZ final state has exactly one OSSF lepton pair
is where one Z boson decays into two τ leptons which decay into different flavour leptons
or where one lepton flavour is incorrectly reconstructed.
Within the SF and DF regions, events can be discriminated further based on the electron

and muon multiplicities. In the SF region, events with 4 electrons (eeee), 4 muons (µµµµ)
or two of each flavour (eeµµ) can be distinguished. In the DF region, three electrons and
one muon (eeeµ) or one electron and three muons (eµµµ) are possible. A motivation
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to subdivide into these regions is that electrons and muons have different resolutions
regarding the reconstruction of their kinematic properties. For example the pT of a muon
in the high pT range can be measured more precisely than for electrons [28, 43].

3.4. Classification of Signal and Background Events

The aim of the first part of this analysis is the classification of events into signal and
background events. To do so, a DNN is defined and input observables are determined.
Afterwards the network is trained and its performance evaluated. For the evaluation
different performance metrics are used.

3.4.1. Classifier Architecture

Before the training the DNN architecture has to be defined. The network is chosen to
have 4 hidden layers with 50 nodes per layer and a 4-fold cross validation is performed.
This compact DNN structure was chosen to avoid overtraining from the beginning. Such
a DNN has a stable performance which means that it provides reliable predictions for
different sets of data samples. A hyperparameter optimisation to find the best DNN
structure was not performed, since this is beyond the scope of this thesis. To regularise
the network, dropout layers after the first and third hidden layer are used during the
training process.
The second part of the DNN architecture is the choice of input observables. Based on

these observables, the network should become sensitive to the differences between signal
and background events.
To be able to reconstruct the kinematics of the event, multiple kinematic observables

are used as input like the transverse momenta of the jets and leptons and the ∆R between
the leptons and the b-jets.
Some observables used already require the reconstruction of the Z boson. At this point

the two parts of the analysis overlap. During the development of the classification DNN,
the leptons with an opposite electric charge, the same flavour and an invariant mass
closest to the Z mass mZ are assigned to the Z boson and are called “Z leptons” in the
following. The remaining leptons are referred to as “non-Z leptons”.
The observables used in the network using this Z boson reconstruction are the ∆φ be-

tween the two Z leptons, the ∆φ between the two non-Z leptons, the transverse momen-
tum of the reconstructed Z boson as well as the transverse momentum and the invariant
mass of the system of the two non-Z leptons.
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Figure 3.5.: The distributions of the number of events as a function of ∆φ and pT of
the Z leptons in the upper plots and the non-Z leptons in the lower plots
for ZZ and tt̄Z. For ZZ the distributions look similar, because the leptons
labelled as “non-Z leptons” actually originate from a Z boson, too. This
way these observables can help to distinguish ZZ from the signal tt̄Z.

These observables help to distinguish ZZ events from other events, because the major
difference between ZZ and the other two main contributions, tWZ and the signal tt̄Z,
is that for ZZ the two leptons labelled as “non-Z leptons” originate from a Z boson,
too. For tWZ they originate from the W boson decay and the top-quark decay, and
for tt̄Z from the two top-quark decays. Thus, leptons from the ZZ decay labelled as
Z leptons should have similar distributions of kinematic observables as those labelled as
non-Z leptons. For tWZ and tt̄Z these distributions can look different. This is especially
important for the SF region where ZZ is the dominant background.

To demonstrate the differences, the distributions of the number of events as a function
of ∆φ and the transverse momenta of the systems of the (non-)Z leptons are shown in
Figure 3.5 for ZZ and tt̄Z events in the SF region. While the distributions of the Z and
non-Z observables have a similar shape for ZZ, they differ from each other for tt̄Z. This
way the ∆φ observables in combination with the transverse momenta help to distinguish
ZZ from tt̄Z.

Another difference between all three main processes is the number of b-jets. In tt̄Z two
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3. Classification and Reconstruction of tt̄Z Events Using Deep Learning

b-jets are expected, one in tWZ and none in ZZ. In ZZ events at least one jet being
mistagged as a b-jet or additional gluon emissions producing b-jets is necessary, since one
b-jet passing the 85% WP is already required in the preselection of events. Hence, the
pseudo-continuous b-tagging WP variable for the second jet is used as well. The ordering
of the jets is done by the WP they pass, so that the pseudo-continuous b-tagging WP
variable for the second jet returns the WP of the jet passing the second highest WP
within this event. Since tt̄Z always includes two b-jets, it is expected that the second jet
passes on average a higher working point than those of the background events, which do
not necessarily include two b-jets.
Due to the W boson decays in tt̄Z and tWZ events, larger Emiss

T is expected for in the
final states of both processes compared to ZZ final states which motivates Emiss

T as an
additional input variable.
The last observable used is the jet multiplicity. Since different numbers of b-jets are

expected for each process, also the number of jets in general are different. In combination
with the assumption that in ZZ events jets are partly mistagged as b-jets, so that there is
actually an additional jet from a gluon emission, this observable helps to separate signal
and background events, too.
Different approaches are tested. They are based on the differences in SF regions and

DF regions and the differences between the lepton flavour configurations. Depending on
the exact region definitions, lepton flavour information is an additional input observable.
In total three approaches are used to perform the classification.

• Training of one DNN including all events, no splitting into regions defined by the
lepton flavour but using lepton flavour information as input observables,

• Training of two DNNs, one for the SF region and one for the DF region to take
different background compositions into account and using lepton flavour information
as input observables,

• Training of five DNNs, one for each lepton flavour composition to take differences in
the reconstruction of the leptons into account, lepton flavour information not used
as input observables.

The results are discussed in the following section.

3.4.2. Classifier Performance

The training of all DNNs for all approaches presented in the previous section was per-
formed. The results of the evaluation of the DNNs for the SF region, the DF region and
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Figure 3.6.: The classifier outputs of the DNNs for the SF and DF regions and the DNN
trained on the combination of both regions.

the combination of both, referred to as “combined region”, are shown in Figure 3.6. These
plots provide evidence that the ZZ contribution can be separated from the signal in the
SF and combined region. In both regions, the signal tt̄Z peaks at a DNN output near 1
and decreases with decreasing DNN output. For the ZZ contribution the opposite is true.
It peaks near 0 and decreases with increasing DNN output. For the DF region, the signal
peak is at a DNN output around 0.7. The separation of signal and background events
is not as clearly visible as for the other regions, but the DF region also has a smaller
background contamination.
The distributions of the remaining DNNs for the regions defined via their electron and

muon multiplicities can be found in Figure A.1. In general the distributions of the regions
that are part of the SF and DF regions follow the shape of the distributions of the SF
and DF regions, respectively.
To make a quantitative comparison of the performance of the DNNs, quantities that

evaluate the DNN’s performance are needed. One of those is the ratio of the total number
of signal events and (the square root of) the total number of background events S/B (S/√B).
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Figure 3.7.: The S/B and S/
√
B ratios depending on the cut applied on the classifier

output. All events that would pass the selection if a cut on the given
classifier output was applied are used for the calculation of the ratios.

Figure 3.7 shows the ratios depending on a possible cut on the DNN output at a certain
threshold DOcut. That is, all events that have a higher DNN output than DOcut are taken
into account, and afterwards the ratios are calculated. Both metrics describing the same
region need to be taken into account simultaneously. While S/B provides the degree of
purity, S/√B is an indication for the statistical significance in this region. When choosing
a threshold for the region definition, the best compromise between both ratios must be
found.
All S/B distributions increase with increasing DNN output while the S/

√
B distributions

first increase and, at a certain point, decrease again. This is expected, because signal
events have on average a higher DNN output so that the purity increases with increasing
DNN output. At some point the number of signal events is reduced by applying a cut on
the DNN output while only few additional backgrounds events are cut away. This means
the statistical significance is decreased which leads to a decreased S/

√
B.

