
To Boldly Go Where No Fuzzer Has Gone Before:
Finding Bugs in Linux’ Wireless Stacks through VirtIO Devices

Sönke Huster∗†, Matthias Hollick∗ and Jiska Classen∗‡
∗Secure Mobile Networking Lab (SEEMOO), TU Darmstadt, Germany
†Computer Security and Privacy, University of Göttingen, Germany

‡Hasso Plattner Institute, University of Potsdam, Germany
Email: huster@cs.uni-goettingen.de, mhollick@seemoo.de, jiska.classen@hpi.de

Sönke Huster, Matthias Hollick, Jiska Classen: ”To Boldly Go Where No Fuzzer Has Gone Before: Finding Bugs in Linux’ Wireless
Stacks through VirtIO Devices”. Accepted for the 45th IEEE Symposium on Security and Privacy (S&P), 2024.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—The security of Linux kernel interfaces is paramount
in preventing over-the-air, proximity, or other network attacks.
The Linux kernel is fuzzed continuously to detect newly
introduced bugs. Despite their long runtime, existing fuzzers
fail to detect critical bugs, as they are unaware of physical
device semantics and difficult to adapt to new devices. This
paper proposes a novel fuzzer called VIRTFUZZ, which is based
on Virtual I/O (VirtIO) device drivers. A proxy mechanism
enables data collection from physical device interaction. These
collected inputs are then used to fuzz through a virtual device.
Using our universal VirtIO device, VIRTFUZZ is generic and
can be easily adapted to various Linux VirtIO kernel drivers
and their related subsystems. We use this approach to fuzz
the Linux Bluetooth and Wireless LAN (WLAN) stacks. To
demonstrate the adaptability of our approach, we additionally
provide implementations to fuzz the networking and input
stack. We find 31 new, manually confirmed bugs, with 6

Common Vulnerabilities and Exposuress (CVEs) assigned.

Index Terms—Fuzzing, System Security, Linux, VirtIO, Blue-
tooth, Wireless LAN

1. Introduction

WLAN and Bluetooth are prevalent wireless protocols
used in many different device types, such as smartphones,
laptops, Internet of Things (IoT) devices, and even desktop
systems. Both protocols were first standardized in 1999;
since then, their feature sets have evolved significantly.
With the development of new features, their complexity
increased. For example, in 2005, the Linux kernel Bluetooth
subsystem had around 18 100 lines of code. In 2023, it
comprises 80 200 lines of code, excluding device-specific
drivers. This complexity increases the probability of bugs
and, thus, vulnerabilities. In addition to their complexity
and prevalence, potential vulnerabilities require no direct
physical interaction for exploitation because both protocols
are wireless.

The Linux wireless stack comprises device drivers for
hardware interaction and subsystems to process these inter-
actions and trigger new ones. These subsystems further man-
age state, e.g., in WLAN, participants have different roles.

Since the stacks are implemented in the kernel, exploitable
vulnerabilities could affect the whole system. However, pre-
vious research on Bluetooth and WLAN focused on attacks
affecting only wireless standards and the confidentiality of
data transmitted [1, 2, 3, 4, 5, 6]. Little research has been
done on exploitable vulnerabilities leading to full system
compromise, and mostly on other parts of the stack such
as the wireless chip [7, 8, 9, 10, 11] or different operating
systems [12].

Fuzzing is a well-established security testing method to
uncover vulnerabilities and harden the kernel [13, 14, 15,
16, 17, 18]. Nevertheless, at the time of writing, popular
Linux kernel fuzzers do not cover the full Bluetooth or
WLAN stack or need significant adaptations to work with
them. Therefore, we design and implement a generic Linux
fuzzer called VIRTFUZZ, based on VirtIO [19, 20], a pop-
ular standard for para-virtualized devices. Each device is
implemented separately, as it behaves differently, but the
message interface between the hypervisor and the Virtual
Machine (VM) is standardized. We use this standardized
message-passing mechanism for fuzzing the Linux kernel.
Many device types already have a VirtIO driver, enabling
targeting various stacks, including Bluetooth and WLAN.
We create a novel universal VirtIO device specifically for
fuzzing, facilitating the integration of new device drivers.
While this approach is highly adaptable, it reaches different
states that are extraordinarily relevant to driver and subsys-
tem security. Integrating new devices is more accessible,
as it does not require complex grammar definitions or vir-
tual device setup routines compared to other state-of-the-art
fuzzers. VIRTFUZZ found multiple novel critical issues in
processing WLAN beacon frames, exposing a Remote Code
Execution (RCE) attack surface without user interaction.
These issues were not discovered by other public Linux
kernel fuzzers, despite being introduced to the kernel code
base more than three years ago and although some kernel
fuzzers are running continuously [21].

Furthermore, we implement and evaluate a new method
to collect genuine initial input seeds. Initial seeds directly
impact fuzzing success [22]. We connect the virtual de-
vice directly with the corresponding physical hardware and
record the exchanged messages. By interacting with the
physical hardware from within the VM, we assemble a set

of authentic inputs for fuzzing.
In summary, our main contributions are as follows:

• We design and implement VIRTFUZZ, a generic VirtIO-
based Linux kernel fuzzer, and adapt it for the WLAN,
Bluetooth, networking, and input stacks.

• We design, implement, and run a proxy collecting
physical WLAN and Bluetooth device interaction.

• We find and responsibly disclose 31 bugs in the Linux
kernel’s WLAN and Bluetooth stack, with 6 severe
vulnerabilities that got CVEs assigned. Since Android
partially uses the Linux WLAN stack, it is affected by
3 of these CVEs.

We will publish the VIRTFUZZ source code upon accep-
tance of this paper.

2. Background

For readers unfamiliar with fuzzing and VirtIO, we
introduce the essential concepts in the following.

Fuzzing. Fuzzing enables automated vulnerability discov-
ery. A fuzzer generates inputs for a target, trying to reach
bugs in the code causing an error condition. In coverage-
guided fuzzing, the fuzzer adapts randomized inputs based
on newly reached code paths. Grammar-based fuzzing gen-
erates inputs based on prior knowledge about the input
format. Combining coverage guidance and grammar de-
scriptions enables even more efficient fuzzing. Manes et al.
provide an overview of different fuzzing approaches [23].

Kernel Coverage Collection. Coverage-guided fuzzers re-
quire knowledge of which code was executed. Coverage
information guides the fuzzer, e.g., to decide whether an
input covers new code paths. Since the fuzzer targets a
compiled binary, the execution environment or the binary
must support coverage collection. Modern compilers can
instrument code for fuzzing. Therefore, specific code is
added, e.g., into every basic block. Besides, comparisons can
be instrumented so that for each kind of comparison, certain
functions are executed containing both operands additionally
to the comparison.

kcov [24] is a Linux kernel mechanism that collects
coverage information of system calls. First, a system call
initializes coverage collection. After executing the targeted
system calls, the coverage collection is stopped, and the cov-
ered blocks or comparisons are made available to userspace.

Sanitizer. Sanitizers enable the detection of certain error
conditions by adding additional checks. While decreased
performance would be impractical on end-user systems, they
are valuable for finding otherwise hard-to-detect bugs while
fuzzing. Different sanitizers are optimized for different bug
classes. For fuzzing the Linux kernel, VIRTFUZZ uses the
Kernel Address Sanitizer (KASAN) [25], Undefined Be-
havior Sanitizer (UBSAN) [26], and Kernel Memory Leak
Detector (KMLD) [27]. These sanitizers add checks at com-
pile time, e.g., for each memory access, so invalid memory

access can be detected. Memory safety issues are a common
problem leading to severe vulnerabilities and are detected
more easily using sanitizers [28].

