
Bachelor’s Thesis

Modulentwicklung im Rahmen des
HappyFace-Projektes für ATLAS Grid

Computing

Module developments on the HappyFace
project for the ATLAS Grid Computing

prepared by

Eric Buschmann
from Krefeld

at the II. Physikalischen Institut

Thesis number: II.Physik-UniGö-BSc-2014/02

Thesis period: 25th October 2013 until 11th February 2014

First referee: Prof. Dr. Arnulf Quadt

Second referee: Priv.Doz. Dr. Jörn Große-Knetter

Zusammenfassung

Um die beim ATLAS-Experiment am LHC anfallenden Daten zu verarbeiten, ist eine
große Grid-Infrastruktur notwendig, die weltweit verteilt betrieben wird. Um einen aus-
fallfreien Betrieb und hohe Produktivität zu gewährleisten, sind leistungsfähige Über-
wachungssysteme notwendig, die es erlauben, Fehler schnell zu identifizieren und zu be-
seitigen. Am ATLAS Tier-2-Zentrum GoeGrid kommt hierfür unter anderem das Meta-
Monitoring-Tool HappyFace zum Einsatz. Im Rahmen dieser Bachelorarbeit wurden hier-
für zwei Module entwickelt, die es ermöglichen, die im Cluster laufenden Prozesse zu
überwachen und dabei auftretende Fehler zu identifizieren. Diese Module sammeln Da-
ten von den PBS und CREAM CE Diensten und bereiten diese auf, um detaillierte und
nach verschiedenen Kriterien aufgeschlüsselte Statusinformationen möglichst in Echtzeit
bereitzustellen. Inzwischen sind diese Module öffentlich verfügbar und können so auch von
anderen Rechenzentren genutzt werden.

Abstract

A globally distributed computing infrastructure is employed to process the data generated
by the ATLAS experiment at LHC. To guarantee stable running Grid services and high
efficiency by quickly identifying and rectifying failures, capable monitoring systems are
necessary. The ATLAS Tier 2 centre GoeGrid utilises, among others, the meta-monitoring
tool HappyFace. In the course of this Bachelor’s Thesis, two modules for monitoring jobs
running in the cluster and identifying errors were developed. These modules collect and
process data from the PBS and CREAM CE services in order to provide detailed status
information itemised by several distinct criteria. By now, both modules are publicly
available and may therefore be used by other sites.

Keywords: WLCG, ATLAS, Grid Computing, GoeGrid, HappyFace, Meta-Monitoring,
CREAM CE, PBS

iii

Contents

1. Introduction 1
1.1. WLCG . 1
1.2. GoeGrid . 2

2. Grid and Job Scheduling System 3
2.1. Grid . 3
2.2. PBS . 3
2.3. CREAM . 4

2.3.1. Job Life Cycle . 4
2.3.2. JDL . 6
2.3.3. Database . 6

3. The HappyFace Project 7
3.1. Monitoring . 7
3.2. Meta-Monitoring . 8
3.3. The HappyFace Project . 9
3.4. Versions . 10
3.5. Installation . 11
3.6. Configuration . 11
3.7. Database . 12
3.8. Modules . 12

3.8.1. Module Structure . 12
3.8.2. Module Configuration . 13
3.8.3. Category Configuration . 14
3.8.4. Module Rating . 14

3.9. SQLAlchemy . 14
3.9.1. Reflection . 15
3.9.2. Backends . 15

3.10. Mako . 15

v

Contents

4. SQL and MySQL 17
4.1. Database Schemes . 18

4.1.1. Data Types . 18
4.1.2. Column Attributes . 19

4.2. Queries . 19
4.2.1. Joins . 20

5. New HappyFace Modules 23
5.1. CREAM CE Module . 23

5.1.1. Database Interface . 23
5.1.2. Database Layout . 30
5.1.3. HTML Template . 31
5.1.4. Plotting . 31

5.2. PBS Module . 32
5.2.1. Qstat File Format . 33
5.2.2. Adaption of CREAM Module . 33

6. Estimation 35

7. Conclusion and Outlook 39
7.1. Conclusion . 39
7.2. Outlook . 39

A. Appendix 41

vi

1. Introduction

The Large Hadron Collider (LHC) [1], a proton-proton collider with a design centre-of-
mass energy of 14TeV, at CERN [2] hosts the four main experiments ALICE [3], ATLAS
[4], CMS [5] and LHCb [6].

The discovery of a Higgs-like boson at ATLAS [7] and CMS [8] in 2012 is the result of
the analysis of several petabytes of data on a computing infrastructure with over 100,000
CPUs.

The emphasis of this thesis is placed on the meta-monitoring tool HappyFace and in
particular its application to the GoeGrid cluster. Monitoring the services provided by the
Grid infrastructure is essential for stable and performant operation. The focus is placed
on services that provide job management at different levels. The objective of this thesis is
to analyse two services, namely PBS and CREAM CE, which perform job management,
and to provide a monitoring tool to generate detailed real-time monitoring information.

1.1. WLCG

The Worldwide LHC Computing Grid (WLCG) [9] provides the computing infrastructure
for all four experiments of the LHC. This Grid infrastructure consists of over 150
computing centres in nearly 40 countries. Each site provides mass-storage and computing
resources. The infrastructure is organised in a hierarchy, starting with the Tier-0 centre
at CERN. Data from Tier 0 are replicated to the national Tier 1 centres and from there
to the regional Tier 2 and local Tier 3 centres.

Tier 0: This tier consist of only the CERN Computer Centre [10] located on the CERN
area. All data are preprocessed and permanently stored here as well as replicated
to the Tier 1 sites.

1

1. Introduction

Tier 1: These are the 12 large national sites. Each holds a partial copy of the Tier 0
data. They are responsible for reprocessing and distribution of data to Tier 2.

Tier 2: These mostly regional sites handle specific analysis tasks and a share of simulated
event production and reconstruction. There are currently around 140 Tier 2 sites.

Tier 3 has no formal obligation to WLCG and consists of local clusters or single
computers.

1.2. GoeGrid

GoeGrid is a Grid resource centre hosted at the GWDG (Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen) [11] and is mainly used as an ATLAS Tier 2 and Tier
3 centre in the WLCG. As part of the German Grid computing initiative D-Grid [12],
GoeGrid also contributed to MediGrid [13] and TextGrid [14].

The GoeGrid cluster provides over 2500 CPU-cores as well as approximately 1 PB of
storage. About 300 nodes are available. GoeGrid is running the Scientific Linux [15]
distribution based on Red Hat Enterprise Linux [16].

As part of the WLCG, GoeGrid provides several services such as dCache [17] for mass
storage or the BDII (Berkeley Database Information Index) [18] service for collecting and
publishing of site status information. CREAM CE [19] is a front-end to the local batch
system and handles the submission of Grid jobs.

Administrating a large Tier-2 cluster such as GoeGrid in the WLCG plays a key role to
provide stably running Grid services and sufficient computing resources. In this thesis,
two modules, namely the PBS module and CREAM module, are proposed and developed.

2

2. Grid and Job Scheduling System

2.1. Grid

Foster and Kesselman define a computing Grid as a hardware and software
infrastructure that provides dependable, consistent, pervasive, and inexpensive access
to high-end computational capabilities [20].

Foster published a list of three criteria which define a Grid infrastructure [21]:

• A Grid coordinates resources that are not subject to centralised control.

• A Grid uses standard, open, general-purpose protocols and interfaces.

• A Grid delivers nontrivial qualities of service.

A good example for a Grid is the WLCG, as its infrastructure spans several countries
around the globe. It uses, amongst others, the open-source middleware gLite [22] and
provides over 250 PB of storage.

An integral part of Grid operations is the management and distribution of jobs on the
Grid. Jobs are self-contained and consist of data sets and applications that perform
specific tasks on those sets. In the context of the WLCG, they perform tasks such as
event reconstruction, calibration, simulation and analysis.

2.2. PBS

The Portable Batch System (PBS), specifically Terascale Open-Source Resource and
QUEue Manager (TORQUE) [23], performs job scheduling on GoeGrid. It is used in
conjunction with the Maui Cluster Scheduler [24]. Jobs can be submitted via the command

3

2. Grid and Job Scheduling System

qsub with additional information like the required amount of memory, number of CPUs,
estimated runtime or dependencies on other jobs. They are usually grouped in queues
depending on their origin and properties and will be executed when a suitable node is
available. For instance, jobs concerning the ATLAS experiment are organised in several
queues. Likewise, all jobs that are expected to run for a long time can be managed in one
queue. There are some other Local Resource Management Systems (LRMS), e.g. Load
Sharing Facility (LSF) [25] or Oracle Grid Engine (OGE) [26], which perform similar
tasks.