The distributions for the regions defined via their electron and muon multiplicity can
be found in Figure A.2. Their shapes are again similar when comparing them to the
distribution of the SF and DF regions, but their performance is in general worse. For this
reason the focus will lie on the approaches using one DNN for all events or two DNNs,
one for the SF and one for the DF region.
To determine a first useful cut parameter DOcut for the final region definition, the best

compromise of both quantities can be chosen by eye. Limited by the binning, only a range
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3.4. Classification of Signal and Background Events

Table 3.2.: Comparison of the S/B and S/
√
B ratios of the approaches using a DNN and

using orthogonal cuts on relevant observables, referred to as “cut and count”
approach.

Region
S/B S/B (DNN) S/

√
B S/

√
B (DNN)

(cut and count) (+ improvement) (cut and count) (+ improvement)
SF and DF 3.04 5.28 (+ 95%) 14.7 16.5 (+13%)combined

SF 2.77 5.70 (+106%) 9.7 9.9 (+ 3%)
DF 3.34 6.68 (+100%) 11.1 11.4 (+ 2%)

of the size of one bin can be chosen as a possible cut threshold.
For the combined region, the best compromise between both quantities is given by a

cut between 0.8 and 0.9. For the SF region a cut between 0.9 and 1 and for the DF region
between 0.6 and 0.7 is applied.
To evaluate the performance improvement in comparison to the “cut and count” ap-

proach used in the previous Atlas analysis of the tetralepton channel, Table 3.2 compares
the S/B and S/

√
B of the different approaches. The same cuts as given in Ref. [42] were ap-

plied and the ratios calculated. Table 3.2 shows that the selected cut values DOcut define
regions with improved S/B for all DNNs in comparison to a “cut and count” approach.
The same holds for S/

√
B, but compared to the combined region with an improvement of

13%, the improvement in the SF region and DF region is much smaller with 3% and 2%,
respectively. In general, Figure 3.7 shows that independent of the applied cut the S/

√
B

of the SF and DF region is never significantly better than the “cut and count” approach.
These results depend on the chosen binning for the S/B and S/

√
B distributions. Therefore

they can only give a general overview of the networks performance, the concrete values
differ for different binning configurations.
For the DF region this result can be partly explained by the small fraction of signal

events which is gained when applying the looser selection. Figure 3.8 shows the increase
in signal and background events for both regions.
In the DF region the number of signal events is only increased by 0.8% when using

the presented selection in comparison to the tighter selection for the “cut and count”
approach. Hence, almost any cut on the DNN output of the DF region DNN results in a
region with fewer signal events than the region resulting from a “cut and count” approach.
In addition, the background contribution in the DF region does not accumulate in the
lower DNN output region but is a flat distribution. Hence, the statistical significance
cannot be improved by reducing the background contribution significantly either.
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Figure 3.8.: Number and percentages of gained signal and background events when ap-
plying a looser selection in comparison to the previously performed analysis
in the tetralepton channel of tt̄Z [42].

For the SF region the low increase can be explained by the larger number of background
events. In the DF region the number of background events is only increased by 24.3%. In
the SF region an increase of background events of 510.7% in comparison to an increase of
signal events of 15.1% is observed. Therefore, many more background events have to be
separated from the signal events to increase the statistical significance.
To evaluate the general performance of the DNN without choosing a specific cut pa-

rameter, the separation power S defined as

S = 1
2

N∑
i

(si − bi)2

si + bi
(3.8)

with the total number of bins N , the background contribution bi and the signal contribu-
tion si in bin i is used. The prefactor 1/2 makes sure that, if all signal events lie completely
in one bin and all background events lie completely in another one, the separation equals
1, or 100%.
Besides their performance in terms of the separation, it is also important that the DNNs

are able to generalise. A suitable parameter to evaluate this is the “area under curve”
(AUC) for the training and testing folds. This is the integral of the ROC curves which are
defined as the true positive rate against the false positive rate. If the AUCs of the training
samples and the testing samples are similar, the DNN does not overtrain. Fluctuations
of the AUC indicate instability of the training and are therefore a hint for undertraining.
Undertraining can occur due to a lack of training instances, if the training is stopped
too early or when the model is too complex. The fluctuation is given by the standard
deviation σ of the four folds.
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Table 3.3.: Evaluation of the performance of the DNNs im terms of their separation
power S and the AUC of the testing and training folds.

Region separation power S AUC (training) AUC (testing)
SF and DF
combined 38.4% 0.760± 0.007 0.754± 0.022

SF 36.9% 0.820± 0.009 0.811± 0.018
DF 8.3% 0.544± 0.011 0.537± 0.009

The separation powers and means of the AUCs are summarised in Table 3.3. The same
is done in Table A.1 for the remaining regions.

Both metrics lead to the same conclusion: the DNN for the DF region has the weakest
performance of all networks. Nevertheless, Table 3.3 shows that the network generalises
well. Both AUC values are close to each other and also the standard deviations are small.

In total the evaluation shows that the DNN approach is useful to increase the purity
and the statistical significance in the combined region. The definition of a SF region and
a DF region is useful, too, because regarding the S/B ratio the improvement is in the same
magnitude for all regions with around 100% improvement. There, the SF region shows
most improvement. Also from a machine learning perspective the DNN for the SF region
performs best in terms of the AUC and similar to the DNN for the combined region in
terms of the separation power. The DNN for the DF region performs significantly worse.

The SF and DF regions suffer from a lower number of training events and a different
signal and background composition compared to the combined region. While the DF
region still maintains partly its degree of purity, it still cannot increase the number of
signal events which leads to difficulties decreasing the statistical uncertainty. The SF
region gains more signal events but also a large fraction of background events that needs
to be separated to decrease the statistical uncertainty. The combined region benefits from
the advantages of both regions: the number of signal events can be increased due to the
SF region while the increased background contribution has a smaller impact due to the
additional signal events from the DF region.

For the DNNs of the regions defined by the lepton multiplicities no further improvement
is observed.
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3.5. Z Boson Reconstruction

The second part of the analysis is the reconstruction of the Z boson. The classical ap-
proach determines the Z leptons by assigning the two leptons with identical lepton flavour
and an opposite electric charge whose invariant mass is closest to the Z boson mass mZ

to the Z boson. This approach was used in the previous Atlas analysis [42].
The advantage of using a DNN instead of the simple approach above is that a DNN can

take more kinematic features and correlations between them into account. In addition, it
may be useful to distinguish between the different lepton flavour configurations introduced
in Section 3.4 for the following reason: the leptons originating from the Z boson need to
have the same flavour. For the eeµµ region this means that there are only 2 possibilities
to assign the leptons to the Z boson while there are 6 possibilities to choose from for
the regions with 4 same-flavour leptons. This makes the reconstruction more challenging.
Due to the different efficiencies in the lepton reconstruction for electrons and muons, see
Ref. [28, 29], the electron’s electric charge is more often misreconstructed in the high pT
range. This can decrease the efficiency of the assignment since the electric charge is used
for the Z boson reconstruction. This has not been taken into account so far. By providing
the lepton flavour information and electric charge as input observables the DNN may be
able to learn these differences.
Before starting the training of a Z boson reconstruction DNN, the previously used

approach was studied and evaluated to be able to compare both approaches. Since this
approach predominantly focusses on the invariant masses of the leptons, it will be referred
to as “invariant-mass approach”.
The evaluation of the reconstruction performance is based on the knowledge of the true

Z leptons. These leptons are determined by matching the reconstructed leptons with the
leptons using truth information.