VirtIO. The Virtual I/O (VirtIO) standard specifies vir-
tual devices that “look like physical devices to the guest
within the virtual machine” [19]. VirtIO devices are para-
virtualized devices, meaning the VM recognizes that the
device is virtual. This knowledge is used to implement a
simpler driver, increasing performance [29].

Linux kernel version 6.3-rc3 has 19 VirtIO drivers for
different subsystems, including, e.g., drivers for the Blue-
tooth, networking, and WLAN stacks. A VirtIO device
specification contains a device ID, a certain number of
virtqueues for communication, feature bits, device config-
uration, and its behavior [19]. Hypervisors implement each
device individually since each device operates differently.
Data is exchanged through virtqueues, and the data-type is
device specific. The Bluetooth device uses, e.g., Host Con-
troller Interface (HCI) frames, which is also the data usually
exchanged between a physical Bluetooth controller and its
driver. In contrast, regular WLAN frames are embedded
into a generic netlink frame specifically used by the VirtIO
WLAN driver, containing additional information such as the
wireless channel.

As VirtIO devices are widely used in production, a
common attack scenario is a VM escape by exploiting a
vulnerable device implementation. Fuzzing through VirtIO
is used to increase hypervisor security [30, 14]. To the best
of our knowledge, it was not yet used the other way around,
for kernel fuzzing. For VIRTFUZZ, we design a universal
VirtIO device, which we use to provide fuzzing inputs to
several Linux kernel interfaces.

3. Threat Model

In the following, we outline Linux attack surfaces and
how they generalize to other systems.

Network, Proximity, and Physical Attacks. In this paper,
we focus on Linux device drivers and their subsystems. At-
tackers could trigger vulnerable code paths over the Internet
using TCP/IP (Network Attacks), over-the-air with WLAN
and Bluetooth (Proximity Attacks), or by plugging in devices
into a computer’s ports (Physical Attacks) [31]. We assume
an attacker without system-level access, i.e., they do not
have an unprivileged user account on the target system. In
the worst case, attackers could gain RCE through a vulner-
able subsystem. However, even a Denial of Service (DoS)
in the Linux kernel can have a severe impact—a device
might end up in a boot loop because it crashes whenever it
attempts to connect to a malicious WLAN access point. We
discovered several DoS and RCE vulnerabilities requiring
no user interaction to exploit the Linux WLAN stack.

While the input format for the WLAN VirtIO driver is
data frames as sent over the air, the Bluetooth chip pre-
processes frames. It communicates them to the host using
the standardized HCI format [32], also supported by the

Bluetooth VirtIO driver. Depending on where a Bluetooth
frame’s contents are processed, a malicious frame could
target (1) the Bluetooth chip’s firmware, (2) the Linux host
directly, even after pre-processing, or (3) the Linux host
under the assumption of an already attacked Bluetooth chip.
Most vulnerabilities identified by VIRTFUZZ fall into (3),
and were not assigned CVEs. Nonetheless, these vulner-
abilities are dangerous and should be patched—wireless
chip firmware is optimized for performance and low energy
consumption. The firmware has few mitigations, making
it an easy target for attackers and a viable entry point to
escalate into the operating system [7, 9, 11, 10, 33, 34, 35].

Local Privilege Escalation Attacks. Unprivileged user-
space applications could try to escalate their privileges by at-
tacking kernel drivers and their subsystems [36]. The impact
of local privilege escalation is exceptionally high on systems
that enforce strict user separation or even sandboxing, such
as Android, which is based on the Linux kernel [31]. In
contrast to wireless attacks, the initial attack vector in this
scenario is typically malware. As protection, device drivers
are only accessible indirectly through restricted APIs, e.g.,
user-space applications can pair a Bluetooth headset through
an API call but cannot send arbitrary HCI commands.

Further Attacks. The vulnerabilities identified by VIRT-
FUZZ might also exist in other projects. Programmers tend
to make similar mistakes when implementing specifica-
tions [2, 4], might consult the Linux source code for refer-
ence, or even unknowingly copy code when using GitHub’s
Copilot [37]. In fact, we found that a payload identified by
VIRTFUZZ also crashes an embedded WLAN chip, confirm-
ing the existence of further threats in unknown targets.

4. VIRTFUZZ Design and Implementation

In this section, we formulate design goals for VIRTFUZZ
and implement them accordingly. To this end, we introduce
multiple required components.

4.1. Design Goals

Current Linux kernel fuzzers do not reach specific sub-
system components processing untrusted inputs from wire-
less interfaces. They would require extensive adaptation for

each subsystem to reach those components. Furthermore,
they use arbitrary inputs for fuzzing or generate valid inputs
from a pre-defined grammar.

We aim at fuzzing different components flexibly and
without requiring significant fuzzer and target modifications.
Besides, we want to implement a mechanism to easily
collect seeds containing valid real-world inputs. Therefore,
we propose a new fuzzer design to overcome these issues
with the following design goals:
D1 Depth: The fuzzer should cover previously uncovered

deep parts of the kernel.
D2 Extensibility: The fuzzer should be easily extendable

to different interfaces.
D3 Authenticity: It should be easy to collect real-world

inputs to be used as genuine seeds.
While fulfilling these design goals, the fuzzer should un-

cover real-world security risks; thus, its architecture should
stay close to real-world scenarios.

4.2. Universal VirtIO Device

We create a novel universal VirtIO device designed
explicitly for fuzzing, as shown in Figure 1. Using VirtIO as
the message-passing mechanism fulfills two of our primary
design goals: VirtIO drivers are implemented for a wide
area of subsystems, thus fuzzing through a universal VirtIO
device can cover a large amount of different kernel code
deeply (D1) with only minor adaptations (D2).

This universal device does not need to implement
device-specific behavior. Adaptation to serve inputs to newly
specified devices—and thus kernel subsystems—is as trivial
as changing some command line parameters. As the device
behaves similarly to a physical device, vulnerabilities found
are portable to real-world scenarios, as inputs processed by
the VirtIO device take a path through the kernel similar to
their physical equivalents.

For our universal VirtIO device, we extend the open-
source hypervisor QEMU version 7.1 [38]. As described,
a particular VirtIO device has a device ID, a number of
virtqueues, a list of feature bits, and a device configu-
ration [19]. VirtIO uses this device ID to detect device
types. The virtqueues are the communication mechanism
to exchange buffers with the virtual machine and vice-
versa. Per the specification, a particular virtqueue can either

QEMU

Virtual Machine

Su
bs

ys
te

m

D
riv

er

2. Initialize as specific VirtIO device over PCI

4. Setup and tunnel virtqueues to Unix socket

Universal
VirtIO
Device

3. Negotiate features and provide configuration

1. Read parameters

Figure 1: The setup procedure of our universal VirtIO device.

send or transmit data. Feature bits indicate the support
for a particular driver behavior or the device. The device
and driver exchange these on initialization and negotiate
a common subset. The specification defines the correct
device operation, depending on the negotiated features. For
example, the Bluetooth device has feature bits indicating
the support for vendor-specific HCI extensions. Finally, the
device configuration is a C-structure containing information
about the device, e.g., for Bluetooth, the vendor-specific
command code for the Microsoft HCI extension.

For most devices, these parameters are constant per de-
vice and do not change during runtime. Thus, our universal
VirtIO device accepts them as arguments and expects the
configuration as a binary file. Furthermore, the index of the
reception and, if applicable, the transmission queue must
be indicated per device. All of this is usually implemented
per device, as each device is defined to behave differently.
However, we do not need emulated behavior for fuzzing but
can directly forward the inputs and outputs.

With all these parameters set, our device registers itself
as a VirtIO device over PCI, negotiates the features with
the driver, and provides its static configuration. Afterward, it
sets up all virtqueues and connects to a provided socket path.
Then, it forwards the buffers received from the configured
transmission queue to the socket and the received buffers
from the socket to the reception queue.