2.3. CREAM

The CREAM (Computing Resource Execution And Management) [19] service handles job
submission and job management on GoeGrid while being fault-tolerant and providing user
authentication. CREAM runs as a Java-Axis servlet on the Apache Tomcat [27] server.

CREAM runs on top of a Local Resource Management System (LRMS) and the
BLAH (Batch Local Ascii Helper) service acts as an interface between CREAM and
the underlying LRMS by providing a common interface for job management and job
submission for all supported batch systems like PBS and LSF.

ICE (Interface to CREAM Environment) provides an interface between the WMS
(Workload Management System) of the gLite middleware [22] and CREAM.

2.3.1. Job Life Cycle

As jobs are handed to the CREAM CE service, each job traverses a number of different
states between submission and completion. Figure 2.1 shows the possible state transitions
a job can undergo. Each job will start in the registered state, where it has been registered
in the system but has not yet started running. It will then switch to the pending state,
which means that the job is ready but has not yet been submitted to the LRMS. If
successful, the job will now be scheduled by the LRMS and switch to the idle state.
When suitable resources for execution are available, a wrapper, which will create an
environment for the job, will be run and the state changes to running. Afterwards, the
actual executable is started and the state changes to really running. Upon termination,

4

2.3. CREAM

Figure 2.1.: Possible CREAM job state transitions [28].

the job will switch either to the done-OK or done-failed state, depending on whether any
errors occurred during execution.

If the job submission to the LRMS fails, the state will be changed directly to aborted.
While the job is either idle, running, or really running, it can be suspended to the held
state and resumed later. When idle, running, or really running, the job can also be
cancelled by the user.

5

2. Grid and Job Scheduling System

2.3.2. JDL

The Job Description Language (JDL) is used to describe jobs that are submitted to the
CREAM CE service [28]. A job description is composed by entries of the format

a t t r i b u t e=expr e s s i on ;

and each entry is terminated by the semicolon character. The job description has to be
surrounded by square brackets. Comments can either be initiated using a sharp character
“#” or a double slash “//”. Comments spanning multiple lines can be encased between
“/*” and “*/”.

[
Type = "Job ";
JobType = "Normal ";
Executable = "myexe ";
StdInput = " myinput .txt ";
StdOutput = " message .txt ";
StdError = "error.txt ";
InputSandbox = {"/ users/ seredova / example / myinput .txt",

"/ users/ seredova / example /myexe "};
OutputSandbox = {" message .txt", "error.txt "};
OutputSandboxBaseDestUri =

"gsiftp :// se.pd.infn.it/data/ seredova ";
]

While it is possible to include arbitrary attributes, only a certain set of attributes is
recognised by CREAM CE. On the other hand, some of these attributes are mandatory
and submitting a job without them will cause the request to fail.

Mandatory attributes include Executable or QueueName. Jobs may require a set of input
files called the InputSandbox (ISB) and in turn store results in files in the OutputSandbox
(OSB). The ISB is transferred to the worker node before execution starts and the OSB is
retrieved after the job terminates.

2.3.3. Database

All job related information is stored in a central SQL database. This is described in more
detail in Chapter 5.1.1.

6

3. The HappyFace Project

3.1. Monitoring

As a large infrastructure like GoeGrid consists of numerous systems and services, most of
which are required for productive operation, the administration of this infrastructure is
only possible if failures and their cause can be identified quickly.

Monitoring, meaning the surveillance of all involved components like computing hardware,
infrastructure, software and services, is the general approach to this problem. Failures
may be detected by analysing the collected data and the cause may be identified and
rectified before it has serious effects.

Monitoring in the context of Grids uses several terms [29]:

Entity: Entities are unique networked resources like processors, memory, storage
mediums, network links, applications and processes.

Event: Events are collections of time-stamped data associated with entities and a specific
structure.

Event type: An event type uniquely identifies an event structure.

Event schema: An event schema defines the structure and semantics associated with an
event type.

Sensor: A sensor generates events by monitoring an entity. There are passive sensors
which collect already available data and active sensors which perform measurements
themselves.

Monitoring in distributed systems like Grids generally contains four stages [29]:

7

3. The HappyFace Project

Generation of events: Information is collected from entities and encoded according to a
given schema.

Processing of events: Generated events are processed according to the specific
application. This can include filtering or summarising and may take place at any
stage of the monitoring process.

Distribution: Events are shared with any interested parties.

Presentation or consumption: The collected data are further processed to provide a
visual presentation or are exported to a machine-readable representation.

There are multiple requirements for a general monitoring system [29]:

Scalability: A monitoring system should accommodate the growth of the infrastructure.
Therefore it should achieve good performance to guarantee acceptable throughput
and response time. On the other hand, it should not impact the performance of the
monitored resources.

Extensibility: A monitoring system should be easily adjustable to changes in the
monitored infrastructure. Hence, the underlying event handling has to be
customisable and expandable without degrading the capacity of the monitored
resources.

Data delivery models: A monitoring system should support different kinds of data
delivery models to accommodate for static and dynamic events. In push models, the
data transfer is initiated by the data source, while in pull models, the monitoring
system actively queries the data source.

Portability: A monitoring system and particularly its sensors should be platform
independent.

Security: Security services such as access control, single or mutual authentication, and
secure transport of monitoring information are required in some scenarios and should
consequently be supported by a monitoring system.

3.2. Meta-Monitoring

Monitoring can provide information about almost every part of a computing
infrastructure. But this information is usually generated by a multitude of different

8

3.3. The HappyFace Project

sources with different means of access. Administration would therefore require to check
all sources for relevant information. Meta-monitoring aims to facilitate this process by
aggregating monitoring data from these sources and presenting them in a user-friendly
way.

As described in [30], a meta-monitoring system should meet several requirements:

Only one web site: All requested monitoring information should be accessible on one
single website.

Up-to-date: The monitoring information should be renewed regularly, preferably close
to real-time.

History functionality: Recorded monitoring data should be accessible via a history
functionality. Accessing the history can help identifying correlations between
problems reported by different monitoring sources at different times.

Fast access: A simple and optimised architecture can provide fast access to the
monitoring information.

Comfortable: All monitoring information should be easily accessible.

Simple warning system: Status information should be visualised in a simple and non-
ambiguous way.

Customisable: The monitoring system should be adaptable to the monitored
infrastructure.

3.3. The HappyFace Project

The HappyFace Project [31] aims to provide a meta-monitoring system that matches those
requirements. Its purpose is to gather status information from existing monitoring sources
and to create an overview for the whole site and for individual sources. It is a modular
system consisting of a core and a number of modules specific to the site HappyFace is
deployed on. Furthermore, data collection and visualisation are separated. Collected
information is stored in the database and the history can later be accessed.

The core handles the execution of the modules including the generation of the individual
web pages. It also provides a set of functions available to all modules, including access to

9

3. The HappyFace Project

Figure 3.1.: The HappyFace web page.

the database. Modules on the HappyFace web page can be grouped into categories which
will combine the output of the modules and derive a status value.

Each module is responsible for handling different data sources like log files, databases or
web pages of another service. Each module provides separate functions for data acquisition
and rendering. The acquisition function is called periodically and the results are stored
in the database. Each time the web page is loaded, the stored information is fetched and
passed to the template.

Figure 3.1 shows the HappyFace user interface. The bar at the top allows to access the
history, listed below are the different categories with a status indicator. The left column
shows the status of the individual modules in the selected category and permits to navigate
to the module output quickly, which is shown next to it.

3.4. Versions

HappyFace version 3 is currently under active development and it has been deployed [32]
at GoeGrid already. It is completely written in Python and uses HTML templates with
embedded Python code for the user interface. Being a full rewrite of HappyFace version 2,

10

3.5. Installation

it aims to solve several structural issues present in the older version. HappyFace version
2 used PHP code embedded into the modules resulting in poor separation between data
processing and rendering as well as increased complexity.