3.5.1. Matching of Reconstructed and Truth Leptons

For each signal event the information of the reconstructed kinematics and the truth in-
formation are available. This means for every true Z lepton, observables like the electric
charge, the lepton flavour and its four-momentum are known. Only events where two
leptons are labelled as true Z leptons are part of the dataset. Therefore, processes like
the Drell-Yan process where a photon instead of a Z boson is radiated are not included.
With the help of a matching algorithm the reconstructed leptons which describe the

two true Z leptons can be found. The matching is done by evaluating the geometrical
distance between the truth leptons and the reconstructed leptons. To be matched a ∆R
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Figure 3.9.: The distributions of the number of events as a function of ∆R and ∆p
or ∆φ between the matched leptons. On the left the distributions for all
electrons in all events is shown and on the right the same for all muons.

smaller than 0.1 between two candidates is required. In addition, the candidates need to
have the same electric charge and lepton flavour.
In the first step, all possible combinations fulfilling these criteria are determined. If

a reconstructed or truth lepton is matched with more than one truth or reconstructed
lepton, respectively, the combination with the smallest ∆R is chosen.
To evaluate this approach, distributions of other observables describing the lepton kine-

matics are useful to verify if the leptons not only match in ∆R, but also in, for example,
the momenta p and the azimuthal angles φ. The number of events as a function of the
differences in these observables and the ∆R between the reconstructed lepton and the
truth lepton it was matched with are shown in Figure 3.9.
The distributions show that the momenta p and the azimuthal angle φ of the matched

leptons differ by at most 7GeV and 0.5 × 10−3 rad, respectively. Therefore, it can be
assumed that the matching algorithm is reliable. This was also checked for the pseudo-
rapidity η leading to the same conclusion. The corresponding distribution is shown in
Figure A.3
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3. Classification and Reconstruction of tt̄Z Events Using Deep Learning

Table 3.4.: Efficiencies of the Z boson reconstruction when using the invariant-mass
approach.

eeee eeeµ eeµµ eµµµ µµµµ

Z boson correctly 86.5% 93.8% 92.8% 93.8% 83.3%reconstructed
Z boson incorrectly 13.5% 6.2% 7.2% 6.2% 16.7%reconstructed

3.5.2. Evaluation of the Invariant-Mass Approach

To evaluate the invariant-mass approach, the same selection as in Ref. [42] is applied and
the matching of reconstructed and truth leptons is performed. Afterwards the invariant-
mass approach is used to determine the reconstructed Z leptons. If this approach identifies
those reconstructed leptons as Z leptons which were matched with the true Z boson
leptons, the event is labelled as correctly reconstructed. If one or both leptons are not
correctly identified, it is labelled as incorrectly reconstructed. Cases where one or both
of the truth leptons originating from the Z boson cannot be matched with reconstructed
leptons are labelled as incorrectly reconstructed, too. In those cases it is generally possible
that the leptons originating from the Z boson were chosen by the invariant-mass approach
but this cannot be verified.
The reason for non-matched leptons can be a photon radiation which changes the mo-

mentum of the reconstructed lepton. The truth information does not include radiations.
Therefore the four-momenta of the leptons differ. Another possibility is that the Z boson
decays into tau leptons. The truth leptons are then labelled as tau leptons while the
reconstructed leptons from the tau decays are labelled as electrons or muons. Due to the
flavour constraint they cannot be matched.
The efficiency is used as an evaluation metric, i.e., the ratio of the number of events

where the Z boson was reconstructed correctly to the total number of events. The evalu-
ation was performed in each region defined by the lepton flavour multiplicity separately.
The results are given in Table 3.4.
The efficiencies show how many additional events can potentially be reconstructed when

using a different approach. Z bosons are mostly misreconstructed in the regions with four
same-flavour leptons. This matches the expectation due to the larger number of possible
combinations. The remaining three regions have comparable efficiencies, even though the
reconstruction efficiency in the eeµµ channel is slightly smaller compared to the eeeµ and
eµµµ channel. The recoverable percentage of events are here in a range between 6.2%
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3.5. Z Boson Reconstruction

Table 3.5.: The fractions of events where the Z boson was misreconstructed when using
the invariant-mass approach split into different categories.

eeee eeeµ eeµµ eµµµ µµµµ

two matches, 6.7% 4.4% − 4.6% 8.6%one incorrect
two matches, 2.6% − 4.6% − 4.4%both incorrect

one match, 0.6% 0.5% 0.3% 0.4% 0.5%correct
one match, 0.4% 0.1% 0.3% 0.1% 0.6%incorrect

no match 3.2% 1.2% 2.0% 1.1% 2.8%

and 8.2%.
The different reasons for choosing the wrong leptons for the reconstruction are shown

in Table 3.5. Here, different cases were distinguished: the first case is that the two truth
leptons originating from the Z boson were matched with two reconstructed leptons but
one or both of them are not the ones chosen by the invariant-mass approach. The second
one is that only one true Z lepton could be matched. In this case one distinguishes the
matched reconstructed leptons, which are identical with one of the leptons chosen by the
invariant-mass approach, and those which are not. The last case is that no match at all
could be found.
Table 3.5 shows that in most cases the reason for an incorrectly reconstructed Z boson

is that both true Z leptons were matched, but the wrong leptons were chosen by the
invariant-mass approach. These events can be recovered when using a DNN for the
reconstruction. In a significant fraction of events no match at all was found. These events
should be excluded from consideration because it cannot be determined if the Z boson
reconstruction was successful or not.

3.5.3. Z Boson Reconstruction DNN Architecture

While the classes for the classification are defined by the underlying event topology, there
are different possibilities for the Z boson reconstruction. Two ways of defining the classes
are presented.
One option is to use every combination of lepton pairs as classes. The leptons are
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labelled via their transverse momenta pT, with lepton 1 having the largest and lepton 4
the smallest transverse momentum. The classes can be defined by the lepton combination
based on this labelling. This leads to 6 classes, namely lepton 1 and lepton 2 originate
from Z boson, lepton 1 and lepton 3 originate from Z boson and so on.
The disadvantage of this approach is that it does not come with a physical motivation.

The events of one class do not necessarily have more in common with events of their own
class than with events from another class. Also, a completely different labelling of events
can occur when using another observable than the transverse momentum pT to define the
lepton labels.
For this reason a second, physics motivated approach is tested. It is based on the

invariant-mass approach. The first class is both correct with events where the invariant-
mass approach chooses the correct leptons as Z leptons. The second class is one correct
where only one of the leptons is correctly chosen and the third that no lepton is correct,
referred to as both incorrect.
For both approaches, only events where both true Z boson leptons are matched can be

assigned to a class, because otherwise the correct class cannot be determined. The events
where an assignment is not possible are labelled as no class.
The approach using labels defined via the lepton numbering based on their transverse

momenta is referred to as “lepton-numbering approach” or “lepton-numbering labels”. The
second approach making use of the invariant-mass approach is referred to as “approach
using invariant-mass labels”.
After the definition of labels the DNN itself and its input observables have to be de-

fined. The Z boson reconstruction is only done for tt̄Z events making the available size
of training samples four times smaller than for the classification. The exact numbers are
given in Table 3.1. Hence, the reconstruction DNN is chosen to have only 3 layers with
30 nodes each. Two folds are used for the k-fold cross validation. Similarly to the classifi-
cation DNN, dropout layers with an 0.3 dropout probability are used. A hyperparameter
optimisation was not performed. The output layers have 3 or 6 nodes depending on the
number of classes.
Each output node can be seen as a binary classifier determining whether the presented