Our final implementation includes the lightweight
patches and device definitions for the following subsystems:

• Bluetooth with the virtio_bt driver,
• WLAN with the mac80211_hwsim driver,
• networking with the virtio_net driver, and
• input with the virtio_input driver.

4.3. Proxy

Related work has shown that fuzzing results vary signif-
icantly, depending on the initial seed set [22]. To obtain au-
thentic seeds for fuzzing (D3), we propose proxy tunneling
and recording buffers of the physically equivalent interface
of the targeted one to the VM. Before a fuzzing run, the
security researcher using VIRTFUZZ is thus able to use
the interface in the virtual machine with physical devices.

Hence, the researcher can, e.g., interact with different real-
world devices from within the VM: By pairing different
Bluetooth devices, exchanging data through one of the many
protocols, or running a WLAN access point within the guest
and joining it from a physical device, valid and genuine
samples are collected. These recorded buffers are used as
seeds for the fuzzing run. We later show that increased code
coverage can be achieved faster using such a proxy’s inputs.
Such a proxy is an easy-to-use method to collect initial seeds
for a successful fuzzing run more quickly, as the security
researcher can use the interface inside the VM in the usual
way. Figure 2 depicts this process.

We implement the VIRTFUZZ proxy in Rust. It provides
access to physical hardware for some VirtIO drivers by
using our Universal VirtIO device. In VirtIO terminology,
it is a backend running in a separate process. The proxy
currently supports Bluetooth and a WLAN card in monitor
mode, which must be configured to the appropriate channel.
QEMU does not implement VirtIO WLAN and Bluetooth
devices. Further devices can be added to the proxy, e.g., for
fuzzing an Ethernet interface.

The buffers sent to the VM are saved to be used as seeds
for later fuzzing campaigns. We verify the functionality from
within the VM and can interact with physical devices outside
the VM. We use it to collect genuine input seeds for WLAN
and Bluetooth fuzzing.

4.4. Linux Kernel Adaptations

The Linux kernel includes an interface to collect code
coverage information for fuzzing named kcov [24]. As kcov
is only accessible from userspace, we modify the Linux
kernel so that it writes the coverage information to QEMU’s
shared memory device. This device maps memory from the
host to the guest. Thus, the coverage information written
by the VM is directly accessible by VIRTFUZZ. The shared
memory device was similarly used by Peng and Payer as a
communication device for their USB fuzzer [16].

kcov was initially built to track the code covered by
the execution of system calls. Thus, system calls must be
made to start and finish the coverage collection. As we pro-
vide our inputs through the VirtIO device from outside the

Seeds

Proxy

QEMU

Virtual
Machine

Universal
VirtIO Device

(a) Prior to fuzzing, genuine packets from interaction with real-
world devices are collected and stored.

Seeds

VirtFuzz

QEMU

Virtual
Machine

Universal
VirtIO Device

(b) Afterward, the fuzzer is started with an initial corpus containing
these genuine packets.

Figure 2: The complete VIRTFUZZ fuzzing process

VM, we introduce new functions controlling the coverage
collection that must wrap the target’s entry point. These
enable and disable coverage collection and write delimiters
to the shared memory. Listing 1 shows the required changes
for the WLAN reception entry point. The entry point is
very similar across different kernel versions, and the initial
patch containing the annotations does not need changes. The
first highlighted method call enables coverage recording and
writes a constant value, indicating that the frame processing
starts. On the reception of a WLAN frame, the covered
addresses are appended to the shared memory. The last
highlighted method call stops this coverage recording and
writes a constant value, indicating that the frame processing
is terminated.

kcov also supports collecting comparisons instead of
covered addresses. By tracking comparisons, VIRTFUZZ
can implement mutations to overcome failed comparisons
without symbolic execution [39]. As a system call usu-
ally configures this, we add a kernel parameter indicating
whether the covered addresses or comparisons should be
recorded. VIRTFUZZ automatically chooses from collecting
comparisons or coverage, depending on its mode.

To enable testing different kernel versions, we minimize
the required changes in the kernel code. We provide a script
that applies the correct set of patches depending on the
version and thus support fuzzing Linux kernel version 5.13
up to the current version, 6.0. We will publish the patch sets
and the script upon acceptance of this paper.

static void ieee80211_tasklet_handler(struct
tasklet_struct *t) {

struct ieee80211_local *local = from_tasklet(local, t,
tasklet);

struct sk_buff *skb;
kcov_ivshmem_start(); // start coverage collection
while ((skb = skb_dequeue(&local->skb_queue)) ||
(skb = skb_dequeue(&local->skb_queue_unreliable))) {
switch (skb->pkt_type) {
case IEEE80211_RX_MSG:

/* Clear skb->pkt_type in order to not confuse
kernel netstack. */

skb->pkt_type = 0;
ieee80211_rx(&local->hw, skb);
break;

case IEEE80211_TX_STATUS_MSG:
skb->pkt_type = 0;
ieee80211_tx_status(&local->hw, skb);
break;

default:
WARN(1, "mac80211: Packet is of unknown type %d\n",

skb->pkt_type);
dev_kfree_skb(skb);
break;

}
}
kcov_ivshmem_stop(); // end coverage collection

}

Listing 1: Annotations enabling VIRTFUZZ coverage
collection in Linux WLAN frame reception.

4.5. Resulting VIRTFUZZ Architecture

We summarize the VirtFuzz architecture and provide
further implementation details in the following. The fuzzer’s
core runs as a process on the host machine. It starts a VM in
our modified QEMU and connects to the universal VirtIO
device, the character device that emits the kernel log and
opens the shared memory. After booting, it sends a single
input buffer, watches the kernel coverage on the shared
memory, and evaluates it. If the input covers previously un-
covered areas, it is saved for later. Otherwise, it is discarded.

Our main fuzzing components are based on LIBAFL.
LIBAFL is a framework written in Rust that provides
building blocks to assemble fuzzers, such as mutators, in-
put schedulers, and observers for different instrumentation
methods [40]. LIBAFL does not support QEMU’s full sys-
tem emulation at the time of writing. Accordingly, we extend
LIBAFL by several components to

1) execute inputs in a VM through our universal VirtIO
device,

2) convert the kernel’s kcov coverage to a coverage map,
3) evaluate the kernel’s kcov comparisons records, and
4) detect crashes from reading the kernel messages and

deduplicate these.

4.5.1. Executor. The LIBAFL framework names the com-
ponent running a target on an input the Executor.

QEMU

Guest VM

VirtIO
Driver

Universal
VirtIO Device

VirtFuzz

kcov

ivshmem
Device

Shared
Memory

Executor

Character
Device

Observer

I/O

Process Management

Kernel Log

Figure 3: Overall fuzzer architecture.

{
"virtio_id": 40,
"virtqueue_num": 2,
"virtqueue_tx": 0,
"virtqueue_rx": 1,
"features": [0, 1, 2],
"config": "000000FF"

}

Listing 2: VirtIO example configuration for the Bluetooth
device.

Our executor starts the modified QEMU with our uni-
versal VirtIO device attached. Therefore, it needs a device
definition for the different targets. Most importantly, the
device configuration requires the VirtIO ID and the indices
of the virtqueues to send and receive data, as described
above. As no such standardized VirtIO device configuration
exists, we use a JSON object to carry that information. The
device definition for, e.g., Listing 2 shows the Bluetooth
VirtIO device; it includes optional features and a hexadeci-
mal device configuration. Such a definition and entry point
annotation in the Linux kernel are the only requirements
to make a subsystem fuzzable by our approach (D2). This
setup is extremely lightweight and straightforward compared
to other fuzzers, as shown in Section 5.6.