3.5. Installation

Besides Python 2 [33] of at least version 2.6, HappyFace requires the web framework
CherryPy [34] version 3, the SQL toolkit and object relational mapper SQLAlchemy [35],
the SQLAlchemy schema migration tools [36] and the template engine Mako [37]. The
HappyFace core as well as the modules are maintained in separate SVN repositories.
HappyFace can be downloaded from the central SVN repository by executing:
svn co h t t p s : / / e k p t r a c . physik . uni−k a r l s r u h e . de / p u b l i c /HappyFace/ branches /v3 . 0 HappyFace

A set of modules can then be installed to the modules/ subdirectory by running
svn co h t t p s : / / e k p t r a c . physik . uni−k a r l s r u h e . de / p u b l i c /HappyFaceModules/ trunk modules

in the newly created HappyFace/ directory. This repository currently contains nearly 50
modules including the modules that have been developed during this thesis.

3.6. Configuration

The subdirectories defaultconfig/ and config/ contain the configuration files of HappyFace
and the modules. Files in defaultconfig/ contain the default configuration values and
should not be altered as they are under revision control and might change in future
revisions. Instead, all values can be overridden by files in config/.

The subdirectory modules-enabled/ contains the configuration for the individual module
instances. By calling the modconfig tool, a basic configuration can be obtained:

python t o o l s . py modconfig modulename

Modules can be grouped in categories which are configured in categories-enabled/. Each
category has a name, an optional description and a list of the module instances.
Additionally, an algorithm to calculate the category status from the module statuses
may be specified.

11

3. The HappyFace Project

Figure 3.2.: HappyFace module tables [41].

3.7. Database

HappyFace uses SQLite [38] by default, which is a file-based database that does not
require additional services or a setup. If this does not provide the necessary performance
or needed features, it is also possible to connect HappyFace to a database server like
MySQL [39] or PostgreSQL [40].

HappyFace stores all collected data from all modules in a database with layout shown
in Figure 3.2. Each instance of each module is registered in the table module_instances.
Every time HappyFace collects data, an entry is added to the table hf_runs, which stores
the current date and time as well as a unique identifier for each run.

The tablemod_jobs_statistics stores module specific information for each module instance
on each run. As modules often require to store more than one data record per run,
HappyFace supports additional subtables for each instance. The subtables allow the
modules to store data in a module-specific layout and therefore provide great flexibility.

3.8. Modules

3.8.1. Module Structure

HappyFace modules are divided in two parts for data acquisition and rendering which
are executed independently. The script acquire.py calls the function prepareAcquisition
to get a list of the needed files. After fetching them, the function extractData is called

12

3.8. Modules

to extract the data from the files and store it in the database. If subtables are used, the
function fillSubtables will get called to fill them with additional data.

The render.py script generates the HTML files visible on the web interface. The
function getTemplateData can retrieve additional data from subtables. Each module has
a corresponding HTML template file which can contain embedded Python code to display
the data.

Each time a module is executed, one row is inserted into the module’s table. An arbitrary
number of fields can be added to the table, but for storing more complex relations,
subtables should be used. In contrast to the module’s table, a module can have any
number of subtables and can insert more than one row per run.

3.8.2. Module Configuration

Module specific configuration is usually stored in config/modules-enabled/. Files are
processed in alphabetical order, where each file generally contains one or more module
instances:

[INSTANCE_NAME]
module = Plot
name =
de s c r i p t i o n =
i n s t r u c t i o n =
type = rated
weight = 1 .0

Each entry starts with the instance name encased in square brackets. Themodule attribute
then specifies the module class. It is common to declare several module instances derived
from the same module class which will run with different sets of parameters. Subsequently
follows the verbose instance name, as it will be displayed on the HappyFace web page, and
a description. Valid values for type are “rated”, “unrated” and “plots”. The status value
of “rated” modules is included when determining the category status, while “unrated”
modules are ignored. Modules with the type “plots” only indicate if they successfully
collected data or not. The specified weight can be used by some algorithms to calculate
the category status.

13

3. The HappyFace Project

3.8.3. Category Configuration

Modules can then be grouped into categories with the configuration files in
config/categories-enabled/ which have a similar structure as the module configuration.
Each entry is initiated with the category name in square brackets. The attributes are the
verbose category name, a description, a type which is either “plots” or “rated” and an
algorithm to calculate the status value. This can be either “worst” or “average”.

3.8.4. Module Rating

Each module may return a status value indicating the health of the monitored resources.
This value is then used by HappyFace to calculate a category status based on the specified
algorithm. For normal module operation this is a float value in the interval [0, 1], while
it automatically gets assigned the value −1 if an error occurred during execution and −2
in case data retrieval failed. The interval is divided further into three states. A value in
[0.66, 1] corresponds to normal operation, if monitoring detects indication of problems,
a value in [0.33, 0.66) will be chosen. For serious errors, the status drops to a value in
[0, 0.33).

The category rating is derived from the module ratings of the modules contained in a
category according to the specified algorithm. Modules with a rating type of unrated are
not included in the calculation. The worst algorithm selects the lowest module status
as category status. The average algorithm sets the category status to the average of all
modules in the category, weighted with the value defined in the module configuration.

3.9. SQLAlchemy

SQLAlchemy [35] is an SQL toolkit and an ORM (object-relational mapper) for Python.
SQLAlchemy supports several RDBMS (relational database management system) and
also allows to map Python objects to database tables. As SQLAlchemy is already used
internally for the HappyFace database, it was the obvious choice for interfacing with the
CREAM database.

14

3.10. Mako

3.9.1. Reflection

One very useful feature of SQLAlchemy is called reflection. Given a database connection,
it can retrieve the metadata of existing tables and construct the corresponding Python
objects. It also fetches all tables referenced via foreign keys and retains all relations
between tables, which makes complex queries spanning several tables easier, as most join
conditions can be generated automatically. For example, the metadata of the job table
from the CREAM database can simply be loaded by running:

job = Table (’ job ’ , meta , auto load=True)

3.9.2. Backends

SQLAlchemy provides backends for several databases including MySQL, SQLite and
PostgreSQL. These backends allow to use any of the supported databases without
knowledge of the underlying interface by hiding differences and providing a uniform
interface.

3.10. Mako

Mako [37] is a template engine for Python. It allows a clean separation between data
processing as well as rendering and supersedes the usage of embedded PHP code in
HappyFace 2.

Values from the main module table are passed to the template by default and it is possible
to add or change data by overriding the getTemplateData function of the module. Single
values might be inserted with ${expression}, for instance

${module . datase t [" s t a tu s "] }

which will output the status value. Control structures such as for, while and if are also
available and are written using the % marker.

% fo r job in jobs :
<td>${ job }</td>

% endfor

15

3. The HappyFace Project

For even more flexibility, complete blocks of Python code can be inserted using <% and
%>.
<%
for user in u s e r s :

u s e r s [user] .name = use r s [user] .name . s p l i t (’@’) [0]
%>

It is also possible to define functions containing template code with <%def> and </%def>.
<%def name=" print_row (l i s t) ">
<tr>
% fo r i in l i s t :

<td>${ i }</td>
% endfor
</ tr>
</%def>

They can then be used like any other expression.
<table>
% fo r t in t ab l e

${print_row (t)}
% endfor
</ table>

16

4. SQL and MySQL

An RDBMS (relational database management system) is often the tool of choice to
store and manage large amounts of data records and to access specific records as well
as representing the relations between records. SQL (Structured Query Language) is used
to interface with the RDBMS to store, alter or retrieve data. Examples for RDBMS which
implement SQL are MySQL [39], MariaDB [42] and SQLite [38]. MariaDB is a fork of
MySQL, which aims to provide full compatibility with MySQL. Other common systems
are PostgreSQL [40], Oracle Database [43] and Microsoft SQL Server [44]. The following
discussion will primarily cover MySQL and SQLite, as they are used for CREAM CE and
HappyFace respectively, in the setup at GoeGrid. Nevertheless, most of it also applies to
other RDBMS.

The central concept is the description of relations between attributes by using relational
algebra. One kind of relation between attributes is the aggregation of attributes in a table.
Each column contains the attribute values corresponding to the attribute. The rows in
turn combine several attribute values and form data records. Moreover, it is desirable to
reduce the redundancy of data stored in the database. For that purpose, data records
are split over several tables and each table is expanded by an additional attribute, which
makes each data record in the table uniquely identifiable. This attribute is called the
primary key.

