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The mechanistics of local-learning rules for
curiosity in neural network models
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Fig. 1: Local, unsupervised learning rules derived from
a goal function of efficient, sparse coding’

Methods

Objectives

* Optimize the neural implementation of efficient, curious learning, based
on learning rules derived from theoretic principles

* Thus, derive how learning rules need to be adapted, depending familiar
or curious sampling (i.e., at higher rates of novel input)
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* Investigate how this translates into differences in the processing of

novel and familiar input.

» In understanding how learning rules change for curious sampling, we
contribute to the question How are we curious?

» If we can show that curiosity-dependent learning rules improve learning,
we contribute also the question Why are we curious?

How do neural networks update learning
rules and strategies to implement
curious learning?

Deriving mechanism that enables one to adapt learning rules that are specialized to conservative and curious

sampling

Optimizing network performance and simulation efficiency via pruning and structural plasticity

Information-theory to formulate goal functions, and guide the derivation of the learning rules
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* Under synaptic and structural
plasticity, differentiation between
novel and old synapses may
facilitate acquisition of novel
information and maintenance of old
ones.

of novel features.
« Adaptation of learning rates.

bottom-up
pathway

Cross-project collaborations

* We will test whether the model’s prediction on higher baseline variability
during blocks of curious (versus familiar) sampling manifests in
electrophysiological data (B1, C1)

* The information-theoretic approach to optimal curious sampling (C5) can
guide us to optimize the conditions when learning rules should be adapted.

* We will draw on insights of A2, B1, B4, C2 & C5 on the question of under
which conditions humans, animals and machines are curious, to adapt and
optimize our stimulus set
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Fig. 2: Network architecture for the learning rules implemented via
dendritic balance for hierarchical predictive coding?

Fig. 3: Derivation of learning rules for hierarchical
predictive coding via dendritic balance?

Infobox 2.1: Mathematical details of hierarchical predictive coding

Predictive coding with error units. The

goal in hPC is to maximize the model log-
likelihood [i] (for a detailed tutorial see [11])

N
L= logps(r'~'Ir'), (1)

where # are the model parameters, r* is neural ac-
tivity of a neural network at level i, and inputs are
provided by the previous level r'~". This defines
a hierarchy of processing stages that for example
can be associated with different visual cortical ar-
eas (e.g. V1, V2, ete.), where r” are visual in-
puts from LGN [i|. Typically, a linear model is
assumed, where inputs are modelled according to

rl—l ==I)'r,4‘]f-J, (2)

with decoding matrix D and Gaussian white
noise n'~' with zero mean and variance o7_,.
With this model, for a single level i, the relevant
contributions of the negative log-likelihood —L°
take the intuitive form of the square sum of cod-
ing errors for bottom-up inputs and errors of top-

down predictions:
bottom-up error: e ' =r'"' —D'r',

top-down error: e’ =r' — D" 'r't!,

(3)
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The goal is then to minimize the sum of coding
errors on a fast timescale 7. via neural dynamics
<r’, and with a slow learning rate np via neural
plasticity on the weights D’ by performing gradi-
ent ascent on L:
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To yield a neural implementation, the key innova-
tion in classical hPC was to represent prediction
errors within a distinct neural population of er-
ror units, that integrate inputs of prediction units
within the same level, and subtract top-down pre-

dictions according to
T,:Le'::-—e'+-r'—-l)'+lr'+l, (7)

dt

where decoding weights D* now correspond di-
rectly to weights of neural connections [11]. To-
gether with the dynamics of prediction units, this
results in the hierarchical neural circuit shown in

Fig[DA.

Predictive coding with dendritic errors.
In dendritic hPC, the computation of errors in
Eq ([@) 1s accomplished by the leaky voltage dy-
namics of dendritic compartments [d, dela]
To this end, for each prediction neuron j one
introduces basal dendritic compartments b, =
D;,e;”", which are each innervated by a single
synapse of a prediction neuron k of the previous
level, as well as an apical compartment a} = —¢]
that is innervated by prediction neurons of a
higher level (Fig [IB). The error computation is
then performed by voltage dynamics according to
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where bottom-up inputs are balanced with lateral
connections W, (connection of neuron r; to the
kth dendritic compartment of neuron r} ), and top-
down predictions are matched by the neurons own
predictions »}. The latter could be implemented
via the backpropagating action potential [14], solv-
ing the one-to-one connections problem of classical
hPC [13]. To compute bottom-up errors, lateral
weights have to be chosen as W}, = D, . D; . This
can be achieved if lateral plasticity enforces a tight
balance
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The dynamics of prediction neurons are then sim-
ply driven by the dendritic error potentials
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and weights for bottom-up and top-down inputs
can be learned with voltage-dependent rules
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Here, correct learning requires the cooperation of
lateral and bottom-up weights, which in classical
hPC is known as the weight transport problem E,

‘E]- For dendritic hPC this problem has so far

been addressed in the single-level case [13].
Together, these equations yvield an equivalent for-
mulation of hPC for both, learning and inference,
where prediction errors are computed in tightly
balanced dendritic compartments.
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rules to conservative and
curious exploration of stimulus environments

Learning predictive encoding in neural networks,
and using its responses to dynamically select
learning rules for curious sampling of stimuli