When the QEMU process runs, the executor sends single
buffers to the universal VirtIO device. It watches the shared
memory where the kernel writes the recorded coverage for
the delimiter indicating termination. After termination or
timeout, the kernel messages are parsed to decide whether
a crash occurred.

4.5.2. Coverage. The LIBAFL framework defines an ob-
server as “an entity that provides information from a single
execution of the target” [40]. We implement two different
observers to be used with our modified kcov: One converts
the recorded addresses to an edge coverage map, and the
other parses the recorded comparisons.

Edge Coverage Map. Our coverage map observer parses the
shared memory and reads all addresses covered by the exe-
cution after its termination. These are converted to an edge
coverage map following the classical AFL algorithm [41,
Sec. 1], which looks as follows.
loc = hash(prev_ip ˆ ip) % self.len();
map[loc] = (map[loc] + 1) % 255;
prev_ip = ip >> 1;

The list of covered addresses can be written into a file
for later analysis. Thus, a report can be created showing the
covered code paths.

Comparisons Tracking. We furthermore implement an ob-
server for kcov’s comparison collections mode. Here, the
kernel records comparisons made while processing a single
input. After executing a single input buffer, it parses the
shared memory containing the comparisons in kcov for-
mat and translates them into the standard format used by
LIBAFL’s cmplog technique.

4.5.3. Crash Deduplication. In LIBAFL, each execution
is classified as interesting or not. An input triggering an
interesting execution is saved into the corpus. Otherwise,
it is discarded. Therefore, several Feedbacks exist, e.g., a
MapFeedback maximizing the edge coverage.

Since different inputs might trigger the same crash, we
implement a mechanism that processes the crash message
log to a unique crash identifier. Here, the instruction pointer
and error message are combined. This identifier is then used
for crash deduplication: If a crash with the same identifier

has already been found, it can be discarded. For certain bugs,
it might be useful to obtain the same crash triggered by
slightly different inputs. Thus, this deduplication of crashes
can be disabled.

4.5.4. Input Scheduling. Bluetooth and WLAN are par-
ticularly stateful. Sequences of frames influence this state.
To increase statefulness, we do not reset the VM after
each input but continue fuzzing. As a byproduct, this leads
to performance gains. However, it makes coverage metrics
unstable and less reliable, e.g., a frame that uses a specific
connection covers different code when sent after a frame
that opens such a connection than before the processing of
such a frame. Thus, we cannot rely on this data to use it
for improved input scheduling mechanisms suggested by
recent research [42]. Instead, we use simple randomized
scheduling, which increases the probability of scheduling
dependent frames after another.

4.5.5. Mutations. The inputs are binary frames. During
fuzzing, they are mutated repeatedly by a set of mutators.
We apply the LIBAFL havoc mutations, such as bit flips,
byte insertions, and deletions. These mutations are expected
to increase edge coverage and are widely used [43].

Instances using comparison tracking additionally use
Input-to-State mutations inspired by REDQUEEN [39] and
WEIZZ [44]. Comparison tracking records which operands
are compared during an execution. Afterward, the mutator
searches the frame for recorded operands. Finally, they are
replaced by the counterpart operand. This enables VIRT-
FUZZ to pass roadblocks such as magic bytes.

To apply the mutations to a frame, we use the optimized
mutation scheduling algorithm MOPT [45]. Here, the ef-
ficiency of the different mutations is measured, and their
scheduling is adapted accordingly.

4.6. Guest Image

VIRTFUZZ targets a VM running a Linux kernel. There-
fore, the VM requires an image with an Operating Sys-
tem (OS). We adapt SYZKALLER’s image generation script
to generate a suitable image, which creates a minimal
Debian installation [15]. This later enables the usage of
the same guest image to evaluate our fuzzer compared to
SYZKALLER.

Especially for WLAN, states triggered from userspace
enable different kernel code paths. For example, some code
is only reachable when acting as an access point, scanning
for networks, or being connected to a network. After the
discovery of 27 bugs in the Linux Bluetooth and WLAN
stack, we implement a method to trigger different WLAN
states. Other kernel fuzzers, such as SYZKALLER, trigger
these states via system calls. VIRTFUZZ cannot do so, as
our architecture does not use a userspace agent. Thus, we
add several simple systemd services to the guest image
that enable these states. In addition to that, we also use
the default service for acting as an access point shipped

with the Debian package hostapd. We show the ser-
vice enabling permanent Wi-Fi scanning in Listing 3. As
systemd services can be enabled via the kernel command
line, VIRTFUZZ enables the appropriate service, depending
on which state should be fuzzed.

[Unit]
Description=Permanently scan for Wi-Fi

[Service]
ExecStart=/bin/bash -c "ip l set wlan0 up && while true;

do iw wlan0 scan; done;"
Restart=always

[Install]
WantedBy=multi-user.target

Listing 3: One of the two custom systemd services that
enable permanent scanning for Wi-Fi networks.

5. Evaluation

In this evaluation, we answer the following research
questions:

RQ1 How does VIRTFUZZ compare to existing state-of-
the-art fuzzers?

RQ2 Does VIRTFUZZ perform well in new bug discovery?
RQ3 Do recorded proxy seeds improve bug finding?
RQ4 How does VIRTFUZZ compare concerning device

flexibility and adaptation?

As a baseline fuzzer for comparison, we use
SYZKALLER [21]. It is a popular Linux kernel fuzzer,
fuzzing the kernel, including the Bluetooth and WLAN
stack.

5.1. General Fuzzing Setup

We ran VIRTFUZZ on different setups with varying
durations during the development and evaluation, which
we illustrate in the following. We found the vulnerabili-
ties during the whole process of VIRTFUZZ’s development,
with most of the Bluetooth vulnerabilities identified on a
Thinkpad T495. The majority of the WLAN vulnerabilities
were discovered on the machine used for the evaluation,
introduced in Section 5.2.

For the WLAN and Bluetooth seed collection, we used
an Intel Wireless-AC 9260 card of a Thinkpad T495. Blue-
tooth seeds were collected during interaction with the fol-
lowing devices: an Android smartphone, mouse and key-
board, and headphones. We scanned for nearby networks to
collect the WLAN seeds and attempted to connect to them.
Furthermore, we ran the VM as Access Point (AP), and
attempted to connect from the outside. VIRTFUZZ supports
fuzzing the WLAN subsystem in several modes, such as
ad-hoc, station, and infrastructure (AP).

5.2. Advanced Evaluation Setup

We evaluate VIRTFUZZ on a VM with 12 cores of an
AMD EPYC 7302 16-core processor with 64GB RAM. For
storage, an SSD is used. We target WLAN on Linux 5.19
and Bluetooth on Linux 5.16. For this, we run

• SYZKALLER,
• VIRTFUZZ with pre-recorded seeds, and
• VIRTFUZZ without pre-recorded seeds

on the two targets for 24 h each.We repeat these experiments
three times.

We track executions, bugs discovered, and raw cover-
age as covered addresses. SYZKALLER records the cov-
erage of the whole kernel; our approach only mea-
sures the coverage of the related subsystem. Therefore,
we restrict the recorded coverage to the related subsys-
tems, which means net/wireless, net/mac80211,
and drivers/net/wireless/mac80211_hwsim for
WLAN and net/bluetooth for Bluetooth. Furthermore,
SYZKALLER also records the coverage of setting up the vir-
tual devices and bringing them into a particular state: e.g., to
fuzz WLAN, SYZKALLER sets up an IBSS network between
two virtual devices. For Bluetooth fuzzing, SYZKALLER
sets up fake Bluetooth connections and responds to HCI
commands. Thus, coverage is hard to compare. To counter
this issue, we automatically convert the SYZKALLER corpus
into binary frames that are replayed with VIRTFUZZ. At
the end of SYZKALLER’s run, we convert the whole cor-
pus and replay it with VIRTFUZZ. We implement services
that mimic SYZKALLER’s setups for WLAN and Bluetooth
each. Hence, the state of the subsystems is the same com-
pared to running SYZKALLER directly. Afterward, we filter
SYZKALLER’s recorded coverage to contain only functions
covered by replayed frames. Furthermore, for the evaluation,
we implement a similar mechanism of fake responses to
HCI commands for some instances of VIRTFUZZ. By this,
we obtain a fair coverage comparison over time.