In order to realise a relation from one data record to another, the first record stores the
key of the second record in an additional attribute. This is called a foreign key.

This allows to create one-to-one and many-to-one relations. Many-to-many relations
require an additional table: by storing two keys for each one-to-one relation, an arbitrary
amount of relations can be expressed.

17

4. SQL and MySQL

4.1. Database Schemes

4.1.1. Data Types

Each column is assigned a data type which facilitates internal storage and defines the
properties and allowed values.

Numeric MySQL provides several data types [45] for storing numbers. For storing
integers, the INTEGER type is intended. This type is available in sizes from 8 to 64 bits
and each has a SIGNED and an UNSIGNED variant, where SIGNED is the default.

type size in bytes unsigned range signed range
TINYINT 1 0 to 28 − (27) to 27 − 1
SMALLINT 2 0 to 216 − (215) to 215 − 1
MEDIUMINT 3 0 to 224 − (223) to 223 − 1

INT 4 0 to 232 − (231) to 231 − 1
BIGINT 8 0 to 264 − (263) to 263 − 1

The BOOLEAN type is a synonym for TINYINT where a value of zero is considered false
and non-zero values are considered true.

The DECIMAL type allows the storage of fixed-point numbers. For floating-point
numbers, the types FLOAT and DOUBLE are provided, where FLOAT is stored in single-
precision (32 bits) and DOUBLE is stored in double-precision (64 bits).

Date and Time The DATE type allows the storage of dates in the range ’1000-01-
01’ to ’9999-12-31’. The DATETIME type extends DATE by a time in the range from
’00:00:00’ to ’23:59:59’ . The TIME type stores time in the range from ’-838:59:59’ to
’838:59:59’.

A TIMESTAMP is in the range from ’1970-01-01 00:00:01’ UTC to ’2038-01-19 03:14:07’
UTC and is stored as the number of seconds since the UNIX epoch (’1970-01-01 00:00:00’
UTC).

18

4.2. Queries

Strings For the storage of text, the types CHAR, TEXT and VARCHAR are available.
TEXT has several variants of different maximum size, much like the integer types.

BINARY, VARBINARY and BLOB behave in much the same way, but do not respect a
specific character encoding and can store any binary data.

4.1.2. Column Attributes

Furthermore, several attributes to change the behaviour of table columns are available.

Upon creation, one column per table can be declared as PRIMARY KEY, which then
stores a unique identifier for each data record. The uniqueness is enforced by SQL and
trying to insert duplicate values results in an error. This column could be a string storing
names, but most common is the usage of an integer type with the AUTO_INCREMENT
attribute. This attribute automatically assigns ascending numbers in the case that no
value is provided. The NOT NULL constraint is also implied.

The UNIQUE constraint provides similar behaviour as the primary key, but can be defined
on any columns and does not imply NOT NULL.

A FOREIGN KEY allows to reference the primary key of another table. Instead of just
storing the value, this has the advantage that SQL enforces integrity. Only values that
are present in the referenced table or NULL are considered valid and when a referenced
entry is deleted, action is taken to preserve integrity. It can be specified whether the
referencing entry should be deleted too or set to NULL.

The PRIMARY KEY and UNIQUE constraints have another very useful property. The
values are indexed and stored in a B-tree1, which allows for very fast retrieval of specific
values. Without an index, finding all matching entries requires iterating over the whole
table.

4.2. Queries

The most common operation in SQL is retrieving data via a query. This is accomplished
with the SELECT keyword. The general structure of a query is

1A tree-like data structure that performs most operations in logarithmic time.

19

4. SQL and MySQL

SELECT columns FROM tab l e s WHERE cond i t i on GROUP BY column
HAVING cond i t i on ORDER BY column LIMIT count ;

Most of the keywords are optional and the parameters allow arbitrary complex constructs,
even nesting queries is possible. On the other hand, queries can be as simple as

SELECT 6∗7 ;

or the more useful

SELECT ∗ FROM tab l e ;

to select all rows from the given table. The WHERE clause indicates the conditions that
rows must satisfy to be selected. The GROUP BY clause groups rows according to the
values in the specified columns and is mostly used in conjunction with aggregate functions.
The HAVING clause imposes additional conditions on the selected values. In contrast to
the WHERE clause, it can be used with aggregate functions. Similar to GROUP BY, the
ORDER BY clause sorts according to the specified columns. The order can be modified
with ASC for ascending or DESC for descending. Finally, the LIMIT clause restricts the
number of selected rows to the given value.

Aggregate functions take a set of values and return a single value. They include:

COUNT returns the number of selected rows.

MIN selects the smallest value in the set.

MAX returns the largest value in the set.

AVG calculates the average value. NULL values are ignored.

SUM returns the sum of all given values. NULL is ignored.

4.2.1. Joins

As the desired values can often be distributed over several tables, joins allow queries to
span multiple tables and combine the selected rows according to different rules.

INNER JOIN: An INNER JOIN without any additional conditions will return the
Cartesian product of both tables. Otherwise, all combinations of rows that match the
condition are returned.

20

4.2. Queries

LEFT JOIN: A LEFT JOIN is similar to INNER JOIN, but it returns all matching
entries from the left table, even if no corresponding entries from the right table were
found. The unavailable entries from the right table are filled with NULL.

RIGHT JOIN: A RIGHT JOIN is functionally equivalent to the LEFT JOIN, only
the roles of the tables are reversed.

OUTER JOIN: An OUTER JOIN combines the behaviour of LEFT JOIN and RIGHT
JOIN. All entries from both tables are returned. If two entries from both tables match,
they are combined in a single row. Otherwise, the columns of the other table are filled
with NULL.

21

5. New HappyFace Modules

Administrating a large system like the GoeGrid is facilitated by the availability of up-to-
date information from all running services.

The PanDA (Production and Distributed Analysis) [46] system is used for job submission
and distribution in the ATLAS Distributed Computing (ADC) [47] infrastructure, which
is part of the WLCG.

While monitoring information from PanDA is available and accessible via its own
HappyFace modules, this information is not always up-to-date and is specific to the
PanDA service. It is not suitable to ascertain the health of the underlying services or
monitor jobs that are submitted by other means.

With the framework provided by HappyFace, two modules were developed to address
these shortcomings and to provide detailed real-time monitoring data. These modules are
described in the following.

5.1. CREAM CE Module

The CREAM CE module was developed within this thesis with the goal of providing
detailed information and statistics of all jobs managed by one CREAM instance. An
overall summary is provided as well as more detailed statistics concerning queues, users
and worker nodes. Figure 5.1 shows the queue summary.

5.1.1. Database Interface

To generate statistics, the CREAM module directly interfaces with the SQL database of
the CREAM service. This database with the scheme shown in Figure 5.2 is usually called

23

5. New HappyFace Modules

Figure 5.1.: Queue summary as provided by the CREAM module.

creamdb. The relevant tables are job, job_status and job_status_type_description. The
central table is the job table, where every job currently registered to CREAM is listed.
Each job is identified by a unique id and other useful attributes are queue as well as userId,
localUser, workerNode and lrmsAbsLayerJobId, which contains the job ID assigned by the
LRMS.

The table job_status keeps track of the state of each registered job. Every time a job
changes its state as described in Section 2.3.1, a new entry is added to the table. The
corresponding job is identified by the jobId attribute while timestamp contains the time
the change occurred and type denotes the new state the job switched to. Additionally,
exitCode or failureReason are set in the case that the job finished or failed. The name
attribute in job_status_type_description provides a human readable representation of the
job status.

Upon database creation, the table job_status_type_description is initialised with the
mapping between the status numbers from 0 to 10 and names [28]:

0. REGISTERED: the job has been registered (but not started yet).

1. PENDING: the job has been started, but it is still to be submitted to BLAH.

2. IDLE: the job is idling in the Local Resource Management System (LRMS).

3. RUNNING: the job wrapper which “encompasses” the user job is running in the
LRMS.

4. REALLY_RUNNING: the actual user job (the one specified as Executable in
the job JDL) is running in the LRMS.

24

5.1. CREAM CE Module

5. CANCELLED: the job has been cancelled.

6. HELD: the job is held (suspended) in the LRMS.

7. DONE_OK: the job has successfully been executed.

8. DONE_FAILED: the job has been executed, but some errors occurred.

9. PURGED: the job has been purged.

10. ABORTED: errors occurred during the “management” of the job, e.g. the
submission to the LRMS abstraction layer software (BLAH) failed.