event is part of the class or not. This means for every class i exists a classifier i that
ideally outputs 1 if the event is part of the class i and 0 if it is not.
The input observables differ depending on the used labels. For the lepton-numbering

approach the invariant masses of lepton pairs, the electric charges and lepton flavour
information are used as input observables. The invariant masses are calculated for leptons
of the same lepton flavour and an opposite electric charge. If these criteria are not fulfilled,
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it is set to zero. These observables are suitable inputs because the invariant masses of the
leptons originating from the Z boson are expected to be close to the Z boson mass mZ .
Lepton flavour information and electric charges of the leptons are important because

based on these certain combinations can be excluded with high certainty since Z bosons
decay into lepton pairs with same flavour and opposite charge. But as discussed previously,
the electric charges, especially from electrons, and the lepton flavours can be misrecon-
structed. While the invariant-mass approach automatically excludes these events, the
DNN is not forced to choose a combination where the electric charge and lepton flavour
requirements are fulfilled. In addition to misreconstructed lepton flavours, events where
the Z boson decays into two tau leptons can cause final states with Z leptons with a dif-
ferent lepton flavour. In these cases the tau leptons decay into a neutrino and a W boson
with theW boson decaying further into an electron or muon and a neutrino. Nevertheless,
the fraction of these events is in the order of a magnitude of per mille and therefore not
treated separately.
For the approach using invariant-mass labels the transverse momenta pT, the lepton

flavour information, the electric charges, the pseudorapidity η and the azimuthal angles
φ of all leptons are used as inputs. The invariant masses of the Z leptons and the non-Z
leptons are used as well. These variables are defined by the invariant-mass approach.
The motivation behind a DNN using these labels is to determine if events of the classes

one correct or both incorrect have kinematics that differ from those events where both
leptons are correctly identified. To reconstruct the direction of the particles the pseudo-
rapidity η and the azimuthal angles φ are used. In addition the invariant masses of the
Z and non-Z leptons help to understand if the prediction of the invariant-mass approach
fails because these masses are for example both close to each other or both far away from
the Z boson pole mass mZ . The electric charges and lepton flavour information are used
for the same reason as for the previously presented DNN.
This means the main goal is to determine what the events look like where the invariant-

mass approach fails, compared to those where it succeeds, and use these differences to
correct the reconstruction algorithm. For events of the class both incorrect the two re-
maining leptons are chosen as Z leptons.
For events of the class one correct, an ambiguity remains for regions with four leptons

with the same lepton flavour. Then, two lepton pairs fulfil the requirement of an opposite
electric charge. In these cases, the lepton pair with an invariant mass closest to the Z
boson pole mass mZ can be chosen.
For three leptons with the same lepton flavour the correct lepton pair is well-defined

because of the charge constraint. For two leptons of each flavour no one correct cases are
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Figure 3.10.: Distributions of events for each classifier with lepton-numbering labels.
Every node from the output layer belongs to one class and outputs the
probability that the presented input belongs to the corresponding class.

possible due to the lepton flavour constraint.

3.5.4. Z Boson Reconstruction DNN Performance

For the Z boson reconstruction DNN, only events passing the selection used in the latest
Atlas analysis given in Ref. [42] are used as training samples. This way it is possible to
make a direct comparison between both approaches. Before comparing with the invariant-
mass approach it has to be determined which labelling is more useful.
First, the distributions of the output of each output node from both DNNs are eval-

uated. Figure 3.10 shows the distribution of events for each classifier of the DNN using
lepton-numbering labels. The labels based on the invariant-mass approach lead to three
output nodes which results in the three distributions given in Figure 3.11.
The comparison between all distributions indicates that the lepton-numbering approach

leads to a better separation. Figure 3.10 shows that the events of the class i accumulate
near 1 for the classifier i and only a small tail towards lower classifier outputs is visible.
All other events are mostly close to 0. For the second set of classifiers in Figure 3.11 this
trend is not observed. When comparing all three distributions only for the both correct
classifier a trend towards higher output values for this class is observed. For the remaining
classifiers a distinct separation is not visible and only few events reach a classifier output
higher than 0.6.
To confirm the statement that the lepton-numbering approach performs better, the
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Figure 3.11.: Distributions of events for each classifier with labels defined by the
invariant-mass approach. Every node from the output layer belongs to
one class and outputs the probability that the presented input belongs to
the corresponding class.

Table 3.6.: Efficiencies of all approaches calculated by excluding those events which are
not part of any class.

eeee eeeµ eeµµ eµµµ µµµµ

DNN (lepton- 84.9% 92.4% 95.0% 92.0% 84.0%numbering labels)
DNN (invariant-mass 56.6% 71.2% 74.0% 59.6% 37.5%approach labels)

Invariant-mass 90.3% 95.5% 95.3% 95.3% 86.6%approach

efficiencies of both networks are calculated. They are given in Table 3.6. In addition, the
efficiencies of the invariant-mass approach are shown. They are calculated excluding the
no class events. For these events, the true class is not known and therefore a prediction
encoded as correct is not possible which means an efficiency of 100% could not be reached.
For this reason the efficiencies of the invariant-mass approach differ from those given in
Table 3.4, because there the no class events were taken into account to study the fraction
of events where the matching fails.
The DNN with the approach using non-physics motivated labels reaches higher efficien-

cies than the labels with a physical motivation which matches the first impression based
on Figures 3.10 and 3.11.
A reason for this may be the uneven distribution of events. Even though in both

approaches the events are not distributed equally over all classes this effect has a higher
impact for the DNN using invariant-mass labels. The distribution of events over the
classes is shown in Figure 3.12.
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Figure 3.12.: Yields for each class of the DNN using lepton-numbering labels on the
left and for the DNN using invariant-mass labels on the right.

To get an unbiased training set, the events are reweighted as given in Equation (3.6)
but a significantly smaller number of training events still leads to less sensitivity on events
of the corresponding class since the network gets trained on fewer training samples. The
least populated class for the lepton-numbering approach is the class where lepton 3 and
lepton 4 are the two Z boson leptons with a fraction of 6.9%. For the approach using
labels based on the invariant-mass approach the class both incorrect only contributes
2.0% of events and the class one class only 4.4%. This means the least populated class of
the lepton-numbering approach constributes more events than the two lowest populated
classes of the approach using only three classes in total. Therefore, the DNN may not get
enough training samples to become sensitive to the differences between the classes for the
approach using invariant-mass labels.
To study whether the DNNs are able to generalise the AUC values are listed in Table 3.7.

The upper block shows the performance of the DNN using lepton-numbering labels. The
AUCs of the approach using invariant-mass labels are given in the part underneath. The
AUC values for the approach using invariant-mass labels are significantly smaller than
those from the lepton-numbering approach. This is in agreement with the observation of
a weaker performance based on the efficiencies. In addition the uncertainties are larger
and especially for the class both incorrect the AUC values for the training and testing
dataset have a large discrepancy. This leads to the assumption that the DNN is not able
to generalise and make a prediction as reliable for unseen events.
At the same time Table 3.7, shows that the AUCs of the training and testing samples

for the approach using lepton-numbering labels are close to each other with differences
between 0 and 0.004. All AUC values are maximally 1.3% away from 100% and therefore
nearly reach the highest value possible. Also the uncertainties are much smaller compared
to the first approach. This suggests a stable performance and that the classifiers are able
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Table 3.7.: AUC values for the training and testing folds for all classifiers of both DNN
approaches.