We sanitize the targets with KASAN only [25], in con-
trast to previously using multiple sanitizers for VIRTFUZZ,
and use the same VM image for SYZKALLER as well as
for VIRTFUZZ. This image is based on Debian Stretch and
an adapted version of SYZKALLER’s standard image. We
described the used image for VIRTFUZZ in Section 4.6. As
it is similar to SYZKALLER’s standard image, we can use it
for our runs and the ones of SYZKALLER.

In addition to these controlled experiments, SYZKALLER
has run for several years on different Linux kernel versions
and automatically reports bugs [21]. While we ran VIRT-
FUZZ in different scenarios during design and implementa-
tion, its total runtime is significantly below SYZKALLER’s.
For our bug evaluation in Section 5.3, we continued running
VIRTFUZZ beyond this 24 h runs. Thus, it includes bugs
found outside the previous 24 h experiments.

5.3. Bug Discovery & Relevance

Upon submission of this paper, VIRTFUZZ discovered
31 individual bugs concerning the Linux Bluetooth and

WLAN stack. Multiple sanitizers revealed different bug
types: KASAN [25], UBSAN [26], and KMLD [27]. The
identified vulnerability types are displayed in Table 1. They
consist of various memory safety issues, such as over-
and underflows, illegal reads and writes, and null pointer
dereferences, found mainly by KASAN.

Table 2 shows more details for each bug, including the
affected function and the version introducing the bug. For
12 findings, we received six CVEs with a maximum CVSS
score by the NVD of 8.8 [46], indicating high severity. The
earliest affected version is Linux 2.6.27, published in 2008,
and most bugs have been in the Linux kernel for several
years.

SYZKALLER fuzzes the Linux kernel continuously [21]
but only found one of the Bluetooth bugs in parallel [47].
It also supports the injection of WLAN frames since
2020 [48]. This shows that it targeted similar parts of the
kernel code. However, we discovered severe vulnerabilities
in Linux WLAN, which have been in the kernel since 2019,
and Bluetooth vulnerabilities that were introduced in Linux
2.6.27, published in 2008.

Thus, we conclude that VIRTFUZZ successfully dis-
covered new vulnerabilities and helped improve the Linux
kernel, answering RQ2 and partially addressing RQ1. To
demonstrate our findings’ relevance and properties, we look
deeper into two significant vulnerabilities in the following.

5.3.1. WLAN: Heap Overflow on Malicious Beacon
Frame. We discovered a heap overflow in the Linux WLAN
stack (CVE-2022-41674). An invalid beacon frame triggers
the heap overflow. Beacon frames are used to, e.g., advertise
an access point. They are processed when scanning for
nearby networks. On Android, this happens automatically in
the background for location determination. While Android
uses a different Bluetooth stack based on Rust to improve
security [49], Android’s WLAN stack is mostly the same as
Linux and is also affected by this vulnerability.

802.11ax improves scanning efficiency by introducing a
multiple BSSID element. This element announces multiple
networks from the same access point in one frame [50].
The Linux WLAN stack contains an integer overflow on
processing such an MBSSID beacon frame. The overflow
allows an attacker to write up to 256 arbitrary bytes to the

TABLE 1: Vulnerability Types Found by VIRTFUZZ

Target Type #

Bluetooth

Memory leak 1
Null pointer dereference 7
Slab out of bounds 2
Use-after-free write 3
Use-after-free read 1
Wild memory access 2

WLAN

Heap overflow 1
Infinite loop 1
Integer underflow 1
Null pointer dereference 2
Slab out of bounds 4
User memory access 1
Use-after-free read 5

kernel heap. We display the vulnerable code in Listing 4.
The length of the MBSSID element is calculated in the line
highlighted in red. As both variables are just one byte long,
this calculation can overflow. The following memcpy then
copies additional 256 bytes due to the implementation of its
size calculation. A mitigation is to use a different type for
cpy_len. Exploiting this vulnerability leads to over-the-air
DoS attacks without user interaction required. An advanced
attacker might be able to exploit this for RCE.

We responsibly disclosed this issue in private to SUSE
as a Linux vendor. After informing the kernel security team
and the other vendors, patches for this and several other
findings were released.

5.3.2. Bluetooth: Various Vulnerabilities on Multiple
Connection Complete Events. We uncovered various vul-
nerabilities in the Linux Bluetooth stack on multiple connec-
tion complete events. These events are defined for different
connection types of Bluetooth and, in general, occur on
establishing a new connection [32]. To trigger the vulner-
abilities, a combination of four frames is required: A first
frame containing a connect request, two duplicate connect
complete events, and a fourth frame using that connection,
for example, a disconnect event.

In Section 4.5.4, we illustrated that VIRTFUZZ does not
perform a reset after an input but continues so that the output
on a crash can contain thousands of frames. We build a tool
to replay these payloads and minimize them to identify the
frame combination triggering a vulnerability, which found
the combination of the four frames.

On receiving the first connection complete event, the
related kernel object is created. Receiving the second con-
nection complete event for the same connection triggers a
cleanup routine, as a kernel object with the same identifier
already exists, which frees the assigned memory. The last
frame needs to use that connection. Depending on the frame
type, this leads to null pointer dereferences, Use after Frees
(UaFs), or slab out of bounds in several kernel list calls.

All the functions for different Bluetooth connection
types share this vulnerability. Our patch fixing this vulner-
ability was merged into the kernel tree1.

1. Commit d5ebaa7c5f6f (”Bluetooth: hci event: Ignore multiple
conn complete events”)

static void cfg80211_update_notlisted_nontrans(struct
wiphy *wiphy, struct cfg80211_bss *nontrans_bss,
struct ieee80211_mgmt *mgmt, size_t len) {
u8 *ie, *new_ie, *pos;

const u8 *trans_ssid, *mbssid;
u8 cpy_len;
[...]

/* copy the IEs after MBSSID */
cpy_len = mbssid[1] + 2;
memcpy(pos, mbssid + cpy_len,

((ie + ielen) - (mbssid + cpy_len)));

Listing 4: Excerpts of the vulnerable code leading to a heap
overflow in the Linux kernel’s WLAN stack.

TABLE 2: Vulnerabilities in the Bluetooth and WLAN Stack of the Linux Kernel Found by VIRTFUZZ

Type Subsystem Function Patched Introduced
in Version

CVE

1 Memory leak Bluetooth Driver virtbt rx handle ✓ Linux 5.13 CVE-2022-26878
2 Wild memory access Bluetooth hci inquiry result with rssi evt ✓ Never
3 Slab out of bounds Bluetooth hci le meta evt ✓ Linux 3.2
4 Null pointer dereference Bluetooth hci sync conn complete evt ✓ Linux 3.12
5 Null pointer dereference Bluetooth msft vendor evt ✓ Never
6 Use-after-free write Bluetooth klist add tail (hci conn add sysfs) ✓ Linux 2.6.27
7 Use-after-free write Bluetooth klist release (hci conn del sysfs) ✓ Linux 2.6.27
8 Null pointer dereference Bluetooth klist next (hci conn del sysfs) ✓ Linux 2.6.27
9 Null pointer dereference Bluetooth kill device ✓ Linux 2.6.27
10 Slab out of bounds Bluetooth kfree skb reason ✓ Linux 2.6.27
11 Null pointer dereference Bluetooth aosp do open ✓ Linux 5.17
12 Null pointer dereference Bluetooth msft do open ✓ Linux 5.17
13 Use-after-free read Bluetooth hci send acl ✓ Linux 3.8
14 Null pointer dereference Bluetooth klist next (hci conn del sysfs) ✓ Never
15 Use-after-free write Bluetooth klist add tail (hci conn add sysfs) ✓ Never