Figure 5.2.: CREAM database layout.

To get a list of all queues, the query
SELECT DISTINCT queue FROM job ;

25

5. New HappyFace Modules

is used. Statistics for one queue can then be extracted by executing the query
SELECT type , count (∗) FROM job_status WHERE id IN

(SELECT MAX(id) FROM job_status WHERE JobId IN
(SELECT id FROM job WHERE queue=:q) GROUP BY JobId)

GROUP BY type WITH ROLLUP;

where :q is a placeholder for the queue name. This query first extracts all jobs assigned
to the queue with the subquery:
SELECT id FROM job WHERE queue=:q

The result is then used to acquire the most recent job_status entry by means of the
subquery:
SELECT MAX(id) FROM job_status WHERE JobId IN (. . .) GROUP BY JobId

“MAX(id)” and “GROUP BY JobId” are employed to get the current job_status entry for
each distinct JobId. As the id attribute is unique and has the auto increment property, the
entry with the largest id for one JobId is guaranteed to be the most recent. The timestamp
attribute on the other hand is not suitable, because it only has a second resolution but
some state changes take less time and therefore have identical timestamps. Additionally,
the timestamp is not always guaranteed to be exact and could vary when for example the
system time is adjusted over NTP1.

The outermost part
SELECT type , count (∗) FROM job_status WHERE id IN (. . .)
GROUP BY type WITH ROLLUP;

then counts the number of occurrences for each type. In addition, “WITH ROLLUP”
provides the total for all types.

This can then be repeated for userId and workerNode to gather additional statistics.

To calculate the total for all jobs, the query
SELECT type , count (∗) FROM job_status WHERE id IN

(SELECT MAX(id) FROM job_status GROUP BY JobId)
GROUP BY type WITH ROLLUP;

is used.

This approach has several flaws:
1Network Time Protocol used for clock synchronisation.

26

5.1. CREAM CE Module

• Even though only the most recent state is considered, it is counted regardless of
the type. For most states this is the intended behaviour, but for CANCELLED,
DONE_OK, DONE_FAILED, PURGED and ABORTED, the corresponding jobs
are counted as long as the database entry exists. Those jobs are therefore counted
until the entry is purged by CREAM, which causes finished jobs to “pile up” followed
by a drop when the entries are removed.

• A large amount of queries is generated. Including the per-node statistics, over 300
queries would be issued each time. This could cause unnecessary load on the server.

To eliminate the first issue, job states are divided into two groups:

• The jobs that are still somehow active in CREAM: REGISTERED, PENDING,
IDLE, RUNNING, REALLY_RUNNING, HELD

• Jobs that are no longer active and have reached one of the final states CANCELLED,
DONE_OK, DONE_FAILED, PURGED, ABORTED

The first group can be handled as before while the second group requires an additional
check whether the job finished in the last readout interval2 or not. This check should
be performed on the database server as the clock on the HappyFace server could differ.
This would also require to first fetch the information for all affected jobs. While no job
is counted too often with this approach, it is still theoretically possible to miss jobs in
the case that entries are removed from the database before a readout happens. As this
problem is caused by CREAM CE and should only affect a small fraction of jobs, this
issue was not further investigated.

The second issue can be addressed by carefully rewriting the queries as it is possible to
reduce the necessary amount to one query per summary. The queries are also adapted to
take advantage of SQLAlchemy instead of using raw SQL. The queries in the following
examples are the SQL output as generated by SQLAlchemy. The query addressing both
issues is:
SELECT job . queue , job_status . type , count (∗) AS count_1 FROM job

INNER JOIN job_status ON job . id = job_status . ‘ jobId ‘
WHERE job_status . id IN (SELECT max(job_status . id) AS max_1

FROM job_status GROUP BY job_status . ‘ jobId ‘)
AND (job_status . type IN (0 , 1 , 2 , 3 , 4 , 6)
OR job_status . type NOT IN (0 , 1 , 2 , 3 , 4 , 6)
AND time_stamp > CURRENT_TIMESTAMP − INTERVAL 15 MINUTE)

GROUP BY job . queue , job_status . type ;

2This is 15 minutes for the default HappyFace configuration.

27

5. New HappyFace Modules

The subquery
SELECT max(job_status . id) AS max_1 FROM job_status

GROUP BY job_status . ‘ jobId ‘

is again used to select the most recent job_status entry for each job. The condition
WHERE job_status . id IN (. . .)

AND (job_status . type IN (0 , 1 , 2 , 3 , 4 , 6)
OR job_status . type NOT IN (0 , 1 , 2 , 3 , 4 , 6)
AND time_stamp > CURRENT_TIMESTAMP − INTERVAL 15 MINUTE)

then selects only those who are either in an “active” state or have finished in the last
15 minutes. The integers correspond to the states REGISTERED, PENDING, IDLE,
RUNNING, REALLY_RUNNING and HELD. The outermost part
SELECT job . queue , job_status . type , count (∗) AS count_1 FROM job

INNER JOIN job_status ON job . id = job_status . ‘ jobId ‘
WHERE . . .

GROUP BY job . queue , job_status . type ;

then adds a column from the job table, in this case queue, and by grouping the queue and
type entries generates the summary for all queues at once.

A similar problem concerning large amounts of queries arose while adding a detailed
per-node job listing to the worker node summary. The first approach was to query the
running jobs separately for each node. This resulted in very poor performance and about
300 queries on each readout. Further investigation revealed that most time was spent on
selecting jobs corresponding to the specified node. As the CREAM database does not
have an index for the workerNode attribute, this query required the server to check each
entry of the job table which was then repeated about 300 times.

One possible solution would be adding an index for the workerNode attribute, which
should speed up the queries considerably. This has the downside that a change to the
CREAM database is required and neglecting to do so would at best result in an unusable
module and could at worst substantially affect the CREAM service. Therefore, a different
and less invasive approach was chosen: Retrieving the relevant jobs for all worker nodes
is fast and can be done in only one query. The module then assigns the jobs to the nodes
by iterating a single time over the list, which happens in linear time. This also avoided
the same issue on the HappyFace database.

An unexpected performance issue was encountered when the module was moved from the
development to the production system.

While the runtime of the queries was in the order of one-tenth second on the development
system, each query took several minutes on the production system. At first it was believed

28

5.1. CREAM CE Module

that this discrepancy was the result of a different MySQL configuration or a missing
database index, but comparing the MySQL configurations did not lead to a conclusive
result.

To investigate this problem, a virtual machine running Scientific Linux 6, the same
distribution as used on the production system, was created on the development system.

The offending query
SELECT job . queue , job_status . type , count (∗) AS count_1 FROM job

INNER JOIN job_status ON job . id = job_status . ‘ jobId ‘
WHERE job_status . id IN (SELECT max(job_status . id) AS max_1

FROM job_status GROUP BY job_status . ‘ jobId ‘)
AND (job_status . type IN (0 , 1 , 2 , 3 , 4 , 6)
OR job_status . type NOT IN (0 , 1 , 2 , 3 , 4 , 6)
AND time_stamp > CURRENT_TIMESTAMP − INTERVAL 15 MINUTE)

GROUP BY job . queue , job_status . type ;

was incrementally shortened by removing all parts that did not have a negative effect on
the performance. The resulting query was:
SELECT job_status . type FROM job_status WHERE job_status . id

IN (SELECT max(job_status . id) FROM job_status
GROUP BY job_status . jobId) ;

Applying the EXPLAIN statement to this query shows information about how it is
executed. On the development system this leads to an output of

id select_type table type possible_keys key key_len ref rows Extra

1 PRIMARY <subquery2> ALL distinct_key NULL NULL NULL 23357

1 PRIMARY job_status eq_ref PRIMARY PRIMARY 8 1

2 MATERIALIZED job_status index NULL fk_jobStatus_jobId_job_id 16 NULL 23357 Using index

while on the virtual machine, the output is:

id select_type table type possible_keys key_len ref rows Extra

1 PRIMARY job_status index NULL 4 NULL 19442 Using where; Using index

2 DEPENDENT SUBQUERY job_status index NULL 16 NULL 3 Using index

The Extra column reveals that an index is used for all parts of the query, so a missing

index is probably not the cause. Very interesting on the other hand is the select_type
value for the subquery. On the development system, the type is set to MATERIALIZED
while on the virtual machine it is DEPENDENT SUBQUERY.