Class lep1-lep2 lep1-lep3 lep2-lep3
AUC (Train) 0.992± 0.001 0.991± 0.002 0.992± 0.000
AUC (Test) 0.991± 0.002 0.990± 0.003 0.991± 0.002

Class lep1-lep4 lep2-lep4 lep3-lep4
AUC (Train) 0.988± 0.003 0.991± 0.001 0.987± 0.001
AUC (Test) 0.988± 0.005 0.989± 0.001 0.983± 0.005

Class both correct one correct both incorrect
AUC (Train) 0.760± 0.017 0.749± 0.014 0.853± 0.060
AUC (Test) 0.739± 0.015 0.705± 0.022 0.778± 0.060

to generalise. Due to the lower efficiencies and the less stable performance the approach
using invariant-mass labels is discarded.
After choosing the approach for the DNN, its performance is compared to the invariant-

mass approach which is not based on machine learning. The efficiencies of both approaches
are compared.
Table 3.6 shows that the DNN is not able to outperform the invariant-mass approach.

The largest discrepancy is seen in the eeee region with a difference of 5.4%. In the eeµµ
region the discrepancy is only 0.3% but the DNN does not reach a larger efficiency than
the invariant-mass approach in any region.
The reasons for the weaker performance are studied. The confusion matrix helps to

understand in which cases the DNN in comparison to the invariant-mass approach fails
to make the correct prediction. The matrix shows what fraction of events with a certain
label is classified as what class. This means a perfect DNN would yield an identity matrix.
The matrices for both approaches are shown in Figure 3.13.
For the invariant-mass approach the efficiency decreases only slightly when going from

the lower left to the upper right corner. The DNN starts with a larger efficiency in
the lower left corner, but the decrease is steeper such that the efficiency in the upper
right corner is around 12.7% smaller than for the invariant-mass approach. The labels
are ordered in a way that when going to the right and upwards the labels include more
leptons with lower transverse momentum. This means that most confusion occurs when
leptons with a low transverse momentum compared to the remaining leptons in the event
originate from the Z boson. If those leptons with the largest transverse momentum of the
event, i.e., lepton 1 and lepton 2, originate from the Z boson the prediction of the DNN
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Figure 3.13.: The confusion matrices for the DNN approach on the left and the
invariant-mass approach on the right.

is reliable and even better than the prediction of the invariant-mass approach.
To understand these events more precisely, it is useful to see in what pT range the

events are more likely misclassified. The events, where both approaches provide the same
and correct prediction and those in which the invariant-mass approach is correct while
the DNN is not, are most interesting. Since the DNN bases the prediction on the same
information as the invariant-mass approach, it seems unintuitive that the DNN fails in
those cases where the invariant-mass approach succeeds. The distributions of the leading
lepton and the sub-leading lepton are shown in Figure 3.14. The distributions of the
remaining leptons are shown in Figure A.4. The distribution of the pT of lepton i only
shows events where lepton i is one of the true Z leptons, e.g., the distribution of the
transverse momentum of lepton 1 only includes events of the classes lep1-lep2, lep1-lep3
and lep1-lep4. This way it can be seen if the wrong reconstruction occurs at specific Z
boson kinematics.
Figure 3.14 shows that the distribution of events where the DNN struggles compared

to the invariant-mass approach is shifted towards the lower pT region. The distributions
of events where both approaches make the same and correct prediction have a smaller
maximum and, at least for the leading lepton, the maximum is shifted to the right. The
remaining events are further distributed along the tail towards higher transverse momenta.
Therefore, the DNN fails mostly in cases where the leptons carry a low pT.
When the leading or the sub-leading leptons have a low transverse momentum, this also

means, that all other leptons have an even lower pT than these two and thus the leptons
are close to each other in transverse momenta. This is the case for the shifted events in
Figure 3.14 which means that the DNN also struggles with those events.
Another observable that helps to understand for which events the DNN does an incorrect

prediction is the invariant mass of the (non-)Z leptons. The distribution of the invariant
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Figure 3.14.: The distribution of the transverse momenta pT of the leading lepton on
the left and the subleading lepton on the right. The events are split into
those where the Z boson reconstruction DNN and the invariant-mass
approach provide the same and correct prediction and those where only
the invariant-mass approach makes the correct prediction.

mass of the Z leptons mZ
`,` as a function the invariant masses of the non-Z leptons mnon-Z

`,`

are shown in Figure 3.15. Only the distributions where the invariant-mass approach
provides the correct prediction are shown. This makes sure that the leptons used for the
calculation of the invariant masses are the true (non-)Z leptons.
As expected the number of events peaks around the Z boson mass for the invariant

mass of the two Z leptons and decreases towards higher and lower masses steeply. The
main differences between the distributions for the events, where both approaches provide
the correct prediction and those where only the invariant-mass approach is correct, is
along the axis of the invariant mass of the two non-Z leptons. For events, where the DNN
is not able to determine the correct Z leptons, the number of events peaks around the
Z boson mass for the invariant mass of the non-Z leptons. This means that events where
both lepton pairs have an invariant mass close to the Z boson mass mZ are those where
the DNN has difficulties. This also matches the expectation. For the events where both
approaches provide the correct prediction the maximum is below the Z boson mass mZ .
Nevertheless a tail towards higher masses is visible and therefore also events around the
Z boson mass can be categorised correctly by both approaches.
These studies help to understand in which cases the DNN makes an incorrect prediction

but it cannot explain why the prediction fails and therefore does not provide a solution to
improve the network’s performance. A possibility why the DNN has a lower performance
is an insufficient size of the training data set. To check whether the efficiencies can be
increased by using a larger training data set, the training of 10 networks is performed.
The DNNs only differ in the number of training samples, starting with a DNN using 10%
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Figure 3.15.: The distribution of events depending on the invariant mass of the Z lep-
tons and the invariant mass of the non-Z leptons.
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Figure 3.16.: Efficiency depending on the fraction of events used for the training of the
DNNs.

of the available samples and increase this fraction in steps of 10% until 100% is reached.
The resulting efficiencies are shown in Figure 3.16.
The distribution shows that the efficiency first increases but reaches a plateau at 60%.

Therefore the reason for the lower efficiency is not the small training size. This also gets
supported by the AUC values and their uncertainties which implies a stable performance
and therefore no influence due to statistical fluctuations is expected. Other reasons for
the worse performance are not found or studied.
The final conclusion is, that the studied DNN for the Z boson reconstruction does not

provide an improvement. Nevertheless, the lepton-numbering approach is able to reach
efficiencies only 0.3% up to 5.7% smaller than the invariant-mass approach. The approach
using invariant-mass labels has much smaller efficiencies. For example, in the µµµµ region
it only reaches a 37.5% efficiency. Also, the largest efficiency of 74% in the eeµµ region
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is not in the range of the invariant-mass approach and the DNN using lepton-numbering
labels. Another physics motivated approach where the events are more evenly distributed
among the classes might be able to reach higher efficiencies.
It should be kept in mind that the invariant-mass approach already has a high efficiency.

Figure 3.8 and Table 3.5 show that, for the SF region, 3.9 out of 33.7 and, for the DF
region, 2.3 out of 37.2 event can maximally be gained. Here, also events with the label
no class, i.e., events where the matching of truth and reconstructed leptons failed, are
included even though in these cases a validation of the prediction is not possible. When
excluding the events, where not all true Z leptons can be matched, only 2.7 out of 32.5 for
the SF region and 1.7 out of 36.6 for the DF region can be recovered by using a different
approach.