16* Wild memory access Bluetooth Driver rfcomm run (virtbt rx work) ✓ 5.13
17 Slab out of bounds 802.11 Driver nla validate parse

(hwsim virtio handle cmd)
✓ Linux 5.7

18 Null pointer dereference 802.11 cfg80211 rx unprot mlme mgmt ✓ Linux 5.8 CVE-2022-42722
19 Heap overflow 802.11 cfg80211 update notlisted nontrans ✓ Linux 5.1
20 Slab out of bounds 802.11 cfg80211 gen new ie ✓ Linux 5.1 CVE-2022-41674

21 Use-after-free read 802.11 ieee80211 update bss from elems ✓ Linux 5.2 CVE-2022-42719
22 Use-after-free read 802.11 cfg80211 inform bss frame data ✓ Linux 5.1
23 Use-after-free read 802.11 cmp bss ✓ Linux 5.1
24 Null pointer dereference 802.11 cfg80211 unlink bss ✓ Linux 5.1
25 Use-after-free read 802.11 cfg80211 inform single bss data ✓ Linux 5.1
26 Use-after-free read 802.11 cfg80211 put bss ✓ Linux 5.1
27 User memory access 802.11 cfg80211 unlink bss ✓ Linux 5.1

CVE-2022-42720

28 Infinite loop 802.11 cfg80211 add nontrans list ✓ Linux 5.1 CVE-2022-42721
29 Slab out of bounds 802.11 cfg80211 parse mbssid data ✓ Linux 5.10
30 Integer underflow 802.11 cfg80211 parse mbssid data ✓ Linux 5.10
31 Slab out of bounds 802.11 cfg80211 find elem match ✓ Linux 5.1

Entries that specify Never in the Introduced in Version column were found in the development trees before being included in a release. Vulnerabilities
marked with * were found during seed collection. If the vulnerability appears in an underlying kernel function, the first function on the stack of the
subsystem is given in brackets. We assume that exploiting the WLAN vulnerabilities is possible over-the-air and triggering the Bluetooth vulnerabilities
requires a compromised controller (see Section 3).

To our knowledge, our Bluetooth findings are not di-
rectly exploitable over-the-air, as explained in Section 3.
Hence, we did not request CVEs. Combined with a firmware
vulnerability, which frequently occur in Bluetooth con-
trollers [7, 34, 33], these vulnerabilities lead at least to DoS.
The UaF writes likely lead to RCE.

5.4. Performance

To evaluate the performance, we compare the basic block
coverage and execution speed for WLAN and Bluetooth
fuzzing in the following, addressing RQ1.

5.4.1. Speed Comparison. As seen in Figure 4a, our ap-
proach outperforms SYZKALLER in the execution speed
by an order of magnitude in executions per second for
WLAN fuzzing. When comparing the average total exe-
cutions, VIRTFUZZ executed 22 times more inputs than
SYZKALLER. This is caused by SYZKALLER’s more com-
plex architecture: A manager component starts a VM and
runs a fuzzer inside this VM. Thus, the input generation,
mutations, and executions happen inside the VM, which
is slower than the host system. Furthermore, the fuzzer

sets up virtual devices. The input is sent to the kernel in
the form of time-consuming system calls and the device
setup. In addition, the coverage collection requires multiple
system calls per execution. The state and the new inputs are
synchronized to the manager via Remote Procedure Calls
(RPCs) between the host and the VM.

SYZKALLER performs significantly faster in fuzzing
Bluetooth than WLAN, as displayed in Figure 4c. When
fuzzing Bluetooth, VIRTFUZZ initially performs faster than
SYZKALLER but then is slightly slower. This is due to
the virtual device setup by SYZKALLER: When fuzzing
Bluetooth, SYZKALLER sets up the device once and uses
it for several inputs2. For WLAN fuzzing, SYZKALLER
has to set up a socket connection to the kernel for each
frame3, decreasing the throughput. VIRTFUZZ’s VirtIO-
based architecture never requires such a setup routine. Thus,
the architectural advantage of our solution is less relevant
concerning execution speed for Bluetooth fuzzing.

Furthermore, both fuzzers slow down over time: By

2. See the method for sending a single Bluetooth frame at executor/
common_linux.h:2847 in [15, Commit 5bc3be51cc65]

3. See the method for sending a single WLAN frame at executor/
common_linux.h:5380 in [15, Commit 5bc3be51cc65]

https://github.com/google/syzkaller/blob/5bc3be51cc65ecf6d4532ac7c93b6d5d284d5a38/executor/common_linux.h#L2847
https://github.com/google/syzkaller/blob/5bc3be51cc65ecf6d4532ac7c93b6d5d284d5a38/executor/common_linux.h#L2847
https://github.com/google/syzkaller/blob/5bc3be51cc65ecf6d4532ac7c93b6d5d284d5a38/executor/common_linux.h#L5380
https://github.com/google/syzkaller/blob/5bc3be51cc65ecf6d4532ac7c93b6d5d284d5a38/executor/common_linux.h#L5380

investigating our fuzzing runs we conclude that VIRTFUZZ
focuses on inputs with variable-sized lists containing, e.g.,
discovered devices. Thus, more processing steps are under-
taken per frame after several mutations introducing more list
items, which take more time. We suspect that SYZKALLER
has a similar issue. Similar inputs led to the discovery of
severe WLAN vulnerabilities that we have found; thus, we
do not consider this a limitation, despite the decrease in
performance. We discuss the mutation strategy in further
detail in the following Section 5.4.2.

Secondly, SYZKALLER can send multiple frames to the
stack in one execution, unlike our approach, which counts
a single frame as one execution. A fair speed comparison
is difficult. Thus, we analyze the WLAN corpora after
SYZKALLER’s runs to give an estimate. They contain 1615
inputs with a total number of 2197 frames. SYZKALLER
uses corpus minimization. Thus we cannot calculate the
mean number of frames of the whole run from the final
corpus. Nonetheless, this factor of 1.36 frames per input
generally approximate the frame count per input. This, or
even a marginally higher factor, does not explain the massive

difference in execution speed regarding WLAN fuzzing.
Furthermore, both instances use the same sanitizer on all
instances during the evaluation runs. We conclude that the
speed difference is due to the differences in architecture,
especially concerning the setup of the virtual device used
for WLAN fuzzing.

Addressing the usage of recorded seeds (RQ3), it is
notable that there is a difference with respect to execu-
tion speed when comparing runs with and without gen-
uine inputs. While the instances without genuine inputs are
initially an order of magnitude faster than the ones using
initial inputs, they converge over time. Loading the input
seeds from files takes more time than generating random
bytes. Furthermore, random bytes are mostly invalid frames,
dropped early during input parsing. Thus, the execution time
is short initially, as many frames are already dropped before
reaching the subsystems. This happens, e.g., for frames not
containing a MAC address of a virtual WLAN device.

5.4.2. Coverage Comparison. A coverage comparison be-
tween SYZKALLER and VIRTFUZZ in Figure 4b shows that

(a) Execution speed comparison for WLAN fuzzing. (b) Basic block coverage comparison for WLAN fuzzing.

(c) Execution speed comparison for Bluetooth fuzzing. (d) Basic block coverage comparison for Bluetooth fuzzing.

Figure 4: Performance comparisons when fuzzing the Linux WLAN and Bluetooth stacks three times for 24 h with VIRTFUZZ
and SYZKALLER. The bold line shows the average value, the range depicts the minimal and maximum values.