29

5. New HappyFace Modules

DEPENDENT SUBQUERY leads to the execution of the subquery for every element
checked in the primary query and while the result of the subquery does not change during
the execution of the primary query, the result is not reused but rather recalculated every
time.

The MATERIALIZED subquery on the other hand is executed only once and the result is
cached and reused for all rows checked by the primary query. This difference in behaviour
can be explained by different versions of MySQL. While the development system uses
MySQL 5.5, MySQL 5.1 is running on the virtual machine and the newer version offers
some improvements in terms of query optimisation. Fortunately, as the issue is caused
by the poor efficiency of the IN statement, the query can be rewritten to instead use the
INNER JOIN statement:
SELECT job . queue , job_status . type , count (∗) AS count_1 FROM

(SELECT max(job_status . id) AS m
FROM job_status GROUP BY job_status . ‘ jobId ‘) AS a

INNER JOIN job_status ON job_status . id = m
INNER JOIN job ON job . id = job_status . ‘ jobId ‘

WHERE job_status . type IN (0 , 1 , 2 , 3 , 4 , 6)
OR job_status . type NOT IN (0 , 1 , 2 , 3 , 4 , 6)
AND time_stamp > CURRENT_TIMESTAMP − INTERVAL 15 MINUTE

GROUP BY job . queue , job_status . type ;

This variant is over a thousand times faster on the virtual machine and shows no noticeable
difference on the development machine.

5.1.2. Database Layout

The first version of the module stored data in a similar fashion it was later displayed on
the web page. For the queue, user and node summary one database table for each is used.

This means that the tables have fixed width since each possible state is stored in a separate
column. As each summary requires a new table, additional changes are necessary to add
a new one. Since the type and layout of the stored information is almost identical in all
cases, this was considered a superfluous complication. The fixed width was regarded as
an unnecessary dependency on internal details of CREAM.

The layout was later rewritten to use a more general and flexible approach. The values
are stored as a tuple consisting of type, name, local_name, status and count. type is either
“queue”, “user” or “node” and name stores the name of the corresponding queue, user
or worker node. local_name is only set for the user summary and stores the user name

30

5.1. CREAM CE Module

Figure 5.3.: Node summary with detailed information for one node.

used on PBS while name stores the Grid user. status stores the CREAM status and
count the number of jobs. As a result of the used CREAM database query, states with a
count of zero are not reported and not stored in the HappyFace database, which reduces
the amount of data further. This change allows to store all summaries in one table and
permits easy expansion for new summaries.

5.1.3. HTML Template

The template contains the two helper functions table and printRow. The table function
takes the arguments title, which is the title shown on top of the table and list, which is a
list of all (type, name, local_name, status, count) tuples in the table. The other arguments
are not used by default and may add additional information to the table. For the user
summary, the secondaryColumn and secondaryName arguments are used to add an extra
column for the local user. Finally, the subtable argument adds an additional row for each
entry which is hidden by default and adds detailed job information to the node summary.
This is shown in Figure 5.3.

5.1.4. Plotting

While the tables display detailed status information, they only cover the state of one
readout interval and important values could simply be overlooked. It is therefore desirable
to provide a quick overview by condensing the history over a longer period, preferably
into a visual representation. For this purpose, HappyFace provides the Dynamic Plot
Generator based on matplotlib that is capable of generating graphs of values stored in
the HappyFace database. The plot generator is accessible via a set of functions as well as
a web interface.

31

5. New HappyFace Modules

The plot generator takes a number of parameters which describe how the desired output
should be generated. The desired time interval is specified with the start_date, start_time,
end_date and end_time parameters. Furthermore, the title as well as the placement of
the legend may be declared.

Curves are defined by specifying the module instance name, subtable and column. If the
subtable is omitted, values are fetched from the main module table. Additionally, filters
can be added to impose constraints on the allowed values. This is used to separate the
curves by limiting each to a specific type.

A table storing all values for the plot generator is added. It contains the type and total
count for all jobs.

5.2. PBS Module

Figure 5.4.: Queue summary as provided by the PBS module.

The first version of the PBS module was developed during the Spezialisierungspraktikum.
The module provides functionality similar to the CREAM module, but instead of
interfacing with the CREAM database, it uses data provided by the underlying PBS
service in the form of a log file. Compared to the CREAM module, it does not provide
any information of the Grid user who submitted a job, but on the other hand shows jobs
that were not submitted through the Grid infrastructure but directly to PBS. Figure 5.4
shows a part of the module web page.

32

5.2. PBS Module

5.2.1. Qstat File Format

PBS provides information about the jobs currently registered to the system in the form
of a log file. This log file contains a list of all jobs as well as detailed information for each
job. An abbreviated entry for one job looks like this:

Job Id : 16800068. pbs−goegr id . l o c a l
Job_Name = crea2_675925389
Job_Owner = atplt010@creamce2 . l o c a l
resources_used . cput = 00 : 00 : 27
resources_used .mem = 119492kb
resources_used .vmem = 541532kb
resources_used . wal l t ime = 09 : 33 : 24
job_state = R
queue = atlasXL

Each entry starts with a unique job ID followed by the job attributes of the form
attribute_name = value. An entry usually takes one line, but longer entries can be
split across several lines, each indented by one tabulator. extractData parses the log file
and stores all jobs and their attributes in a Python dictionary for further processing. Of
all the present attributes, only a few are actually evaluated.

The field job_state contains a one-character code to indicate the job state:

Q – The job is queued and will run when the resources are available.

R – The job is running.

H – The job is held and will stay in that state until released or cancelled.

The field queue indicates to which queue the job belongs. This is used to generate a
per-queue summary. The user name is extracted by splitting the Job_Owner field. This
is used to generate a per-user summary.

5.2.2. Adaption of CREAM Module

While the development of the PBS module started before the CREAM module, both
modules are similar in functionality. The PBS module was therefore later adapted to use
a similar database layout as the CREAM module. This allowed to share code between
both modules and made rendering and plotting available for both modules.

33

6. Estimation

Figure 6.1 shows the data collected so far. The values fluctuate, but the biggest
contributions in normal operation over the observed period are the really_running jobs,
followed by the idle jobs. A nearly constant amount of running jobs is also present. Most
jobs finish as done_ok while some are occasionally cancelled or done_failed.

81203 jobs reached a final state. The following table shows a breakdown of the involved
states.

State Count Fraction
CANCELLED 2077 2.56%
DONE_OK 61596 75.85%
DONE_FAILED 5478 6.75%
PURGED 0 0.00%
ABORTED 12052 14.84%

Most jobs reached the done_ok state, as would be expected for normal operation. About
15% of the jobs were aborted, most of them during an outage. About 7% reached the
done_failed state and nearly 3% were cancelled, which can be considered normal.

Two outages were recorded during the observation. The short Python script in Listing
A.1 was used to create the plots from the HappyFace database.

The first outage occurred around the 17th of January, as can be seen in Figure 6.2. The
increasing number of aborted jobs is the first indication of the failure, reaching over 50
jobs in 15 minutes and peaking at about 150. Aborted jobs denote errors during job
management and as it turned out, the failure was indeed caused by a misconfiguration
of PBS, which did no longer accept submitted jobs. This is accompanied by a rising
amount of registered and pending jobs and a decreasing amount of done_ok jobs. The
number of idle and really_running jobs steadily drops. This is not surprising as PBS no
longer spawns new jobs. Those jobs then stay registered or pending or are aborted. As

35

6. Estimation

20
14

-0
1 -
04

20
14

-0
1 -
05

20
14

-0
1 -
06

20
14

-0
1 -
07

20
14

-0
1 -
08

20
14

-0
1 -
09

20
14

-0
1 -
10

20
14

-0
1 -
11

20
14

-0
1 -
12

20
14

-0
1 -
13

20
14

-0
1 -
14

20
14

-0
1 -
15

20
14

-0
1 -
16

20
14

-0
1 -
17

20
14

-0
1 -
18

20
14

-0
1 -
19

20
14

-0
1 -
20

20
14

-0
1 -
21

20
14

-0
1 -
22

20
14

-0
1 -
23

20
14

-0
1 -
24

0

200

400

600

800

1000

Jo
b
s

REGISTERED

DONE_OK

IDLE

RUNNING

REALLY_RUNNING

CANCELLED

ABORTED

PENDING

DONE_FAILED

PURGED

HELD

Figure 6.1.: Monitoring data collected by the CREAM CE HappyFace module for a
specific CREAM instance.

the amount of really_running jobs decreases, less jobs reach the done_ok state. After
the issue was resolved, the values quickly returned to their original amount with only the
registered jobs staying at an elevated level.