3.6. Measurement of the Inclusive Cross Section

The results from Section 3.4 can be used to measure the tt̄Z inclusive cross section by
performing a profile likelihood fit and extracting the signal strength of tt̄Z, µtt̄Z . The
signal strength is defined by

µtt̄Z = σmeas

σSM
(3.9)

with the measured cross section σmeas and the SM prediction of the cross section σSM.
The expected uncertainty is studied with an Asimov fit: a pseudo dataset is generated

based on the nominal predictions for signal and background from MC simulations. Since
this implies that the simulated prediction equals the data, the fitted nuisance parameters
(NPs) remain at their initial value of zero. The real collider data is not used.
Besides fits of the signal strength µtt̄Z , simultaneous fits of the signal strength µtt̄Z and

the normalisation of ZZ, NZZ , are performed.
The measurement is affected by several systematic uncertainties which are used to

determine the total uncertainty for the fit. They are separated in different categories
which are described in the following sections.

3.6.1. Instrumental Uncertainties

The instrumental uncertainties are related to the detector and take into account that the
different detector components do not have an efficiency of 100% but carry a systematic
uncertainty and uncertainties regarding the calibration.
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For the integrated luminosity, an uncertainty of 1.7% is derived using the methodology
given in Ref. [44]. This uncertainty is applied to all simulated events besides the fakes
samples. The same is true for the uncertainty of the MC pileup which arises from the
reweighting of the MC pileup distribution in order to match with data. The uncertainty
is determined by varying the correction factors used for the reweighting within their
uncertainties.
Jet uncertainties arise from the jet energy scale (JES), the jet energy resolution (JER)

and JVT requirements. The JES including its uncertainties is determined in Ref. [45]
by using the information from test-beam data and combining it with collision data and
simulation resulting in 21 NPs. For the JER, 8 NPs are calculated. The uncertainty of
the JES and the JVT are a function of the jet pT and increase at low pT values.
Several uncertainties affect the jet tagging. They are estimated for the correction factors

applied to the MC simulation to reproduce the tagging algorithm performance in data.
For b-tagging these uncertainties are propagated by 45 nuisance parameters. For the
uncertainties of the mis-tagging of c- and `-jets, i.e., jets not originating from b-quarks, 20
NPs are used for each of them. For b-jets the calibration and associated uncertainties are
derived using dileptonic tt̄ events [46]. The calibration of c-tagged jets is performed using
W boson decays in tt̄ events [47]. For light-flavour jets, dijets events [48] are used for the
calibration. The uncertainties for b- and c-jets depend on the jet’s transverse momentum
pT including bin-to-bin correlations. For the light jets the uncertainties depend on the
jet’s pT and the jet’s pseudorapidity η.
Lepton uncertainties are composed of the trigger, identification, reconstruction and

isolation uncertainties. In addition, the energy scale and momentum are a source of un-
certainty [29, 49]. The uncertainties for the scale and resolution of the missing transverse
energy Emiss

T are estimated with the help of Z → µ+µ− events [50].

3.6.2. Theoretical Uncertainties

Several theoretical uncertainties for every process are considered. For tWZ and tt̄Z

the uncertainties of the factorisation µF and the renormalisation µR of the nominal
Mg5_amc@nlo and Pythia 8 samples are taken into account. The evaluation of the
uncertainties is performed by varying the scales once simultaneously and once individ-
ually by a factor of 2.0 and 0.5 compared to their default value in the event generator.
The PDF uncertainties for tWZ and tt̄Z are calculated using the pdf4lhc15 prescrip-
tion [51]. Furthermore, an uncertainty is applied for tWZ to take different treatments of
interferences between tWZ and tt̄Z by the diagram removal schemes DR1 and DR2 into
account [52].
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Scale and PDF uncertainties are applied to the tt̄H cross section. A conservative
uncertainty of 50% is applied to the cross section of the processes grouped as “Others”
following the approach given in Ref. [53]. For the single measurement of µtt̄Z , conservative
uncertainties on the normalisation of the cross section of ZZ+jets are used as well. They
are distinguished by the jet flavour. For ZZ + b and ZZ + c a 30% and 20% uncertainty
are applied, respectively. For ZZ+ `, an uncertainty of 50% is applied. The uncertainties
for ZZ + jets were evaluated in the latest measurement using the comparison of data
and MC simulation of Z + b/c events [54]. In the simultaneous fit of µtt̄Z and NZZ , the
uncertainties for ZZ + jets are not applied.

3.6.3. Fit Results

Different configurations are used for the fitting procedure to be able to make a direct
comparison between the DNN approach and the “cut and count” approach. First, Asimov
fits are performed on a distribution using events in one bin with the selection from the
previous Atlas analysis applied, referred to as tight selection. Afterwards fits to the four-
bin distribution of the leading lepton transverse momentum are performed using the same
selection. This is compared to a fit using the events with the loose preselection presented
in Section 3.2 and fitting the four-bin distribution from the SF and DF classifiers presented
in Section 3.4. This way, a direct comparison between the “cut and count” approach and
the DNN approach is possible. Configurations using more than four bins are not used
because of the statistical limitation in the tetralepton channel of tt̄Z.
The fits are performed in the SF and the DF regions. Further control regions are not

used. The one-bin distribution of events passing the tight selection, the distribution of the
transverse momentum of the leading lepton and the distributions of the classifier outputs
with the loose selection are shown for every region in Figure 3.17. The distributions
include all systematics mentioned in Sections 3.6.1 and 3.6.2, i.e., also the uncertainties
on the ZZ+ jets cross section. Figure A.5 shows the same distributions without the cross
section uncertainties, used for the simultaneous fit of µtt̄Z and the normalisation NZZ .
First, the fit results using both, the signal strength µtt̄Z and the normalisation of ZZ,

as free floating parameters are presented. For the one-bin distribution with the tight
selection, the following results are achieved:

µtight, one bin
tt̄Z = 1.00± 0.22, (3.10)

N tight, one bin
ZZ = 1.00± 1.61. (3.11)

This measurement is used as a reference to evaluate the fit to the distribution of the
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Figure 3.17.: The distributions for the different fitting configurations. The upper left
plots shows the one-bin distributions and the two plots in the upper right
the pT distributions with the tight selection. The lower two plots show
the distributions of the classifier outputs with the loose selection. All
systematics mentioned in Sections 3.6.1 and 3.6.2 are included.

leading lepton pT. The four-bin distribution leads to the following measurement:

µtight, four binstt̄Z = 1.00+0.23
−0.20, (3.12)

N tight, four bins
ZZ = 1.00+1.62

−1.55. (3.13)

For the measurement of µtt̄Z , a larger upper uncertainty compared to the fit to the one-
bin distribution is observed. Nevertheless, since the uncertainty shows an asymmetry, the
total uncertainty is decreased by 2%. A constraint of the uncertainties for NZZ is not
observed.

µDNN, four bins
tt̄Z = 1.00± 0.15, (3.14)

NDNN, four bins
ZZ = 1.00± 0.17. (3.15)
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A significant improvement is achieved for the signal strength of tt̄Z. The uncertainties
are in total reduced by 30%. The uncertainties for NZZ are reduced by 89% due to the
larger number of ZZ events passing the loose selection. This means there are more events
which are sensitive to the measured quantity. While the tight selection suppresses the ZZ
contribution, the loose selection leads to a ZZ dominated SF region where most of the
ZZ events accumulate in the first bin of the SF classifier output distribution. Therefore,
the first bin, enriched in ZZ events, can be used as a control region for the measurement
of NZZ and no definition of a separate region is needed.

In total the uncertainties of both fit parameters can be significantly reduced when using
the observables defined by the classifier outputs as the fitted distributions.

For comparison, the fits using only the signal strength as a free floating parameter are
performed. For the one-bin distribution with the tight selection the resulting uncertainties
are given by

µtight, one bin
tt̄Z = 1.00± 0.16. (3.16)

By only using one free floating parameter the uncertainty can be decreased by 28%. For
the fit using the four-bin distribution the uncertainties show again a shift towards larger
values.