Total = 169 Functions
VIRTFUZZ = 162 Functions

SYZKALLER = 96 Functions

73 789

Figure 5: Venn Diagramm of functions executed by
SYZKALLER and VIRTFUZZ in the Linux WLAN stack after
fuzzing for 24 h.

VIRTFUZZ reaches more code regarding WLAN fuzzing.
The higher initial coverage stems from inputs previously
recorded by the proxy, but even without these seeds, mu-
tations will eventually find more code paths when using
our VirtIO-based approach. SYZKALLER has lower initial
coverage than VIRTFUZZ, and its coverage increases more
slowly over time.

When comparing the coverage of the Bluetooth eval-
uation, we reach a similar coverage despite having fewer
executions, as displayed in Figure 4d.

We use basic block coverage as a comparison metric,
the coverage format SYZKALLER currently uses. Evaluat-
ing fuzzers by basic block coverage is very common, and
typically increased coverage leads to finding more bugs [51].
However, VIRTFUZZ internally uses edge coverage to decide
whether a new input improves coverage. Here, the tran-
sitions between the basic blocks, as well as their count,
are considered. We only use basic blocks for comparison,
showing that VIRTFUZZ generally reaches more code.

VIRTFUZZ reaches a much higher function coverage
than SYZKALLER when fuzzing the Linux WLAN stack,
as shown in Figure 5. SYZKALLER covers 7 functions not
reached by VIRTFUZZ. In contrast, VIRTFUZZ covers 73
functions not covered by SYZKALLER. 89 functions are
covered by VIRTFUZZ and SYZKALLER. The bugs we
discovered do not only reside in the newly covered code.
By comparing the functions covered, we can assert that
SYZKALLER also reaches some of the vulnerable WLAN
beacon frame parsing functions—without discovering
the vulnerabilities. The new WLAN vulnerabilities occur
when parsing multiple BSSID beacon frames. These frames
consist of a variable number of elements. The same basic
blocks are reached independently of the total number of
elements. Edge coverage differs since these basic blocks
are executed repeatedly in different orders. We assume the
covered basic blocks are similar, but not the transitions and

counts. KASAN detects these bugs. Thus, this is not a side
effect caused by different sanitizers. Our findings question
if fuzzers should be mainly optimized toward basic block
coverage.

We conclude that VIRTFUZZ is superior concerning ex-
ecution speed for WLAN fuzzing. Furthermore, it performs
better regarding basic block and function coverage. We
cannot compare edge coverage, as SYZKALLER does not
record it, but as VIRTFUZZ covers more basic blocks, it
is plausible that it has a higher edge coverage. Regarding
Bluetooth fuzzing, VIRTFUZZ performs on a similar level
compared with SYZKALLER. Combined with the previous
section, this performance evaluation answers RQ1.

5.5. Impact of Genuine Inputs

Our approach collects genuine inputs from real-world
devices before fuzzing to have a good set of input seeds.
These initial inputs are evaluated at the start of a fuzzing
campaign and added to the corpus depending on their cover-
age. This section evaluates the impact of using genuine input
seeds to answer RQ3. Figure 4 shows that using random
initial inputs instead of pre-recorded ones initially increases
the execution speed but converges later. We explained the
reasons for this above in Section 5.4.1.

Regarding coverage, Figure 4 shows that more basic
blocks are covered by using genuine seeds. This is rea-
sonable, as the instance using genuine inputs reaches more
code when VIRTFUZZ starts with valid WLAN or Bluetooth
frames. Later, the instances using only random initial inputs
reach a similar coverage but stay slightly below those us-
ing genuine initial inputs. Thus, using genuine seeds gives
VIRTFUZZ a head start of several hours. Using the proxy is
simple; thus, collecting genuine seeds requires significantly
less time compared to the execution time it saves.

To dismiss the possibility of drawbacks of using
recorded genuine seeds, we compare the functions covered
by both configurations. We discover that the instance using
random seeds does not cover additional functions. Hence,
VIRTFUZZ gains a head start of several hours by using
genuine seeds without any disadvantages regarding coverage
and reaches deeper functionality faster.

5.6. Required Adaptations

To answer RQ4, we compare VIRTFUZZ with NYX [14]
and SYZKALLER [15] concerning fuzzing new devices and
versions. Therefore, we first introduce the required adap-
tations for these two solutions. Afterward, we demonstrate
VIRTFUZZ’s flexibility regarding new devices.

5.6.1. Comparison to Other Fuzzing Frameworks.
NYX’s inputs are generated from a manually defined spec-
ification for generic fuzzing. These specifications describe
bytecode, which is generated by the fuzzer as input. NYX
uses custom hypercalls implemented in a modified version
of QEMU. These hypercalls indicate the start and the end
of a single execution. Furthermore, they are required to

inject input into the target. Therefore, a hypercall is first
called with the memory address where the fuzzing input
should be written. Another hypercall triggers the fuzzer to
write the input to the according memory location. Thus,
to add a new device or subsystem to NYX, the entry and
all exit points require manual annotation. The hypercalls
and annotations depend on a complex set of kernel patches,
with a patchset provided by Intel [52]. Furthermore, NYX
requires a heavily patched version of QEMU. As NYX can
inject inputs at arbitrary locations, it can universally fuzz
any kernel component.

SYZKALLER also generates the inputs from a manually
specified grammar. It does not rely on any custom kernel
patches. As SYZKALLER fuzzes system calls, the targets
must be reachable by those. Thus, to support WLAN and
Bluetooth, SYZKALLER has modifications to open the re-
lated virtual device. Moreover, the grammar needs a precise
definition for packet types, resulting in hundreds of lines
of code only to describe WLAN and Bluetooth packets. For
example, the Bluetooth frame grammar comprises 1880 lines
as of writing this paper. Currently, there is work on using
static analysis to help automate grammar creation [15, Issue
#590].

VIRTFUZZ requires a QEMU patch introducing a VirtIO
universal device, Linux kernel annotations, and a device
definition.

We first look at the required adaptations for new versions
of the Linux kernel. Compared to NYX, VIRTFUZZ requires
only a tiny set of kernel patches, which can be easily ported
to newer versions. Analyzing the required kernel changes for
the initial release of NYX, they add 869 lines of code to 9
existing source code files [53]. In contrast, our patches only
touch one existing source code file introducing 192 lines of
code. Both numbers do not include the newly created files,
as usually only the modified files make adapting to different
versions hard. We publish the required kernel patches for
Linux kernel versions 5.13 up to 6.0, bundled with a script
automatically applying the set of patches for each version.
Our modifications are mainly a new device driver for shared
memory and a change to kcov to write to that memory. Most
changes in existing code concern kcov and introduce seven
new functions to start and stop remote coverage collection.
As most of this does not modify existing functions, it is
easy to port to newer versions. Furthermore, we require
entry point annotation for the specific device. For example,
the Bluetooth annotations consist of five function calls that
must be inserted around the entry point. SYZKALLER does
not need any modifications to work with a different Linux
kernel version, which makes it easy to use with different
kernel versions. However, in comparison to NYX, VIRT-
FUZZ requires clearly less deep-rooted adaptations to the
kernel, which still makes it portable between different kernel
versions.

Concerning device flexibility, VIRTFUZZ relies on a
simple device definition and entry point annotations. The
number of required annotations per device is slightly less
than the annotations NYX requires per device: in addition
to annotations surrounding the function entry point, Nyx

{
"virtio_id": 1,
"virtqueue_num": 2,
"virtqueue_tx": 1,
"virtqueue_rx": 0,
"features": [0, 16],
"config": "ABABABABABAB0100DC05"

}

Listing 5: VirtIO configuration for a network device.

also needs annotations to know where the inputs should be
written. As previously mentioned, SYZKALLER and NYX
require complex specifications. In contrast, VIRTFUZZ only
requires a short device definition, which can easily be
created by reading the VirtIO device specification for the
particular device.