Another outage happened between the 20th and 24th of January and is shown in Figure
6.3. Notable is a sudden jump in the number of registered jobs between the 18th and
19th, peaking at about 800, even overtaking the amount of really_running jobs.

The amount of registered jobs then suddenly drops two days later. As there is no increase
of any other job states at this time and both points are exactly two days apart, it is safe
to assume that those jobs triggered a timeout and were purged from the database by
CREAM. The number of really_running jobs also drops similar to the first outage, but
the amount of idle jobs remains relatively constant and then drops about two days later.
Another difference is the absence of aborted jobs and a sudden reduction of running jobs.
The done_ok jobs also diminish slightly.

During this time, the submission ob jobs from CREAM to PBS failed frequently. The
exact cause is unknown, but restarting PBS rectified the issue.

36

20
14

-0
1 -
17

0

200

400

600

800

Jo
b
s

REGISTERED

DONE_OK

IDLE

RUNNING

REALLY_RUNNING

CANCELLED

ABORTED

PENDING

DONE_FAILED

PURGED

HELD

Figure 6.2.: Collected data during an outage around the 17th of January.

20
14

-0
1 -
21

20
14

-0
1 -
22

20
14

-0
1 -
23

0

200

400

600

800

1000

Jo
b
s

REGISTERED

DONE_OK

IDLE

RUNNING

REALLY_RUNNING

CANCELLED

ABORTED

PENDING

DONE_FAILED

PURGED

HELD

Figure 6.3.: Collected data during an outage between the 20th and 24th of January.

37

7. Conclusion and Outlook

7.1. Conclusion

The developed modules successfully provide detailed real-time monitoring of PBS and
CREAM CE, therefore meeting the set goal. Both modules produce general statistics
which allow to quickly assert the overall health of the monitored services as well as more
detailed information that may help to narrow down the cause of a failure. This is further
facilitated by providing a visualisation of the recorded history.

The inclusion of both modules in the official repository allows other Grid sites apart from
GoeGrid to benefit from the HappyFace development. Additionally, as more modules
become available, the attractiveness of HappyFace for other computer centres increases,
possibly leading to the adaption of HappyFace as meta-monitoring tool.

7.2. Outlook

The modules presently provide solely informational functionality, meaning that they
collect and visualise monitoring information but do not derive a rating. As described in
Chapter 6 there are several quantities which could indicate errors, but further observation
and research is necessary to better understand correlations between the values and to
identify different kinds of failures.

The CREAM module currently interfaces directly with the database. The access to the
database is restricted to read-only, but it is not desirable or even possible to expose
the database for monitoring purposes, as some of the exposed information could lead to
security issues. This could hinder the adaption of this module at other sites.

It would therefore be desirable to create an additional layer between the database and
the module. This layer could then aggregate monitoring-relevant information from the

39

7. Conclusion and Outlook

database and remove security-relevant and unnecessary information. By using a suitable
protocol, this layer could also handle user-authentication and remote access.

Both modules use the HappyFace plot generator for data visualisation and generate an
overview over the last 24 hours. While the plot generator is suitable for this use case, it
is not very versatile and does not provide many options to customise the output.

The direct use of matplotlib or a similar library would allow to provide a more informative
and appealing visualisation. As the number of jobs per time interval reaching a final state
is very low and fluctuating, readability could be improved by integrating over the whole
plotted interval, which is not feasible with the plot generator.

40

A. Appendix

1 from sq la lchemy import ∗
2 import datet ime
3 import matp lo t l i b . pyplot as p l t
4 from matp lo t l i b . dates import DayLocator , HourLocator , DateFormatter , drange
5 from numpy import arange
6
7 eng ine = create_engine (’ s q l i t e :///HappyFace . db ’)
8 meta = MetaData ()
9 meta . bind = engine
10 hf_runs = Table (’ hf_runs ’ , meta , auto load=True)
11 sub_creamce_status = Table (’ sub_creamce_status ’ , meta , auto load=True)
12
13 r e s = s e l e c t ([hf_runs . c . time , sub_creamce_status . c . s tatus , func .sum(sub_creamce_status . c .

count)]) . group_by (sub_creamce_status . c . parent_id) . group_by (sub_creamce_status . c .
s t a tu s) . se l ect_from (hf_runs . j o i n (sub_creamce_status , hf_runs . c . id==sub_creamce_status .
c . parent_id)) . where (sub_creamce_status . c . type==’ queue ’) . execute ()

14
15 t = []
16 s = [[] , [] , [] , [] , [] , [] , [] , [] , [] , [] , []]
17
18 currdate = None
19
20 for i in r e s :
21 i f i [0] != currdate :
22 currdate = i [0]
23 t . append (cur rdate)
24 for x in range (0 , 11) :
25 s [x] . append (0)
26
27 s [i [1]] [−1]= i [2]
28
29 f i g , ax = p l t . subp lo t s ()
30
31 c o l o r s = [’b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ , ’ l ime ’ , ’ purp le ’ , ’ orangered ’ , ’ brown ’]
32
33 for x in range (0 , 11) :
34 ax . plot_date (t , s [x] , ’− ’ , c o l o r=c o l o r s [x])
35
36 legend = [’REGISTERED ’ , ’PENDING’ , ’IDLE ’ , ’RUNNING’ , ’REALLY_RUNNING’ , ’CANCELLED’ , ’HELD’ , ’

DONE_OK’ , ’DONE_FAILED’ , ’PURGED’ , ’ABORTED’]
37
38 ax . l egend (legend , l o c=’ upper␣ cente r ’ , bbox_to_anchor=(0.5 , 1 . 1) , nco l =3, fancybox=True ,

shadow=True)
39

41

A. Appendix

40 ax . set_xlim (t [0] , t [−1])
41 ax . set_ylim (0 ,1100)
42
43 ax . xax i s . set_major_locator (DayLocator ())
44 ax . xax i s . set_minor_locator (HourLocator (arange (0 , 25 , 6)))
45 ax . xax i s . set_major_formatter (DateFormatter (’%Y−%m−%d ’))
46
47 ax . s e t_y labe l (’ Jobs ’)
48
49 ax . fmt_xdata = DateFormatter (’%Y−%m−%d␣%H:%M:%S ’)
50 f i g . autofmt_xdate ()
51
52 p l t . show ()

Listing A.1: Python script to visualise monitoring data.

42

Bibliography

[1] Large Hadron Collider (LHC), URL http://home.web.cern.ch/about/
accelerators/large-hadron-collider

[2] European Organization for Nuclear Research (CERN), URL http://www.cern.ch/

[3] A Large Ion Collider Experiment (ALICE), URL http://aliceinfo.cern.ch/

[4] A Toroidal LHC ApparatuS Collaboration (ATLAS), URL http://atlas.web.
cern.ch/Atlas/Collaboration/

[5] Compact Muon Solenoid (CMS) Experiment, URL http://cms.web.cern.ch/

[6] Large Hadron Collider beauty (LHCb), URL http://lhcb.web.cern.ch/lhcb/

[7] G. Aad, et al. (ATLAS Collaboration), Observation of a new particle in the search
for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys.Lett.
B716, 1 (2012), 1207.7214

[8] S. Chatrchyan, et al. (CMS Collaboration), Observation of a new boson at a mass
of 125 GeV with the CMS experiment at the LHC, Phys.Lett. B716, 30 (2012),
1207.7235

[9] Worldwide LHC Computing Grid (WLCG), URL http://wlcg.web.cern.ch/

[10] The CERN Data Centre, URL http://information-technology.web.cern.ch/
about/computer-centre

[11] Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), URL
http://www.gwdg.de/

[12] D-Grid, URL http://www.d-grid.de/

[13] MediGRID, URL http://www.medigrid.de/

43

http://home.web.cern.ch/about/accelerators/large-hadron-collider
http://home.web.cern.ch/about/accelerators/large-hadron-collider
http://www.cern.ch/
http://aliceinfo.cern.ch/
http://atlas.web.cern.ch/Atlas/Collaboration/
http://atlas.web.cern.ch/Atlas/Collaboration/
http://cms.web.cern.ch/
http://lhcb.web.cern.ch/lhcb/
1207.7214
1207.7235
http://wlcg.web.cern.ch/
http://information-technology.web.cern.ch/about/computer-centre
http://information-technology.web.cern.ch/about/computer-centre
http://www.gwdg.de/
http://www.d-grid.de/
http://www.medigrid.de/