µtight, four binstt̄Z = 1.00+0.17
−0.15. (3.17)

In total the width of the uncertainty band remains unchanged and therefore no improve-
ment is observed compared to the fit using one bin. The four-bin distribution provides
additional shape information which carries an uncertainty. The shape information can
lead to a more precise measurement but at the same time the uncertainties decrease the
precision. The one-bin distribution does not have any shape information and therefore
also their uncertainties do not apply. If these effects balance each other this can cause
the unchanged width of the uncertainty band. Nevertheless, the uncertainties are reduced
compared to those given in Equation (3.12).

The best performance is achieved by the fit using the distributions of the classifier out-
puts with an uncertainty decrease of 6.3% compared to the fit on the four-bin distribution:

µDNN, four bins
tt̄Z = 1.00± 0.15. (3.18)

The fit using only the signal strength of tt̄Z as a free floating parameter leads to no
further improvement compared to the results using two free floating parameters given
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Table 3.8.: Systematic and statistic uncertainties of the fits for every fit configuration.
The upper part shows the uncertainties for the fits where µtt̄Z and NZZ are
used as free floating parameters and the lower part the fits where only µtt̄Z
is free floating.

parameter stat. unc. syst. unc.
µ
tt̄
Z
an

d
N
Z
Z

fre
e
flo

at
.

µtight, one bin
tt̄Z ±0.21 ±0.07

µtight, four binstt̄Z ±0.20 +0.10
−0.03

µDNN, four bins
tt̄Z ±0.13 ±0.07

N tight, one bin
ZZ ±1.60 ±0.17

N tight, four bins
ZZ ±1.54 +0.51

−0.19

NDNN, four bins
ZZ ±0.14 ±0.10

µ
tt̄
Z

fre
e
flo

at
.

µtight, one bin
tt̄Z ±0.14 ±0.08

µtight, four binstt̄Z ±0.14 +0.10
−0.07

µDNN, four bins
tt̄Z ±0.13 ±0.08

in Equation (3.14). In conclusion, the DNN performs best for all configurations but it
does not make a difference if both parameters are fitted simultaneously or not. The
DNN classifiers with the loose selection are able to constrain the uncertainties of the ZZ
normalisation.
Due to the low number of signal events, it is useful to compare statistical and systematic

uncertainties. They are given for every configuration in Table 3.8.
Table 3.8 shows that the statistical uncertainty dominates. In the simultaneous fits of

µtt̄Z and NZZ , the largest statistical uncertainties are for the one-bin distributions. In the
single-fit configuration, the statistical uncertainties of the one- and four-bin distributions
are the same. The smallest statistical uncertainties are in both configurations for the
fits using the classifier outputs. In general it is plausible that the fits using the classifier
outputs carry the smallest statistical uncertainty since the selection applied is looser in
order to increase the acceptance of events and therefore the statistics.
The impact of the different systematics on the simultaneous measurement of the signal

strength µtt̄Z and NZZ and on the single measurement of µtt̄Z are summarised in Table 3.9
for the fits using the distributions of the classifier outputs. They are grouped into cate-
gories. The impacts on the fits using the one-bin and four-bin distribution of the leading
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Table 3.9.: Impact of the systematics on the fits using the four-bin distribution of the
classifier outputs and the loose selection applied.

impact [%] on measurement of
Uncertainty NZZ µtt̄Z (simultaneous) µtt̄Z (single)

Tagging 4.7 1.4 1.3
Jets 7.4 2.0 1.9
Lepton 5.0 5.6 5.6
Luminosity 1.7 2.1 2.1
Emiss

T 0.5 0.3 0.3
tt̄Z PDF 0.1 2.7 2.7
tt̄Z scale choice 0.1 0.4 0.4
Pileup 0.7 1.0 1.0
Background modelling 0.2 1.4 1.4
Trigger 0.1 0.1 0.1
ZZ cross section (single fit only) − − 1.4

lepton pT are shown in Tables A.2 and A.3, respectively.
Table 3.9 shows that the lepton systematics have a large impact with 5.0% to 5.6% on

all fits which make use of the distribution of the classifier outputs. For the measurement
of µtt̄Z the uncertainty of the PDF of tt̄Z has the second largest impact with 2.7% in both
fitting configurations.
Not all of the NPs introduced in Sections 3.6.1 and 3.6.2 are used for the fitting proce-

dure. In case their impact is negligible they are dropped to reduce complexity of the fit.
This procedure is called pruning. If the NP’s impact on the shape is smaller than 0.01%
it is only considered for the normalisation and vice versa. In case the impact on both, the
shape and the normalisation, is below 0.01% the NP is dropped completely. The pruning
of the NPs used for the simultaneous fit using the classifier output distributions is given
in Figure A.7. For the fit on µtt̄Z only the pruning is given in Figure A.8.
With the help of the fits it is possible to constrain those NPs which were not dropped

in the pruning procedure. The uncertainties for every parameter are given in Figure 3.18
for the single fit on the signal strength of tt̄Z, µtt̄Z . This way Figure 3.18 also includes
the uncertainties on the cross section of ZZ + jets. The NPs for the simultaneous fit of
µtt̄Z and NZZ are given in Figure A.6. The 1σ band is marked in yellow and the 2σ band
in green. The parameters have an initial value of 0 represented by the black dot. This
value stays unchanged by the design of an Asimov fit. The uncertainty is given by the
black bar.
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Figure 3.18.: The constraints on the NP used in the single fit of µtt̄Z . The yellow area
shows the 1σ environment and the green area the 2σ environment. The
bars show the uncertainty of the NP.

Most of the NPs are not constrained by the fit. Their error bars fill the whole 1σ
environment. Only the cross section uncertainties of ZZ + jets are constrained. Most
reduction is observed for ZZ + ` with 20.0% followed by ZZ + b with 10.2% and ZZ + c

with 3.6%.
One reason that the other NPs are not constrained is the small available statistics.

Even though it is increased by the loose selection used for the DNN, statistics are still the
dominant uncertainty as shown in Table 3.8. For the ZZ contribution, a smaller system-
atic limitation is observed in the SF region which influences the capability of constraining
the related systematics. In the SF region the number of ZZ events is 60.8 which helps to
reduce the uncertainties of the NPs for the cross section of ZZ + jets through the fit. In
addition, the uncertainties were chosen in a conservative manner with 50% (30%/20%)
for ZZ + ` (ZZ + b/+c) such that a constraint can be expected.
To summarise the fit of the distributions from the classification classifier outputs have

the smallest uncertainty. Here, no difference between the simultaneous fit of µtt̄Z and NZZ

and the single fit of µtt̄Z was observed. Only within this fit a constraint on the uncertainty
of NZZ due to the larger ZZ background contribution was achieved. Due to limited signal
statistics, no NPs is constrained except for the ones corresponding to the uncertainties on
the cross section of ZZ + jets.
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Within this thesis, the tetralepton channel of the production of a top-quark pair in as-
sociation with a Z boson was studied. This channel suffers from limited statistics which
motivates the use of a loose event selection and a DNN to separate signal events (tt̄Z)
from background events instead of applying cuts on relevant observables. Three ap-
proaches were studied, namely, using one DNN for all events, splitting into the SF and
the DF region and training one DNN for each region or training 5 DNNs, one for each
lepton flavour configuration. An improvement in terms of purity is observed compared to
the “cut and count” approach for the DNN of the combined region with 95% and the two
DNNs for the SF and DF region with 106% and 100% improvement, respectively. A direct
comparison with the DNNs for the regions defined by the lepton flavour multiplicities is
not performed because they did not show further improvement compared to the other
options.
In terms of statistical significance, the DNN for the combined region showed the largest

improvement with 12%. The evaluation of the separation power led to best results for
the SF and the combined region with a separation power of 37% and 38%, respectively.
The DNN of the DF has a significantly lower separation power with 8%. The AUC values
provided best results for the DNN of the SF region followed by the DNN for the combined
region. The DNN for the DF region showed the weakest performance with AUC values
of 0.54. In total, the evaluation showed that the DNN for the DF region has overall the
weakest performance, the DNNs for the SF region and combined region have comparable
performances depending on the evaluated metric.
Nevertheless, both approaches are useful since they both lead to an improved classifica-

tion of signal and background events. One reason for the weaker performance of the DNN
for the DF region is the smaller number of gained signal events when applying the looser
selection. By finding a selection which leads to a larger gain, the network’s performance
may be improved. In addition, the distribution of the DF classifier output for tWZ, which
is the main background in the DF region, is mostly flat. The performance of the DNN can
be improved by finding observables which are useful to distinguish tt̄Z and tWZ events
and thus to increase the separation.
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The second part of the thesis dealt with the reconstruction of the Z boson in tt̄Z

events. The approach using a DNN for the reconstruction was compared with the classical
invariant-mass approach used in the latest Atlas analysis [42]. Two approaches using
two different sets of class labels were studied. The approach using lepton-numbering
labels outperforms the approach using invariant-mass labels with 21.0% to 47.4% larger
efficiencies depending on the lepton flavour region. Nevertheless the lepton-numbering
approach is still not able to reach larger efficiencies than the invariant-mass approach. The
discrepancies are between 0.3% and 5.4%. The events, which the DNN tends to misclassify
while the prediction of the invariant-mass approach is correct, include preferentially Z

leptons in the low pT region or have the invariant mass of the two non-Z leptons close to
the Z boson mass.

A DNN which is more sensitive to these cases might reach larger efficiencies. Also a more
physics motivated approach with an even distribution of events over the classes can lead
to an improvement. For both DNN approaches, the classification and the reconstruction
DNNs, an improvement could be possible by performing a hyperparameter optimisation to
find the best DNN architecture. Nevertheless it should be kept in mind that the Z boson
reconstruction using the invariant-mass approach already reaches high efficiencies. The
possible gain when excluding the no-class events is 2.7 out of 32.5 events for the SF region
and 1.7 out of 36.6 events for the DF region.

In the final part of the thesis, the classification DNNs are used to perform Asimov fits
of the signal strength of tt̄Z, µtt̄Z , and the normalisation of ZZ, NZZ . Simultaneous fits
of both parameters and only of the signal strength µtt̄Z using the classifier outputs are
compared to fits performed on the distribution of the pT of the leading lepton with the
tight selection applied. The results show that the fit performed on the distributions of the
classifier outputs compared to the fit on the pT distribution can decrease the uncertainties
for µtt̄Z from 21.5% (16.1%) to 15.0% for the simultaneous (single) fit. While the fit on
the DNN distributions gave the same results for both fitting configurations, the single fit
on the pT distribution leads to improved results for µtt̄Z .

In addition, the statistical uncertainties can be reduced. The statistical uncertainty
of µtt̄Z is decreased from 20% to 13% for the simultaneous and from 14% to 13% for
the single fit, respectively. Nevertheless the statistical uncertainties are the dominant
uncertainties in all fits. This also influences the possible constraint of systematics. Only
the cross section of ZZ for the single fits of µtt̄Z can be constrained.

The SF region with the loose selection applied is dominated by the ZZ contribution.
Due to the separation of tt̄Z and ZZ events by the DNN, the distribution of the classifier
outputs has separate bins dominated by one of the processes. Therefore a definition of
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an additional control region for the measurement of NZZ is not needed when using the
classifier output distributions for the fitting.
Some systematics have not been taken into account yet. This includes the uncertainties

on the PDF and the scale choice of ZZ, the uncertainties on the tt̄Z showering and other
tt̄Z related systematics. An increased number of NPs would lead to a more sophisticated
treatment of the JER and JES systematics. In a similar manner more detailed NP schemes
for leptons and jets were not investigated.
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A. Supplementary Material

Table A.1.: Evaluation of the performance of the DNNs in terms of their separation
power S and the AUC of the testing and training folds for the regions
defined by the lepton flavour multiplicity.

Region separation power S AUC (training) AUC (testing)
eeee 35.9% 0.772± 0.016 0.742± 0.078
eeeµ 10.3% 0.535± 0.011 0.522± 0.053
eeµµ 38.4% 0.832± 0.013 0.834± 0.042
eµµµ 8.45% 0.584± 0.016 0.546± 0.029
µµµµ 39.0% 0.831± 0.015 0.815± 0.054
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Figure A.1.: The classifier outputs of the DNNs for the regions defined via the electron
and muon multiplicity.
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Figure A.2.: The S/B and S/
√
B ratios depending on the cut applied on the classifier

output. All events that would pass the selection if a cut on the given
classifier output was applied are used for the calculation of the ratios.
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Figure A.3.: The distributions of the number of events as a function of ∆R and ∆η
between the matched leptons. On the left the distributions for all electrons
in all events is shown and on the left the same for all muons.
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Figure A.4.: The distribution of the transverse momenta pT of the third on the left
and the fourth lepton on the right. The events are split into those where
the Z boson reconstruction DNN and the invariant-mass approach provide
the same and correct prediction and those where only the invariant-mass
approach makes the correct prediction.
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Table A.2.: Impact of the systematics on the fits using the one-bin distributions and
the tight selection applied.

impact [%] on measurement of
Uncertainty NZZ µtt̄Z (simultaneous) µtt̄Z (single)

Tagging 5.4 1.2 1.7
Jets 7.6 1.8 2.5
Lepton 4.9 5.6 6.0
Luminosity 1.4 2.2 2.3
Emiss

T 4.6 0.1 0.4
tt̄Z PDF 1.4 2.9 2.8
tt̄Z scale choice 2.5 0.3 0.3
Pileup 2.1 1.3 1.1
Background modelling 1.9 1.4 1.4
Trigger − 0.1 0.1
ZZ cross section (single fit only) − − 1.8

Table A.3.: Impact of the systematics on the fits using the four-bin distributions of the
leading lepton pT and the tight selection applied.

impact [%] on measurement of
Uncertainty NZZ µtt̄Z (simultaneous) µtt̄Z (single)

Tagging 5.3 1.2 1.7
Jets 7.6 1.8 2.5
Lepton 5.9 5.4 6.0
Luminosity 1.5 2.2 2.3
Emiss

T 4.7 0.1 0.3
tt̄Z PDF 1.0 2.8 2.7
tt̄Z scale choice 2.4 0.3 0.3
Pileup 2.0 1.3 1.1
Background modelling 1.6 1.3 1.3
Trigger 0.1 0.1 0.1
ZZ cross section (single fit only) − − 1.8
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Figure A.5.: The distributions for the different fitting configurations. The upper left
plots shows the one-bin distributions and the two plots in the upper right
the pT distributions with the tight selection applied. The lower two plots
show the distributions of the classifier outputs with the loose selection.
All systematics besides the uncertainties on the cross sections of ZZ+jets
are included.
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Figure A.6.: The constraints on the NP used in the simultaneous fit of µtt̄Z . The yellow
area shows the 1σ environment and the green area the 2σ environment.
The bars show the uncertainty of the NP.
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Figure A.7.: The pruning status of every uncertainty used for the simultaneous fit of
µtt̄Z and NZZ .
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Figure A.8.: The pruning status of every uncertainty used for the single fit of µtt̄Z .
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