Bibliography

[14] TextGRID, URL http://www.textgrid.de/

[15] Scientific Linux, URL https://www.scientificlinux.org/

[16] Red Hat Enterprise Linux, URL http://www.redhat.com/products/
enterprise-linux/

[17] M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, C. Waldman, dCache, a
distributed storage data caching system, CHEP (2001)

[18] L. Field, M. Schulz, Grid deployment experiences: The path to a production quality
LDAP based grid information system pages 723–726 (2005)

[19] P. Andreetto, et al., CREAM: A simple, Grid-accessible, Job Management System
for local Computational Resources, CHEP (2006)

[20] I. Foster, C. Kesselman, editors, The Grid: Blueprint for a New Computing Infras-
tructure, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)

[21] I. Foster, What is the Grid? - a three point checklist, GRIDtoday 1(6) (2002)

[22] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M. Barroso,
P. Buncic, P. Z. Kunszt, A. Di Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini,
M. Sgaravatto, O. Mulmo, Middleware for the next generation Grid infrastructure
(EGEE-PUB-2004-002), 4 p (2004)

[23] Torque Batch System, URL http://www.adaptivecomputing.com/products/
open-source/torque/

[24] Maui Batch Scheduler, URL http://www.adaptivecomputing.com/products/
open-source/maui/

[25] IBM Platform LSF, URL http://www-03.ibm.com/systems/
technicalcomputing/platformcomputing/products/lsf/

[26] Oracle Grid Engine, URL http://www.oracle.com/technetwork/oem/
grid-engine-166852.html

[27] Apache Tomcat, URL http://tomcat.apache.org/

[28] CREAM User’s Guide, URL https://wiki.italiangrid.it/twiki/bin/view/
CREAM/UserGuideEMI3

44

http://www.textgrid.de/
https://www.scientificlinux.org/
http://www.redhat.com/products/enterprise-linux/
http://www.redhat.com/products/enterprise-linux/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/maui/
http://www.adaptivecomputing.com/products/open-source/maui/
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/
http://www.oracle.com/technetwork/oem/grid-engine-166852.html
http://www.oracle.com/technetwork/oem/grid-engine-166852.html
http://tomcat.apache.org/
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuideEMI3
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuideEMI3

Bibliography

[29] S. Zanikolas, R. Sakellariou, A Taxonomy of Grid Monitoring Systems, Future Gener.
Comput. Syst. 21(1), 163 (2005)

[30] V. Büge, V. Mauch, G. Quast, A. Scheurer, A. Trunov, Site specific monitoring of
multiple information systems – the HappyFace Project, Journal of Physics: Confer-
ence Series 219(6), 062057 (2010)

[31] HappyFace, URL https://ekptrac.physik.uni-karlsruhe.de/trac/HappyFace

[32] HappyFace instance for GoeGrid, URL http://happyface-goegrid.gwdg.de/

[33] Python Programming Language - Official Website, URL http://www.python.org/

[34] Cherrypy: A Python Minimalist Framework, URL http://www.cherrypy.org/

[35] SQLAlchemy, URL http://www.sqlalchemy.org/

[36] SQLAlchemy Schema Migration Tools, URL https://code.google.com/p/
sqlalchemy-migrate/

[37] Mako Templates for Python, URL http://www.makotemplates.org/

[38] SQLite Database Engine, URL http://www.sqlite.org/

[39] MySQL Database, URL http://www.mysql.com/

[40] PostgreSQL Database, URL http://www.postgresql.org/

[41] HappyFace 3.0 RC1 documentation, URL http://ekphappyface.physik.
uni-karlsruhe.de/~happyface/docs/index.html

[42] MariaDB, URL https://mariadb.org/

[43] Oracle Database, URL http://www.oracle.com/us/products/database/
overview/index.html

[44] Microsoft SQL Server, URL http://www.microsoft.com/en-us/sqlserver/
default.aspx

[45] MySQL Reference Manual, URL http://dev.mysql.com/doc/en/

[46] T. Maeno, PanDA: distributed production and distributed analysis system for ATLAS,
Journal of Physics: Conference Series 119(6), 062036 (2008)

45

https://ekptrac.physik.uni-karlsruhe.de/trac/HappyFace
http://happyface-goegrid.gwdg.de/
http://www.python.org/
http://www.cherrypy.org/
http://www.sqlalchemy.org/
https://code.google.com/p/sqlalchemy-migrate/
https://code.google.com/p/sqlalchemy-migrate/
http://www.makotemplates.org/
http://www.sqlite.org/
http://www.mysql.com/
http://www.postgresql.org/
http://ekphappyface.physik.uni-karlsruhe.de/~happyface/docs/index.html
http://ekphappyface.physik.uni-karlsruhe.de/~happyface/docs/index.html
https://mariadb.org/
http://www.oracle.com/us/products/database/overview/index.html
http://www.oracle.com/us/products/database/overview/index.html
http://www.microsoft.com/en-us/sqlserver/default.aspx
http://www.microsoft.com/en-us/sqlserver/default.aspx
http://dev.mysql.com/doc/en/

Bibliography

[47] S. Jézéquel, G. Stewart, ATLAS Distributed Computing Operations: Experience and
improvements after 2 full years of data-taking, Journal of Physics: Conference Series
396(3), 032058 (2012)

46

Danksagung

Zunächst möchte ich Prof. Dr. Arnulf Quadt danken, der mir die Möglichkeit gegeben
hat an diesem interessanten Thema zu arbeiten. Außerdem möchte ich ihm und meinem
Zweitgutacher Priv.Doz. Dr. Jörn Große-Knetter für die Zeit und Mühe danken, die sie
für meine Bachelorarbeit aufwenden.

Weiterhin gilt mein Dank Dr. Gen Kawamura, Erekle Magradze, Haykuhi Musheghyan
und Dr. Jordi Nadal für ihre Unterstützung und ihren Rat sowie für die freundliche
Arbeitsatmosphäre.

Schließlich danke ich Christian Wehrberger für seine entscheidene Unterstützung zu Be-
ginn meiner Arbeit sowie Nikolai Wyderka, Robert Czechowski, Martin Ochmann, Jan-
jenka Szillat, Johannes Frey und Christopher Eckner.

47

Erklärung nach §13(8) der Prüfungsordnung für den Bachelor-Studiengang Phy-
sik und den Master-Studiengang Physik an der Universität Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig ver-
fasst habe, keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe und alle Stellen, die wörtlich oder sinngemäß aus veröf-
fentlichten Schriften entnommen wurden, als solche kenntlich gemacht
habe.
Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch
nicht auszugsweise, im Rahmen einer nichtbestandenen Prüfung an
dieser oder einer anderen Hochschule eingereicht wurde.

Göttingen, den 11. Februar 2014

(Eric Buschmann)

	1 Introduction
	1.1 WLCG
	1.2 GoeGrid

	2 Grid and Job Scheduling System
	2.1 Grid
	2.2 PBS
	2.3 CREAM
	2.3.1 Job Life Cycle
	2.3.2 JDL
	2.3.3 Database

	3 The HappyFace Project
	3.1 Monitoring
	3.2 Meta-Monitoring
	3.3 The HappyFace Project
	3.4 Versions
	3.5 Installation
	3.6 Configuration
	3.7 Database
	3.8 Modules
	3.8.1 Module Structure
	3.8.2 Module Configuration
	3.8.3 Category Configuration
	3.8.4 Module Rating

	3.9 SQLAlchemy
	3.9.1 Reflection
	3.9.2 Backends

	3.10 Mako

	4 SQL and MySQL
	4.1 Database Schemes
	4.1.1 Data Types
	4.1.2 Column Attributes

	4.2 Queries
	4.2.1 Joins

	5 New HappyFace Modules
	5.1 CREAM CE Module
	5.1.1 Database Interface
	5.1.2 Database Layout
	5.1.3 HTML Template
	5.1.4 Plotting

	5.2 PBS Module
	5.2.1 Qstat File Format
	5.2.2 Adaption of CREAM Module

	6 Estimation
	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	A Appendix