We demonstrated the high effort required for NYX to be
adapted to our targets. Due to this, we consider an evaluation
compared to VIRTFUZZ for WLAN and Bluetooth fuzzing
out of scope for this paper. Additionally, there would still
not be a guarantee to find similar bugs, discouraging this
effort even further.

5.6.2. Adding New VIRTFUZZ Devices. To demonstrate
VIRTFUZZ’s flexibility, we implement a network device and
an input device. This allows fuzzing of the Linux network
stack and the input stack. We outline this process in the
following for the network device: First, we derive a device
definition from the VirtIO network device specification,
which we show in Listing 5. This format is generic, but
exclusively used by VIRTFUZZ, as no other universal VirtIO
device is used. Second, we identify and annotate the entry
point of the virtio_net driver to the networking stack.
We display these annotations in Listing 6. With these simple
changes, VIRTFUZZ can fuzz the Linux network stack.
Implementations and patches for both devices are part of the
released source code. As of writing this paper, the additional
devices did not lead to new bug discoveries, but we only ran
them briefly.

We conclude that VIRTFUZZ is easily adaptable to new
VirtIO devices, especially in contrast to SYZKALLER and
NYX, which require complex grammar definitions. Further-
more, even though we require some minor patches applied
to the kernel, it is portable between different kernel versions.
This answers RQ4.

6. Related Work

Fuzzing as a software testing method has been used since
the 1990s [54]. Nonetheless, noteworthy bugs and vulnera-
bilities were also found in recent years. Much research was
published based on AFL [55], a coverage-guided gray-box
fuzzer. This research was incorporated into AFL++ [56] and
LIBAFL [40] to serve as new baseline fuzzers.

Several different fuzzing aspects have been subject to
improvements and research. The selection of seeds [57, 58,
22], input scheduling [42, 59, 60, 61, 62], and mutations [45,

static void receive_buf(struct virtnet_info *vi, struct
receive_queue *rq, void *buf, unsigned int len, void

**ctx, unsigned int *xdp_xmit, struct
virtnet_rq_stats *stats) {

struct net_device *dev = vi->dev;
struct sk_buff *skb;
struct virtio_net_hdr_mrg_rxbuf *hdr;

kcov_ivshmem_start(); // start coverage collection

[...]

napi_gro_receive(&rq->napi, skb);
kcov_ivshmem_stop(); // end collection on success
return;

frame_err:
dev->stats.rx_frame_errors++;
dev_kfree_skb(skb);
kcov_ivshmem_stop(); // end collection on error

}

Listing 6: Annotations enabling VIRTFUZZ’s coverage
collection in Linux network packet reception.

63] are some of them. Furthermore, the research includes
the usage of snapshots to improve fuzzing performance [13,
14] approaches using symbolic execution in hybrid fuzzing
for better coverage [64, 65] or using manual annotations to
represent internal program states [66].

Traditional fuzzing is used on user-space programs [54].
Recently, it has been applied to other targets, such as
fuzzing firmware [7, 9, 10, 11], hypervisors [14, 67], device
drivers [16, 17, 68, 69, 70], or file systems [71]. Since
many of these approaches cannot be used for embedded
devices or need significant adaptions to run on multiple
firmware images, over-the-air fuzzing is common for wire-
less stacks [34, 33, 72, 35].

The Linux kernel is a popular fuzzing target. The fol-
lowing highlights the most popular Linux fuzzers and how
our VirtIO-based approach compares to them.

KAFL [18] and its successors REDQUEEN [39] and
NYX [14] are general kernel fuzzers. They accomplish
strong results by using special hardware features to track
coverage and thus are more independent from the operating
system. Furthermore, by using hypercalls for input genera-
tion, they can be applied to arbitrary code paths. In contrast
to their many strengths, their downside is that adaptation
for a specific kernel target and version requires time and
expert knowledge. Previously, we showed that our approach
is easier portable between versions, as it does not rely on
heavy kernel modifications.

SYZKALLER fuzzes the Linux kernel permanently on
several servers, continuously leading to the discovery of
numerous vulnerabilities [15]. It fuzzes system calls, which
need to be described by a complex grammar but does
not require any kernel modifications, making it work out-
of-the-box with every recent kernel version. We showed
that despite covering similar functions, SYZKALLER could
not uncover the severe WLAN vulnerabilities we found
in the Linux stack. Contrary to our approach, it is more
complicated to adapt to new targets, as the related calls

have to be described in a complex grammar first. Moreover,
unique setup methods for the corresponding virtual devices
must be introduced, especially for targeting interfaces such
as WLAN and Bluetooth. As we use a VirtIO interface
for sending inputs to the kernel, targeting different devices
becomes much more accessible.

PERISCOPE [73] targets device drivers of the Linux ker-
nel. Therefore, it records the interactions of a peripheral de-
vice and its corresponding driver by hooking into the Linux
kernel’s page fault mechanism. This allows PERISCOPE
to monitor the drivers’ memory access and to modify the
exchanged data on-the-fly, which is used for fuzzing. Sim-
ilar to our approach, a modified version of kcov is used
to record coverage. Despite their similarities, VIRTFUZZ
and PERISCOPE focus on different parts of the kernel:
Our approach targets the driver-agnostic subsystem, while
PERISCOPE focuses on specific drivers. The findings reflect
this: all vulnerabilities found by PERISCOPE were in two
Android Wi-Fi drivers, most vulnerabilities VIRTFUZZ has
found (28 of 31) were either in the Bluetooth- or Wi-Fi sub-
systems. Another difference is the portability between kernel
versions: We expect that our approach is more portable, as
the set of required kernel modifications is less intruding.
Furthermore, the architecture of PERISCOPE and VIRTFUZZ
are fundamentally different: VIRTFUZZ runs a VM with
the target kernel and interacts with it through a standard
protocol (VirtIO) from the host machine. The architecture of
PERISCOPE is, in that regard, more similar to SYZKALLER,
since most components run inside the target.

Using LIBAFL [40], we could incorporate several state-
of-the-art techniques into our kernel fuzzer. REDQUEEN
introduced so-called Input-to-state mutations to overcome
fuzzing roadblocks such as magic bytes comparisons [39].
VIRTFUZZ integrates a similar mechanism based on
REDQUEEN and WEIZZ [44] by evaluating comparisons
recorded through kcov. Furthermore, VIRTFUZZ uses the
optimized mutation scheduling MOPT [45].

7. Conclusion

Designing new Linux kernel fuzzers can reveal bugs
with a severe security impact, even though existing fuzzers
analyze the Linux kernel continuously. While focusing on
wireless subsystems exposing a zero-click RCE attack sur-
face, we designed a fuzzer that can be adapted to any stack
accessible through a VirtIO driver. VIRTFUZZ is based on
a new universal VirtIO device. We built an additional easy-
to-use proxy, enabling the collection of real-world inputs
as seeds. We showed that using them leads to a headstart
on a fuzzing campaign, thus increasing the fuzzing success.
VIRTFUZZ uncovered bugs introduced into the Bluetooth
stack as early as 2008 and the WLAN stack in 2019. Re-
sponsible disclosure of these bugs improved Linux wireless
security. We will open-source VIRTFUZZ to increase the
security of existing and future Linux kernel releases.

Acknowledgments

We thank Fabian Freyer for his feedback on this paper,
Dominik Maier for the discussions about our fuzzer, and
Johannes Berg for the quick response to our Wi-Fi vulner-
abilities, as well as the insightful exchange regarding the
kernel’s subsystem.

This work has been co-funded by the LOEWE initiative
(Hesse, Germany) within the emergenCITY centre. It has
also been co-funded by the German Federal Ministery of
Education and Research and the Hessen State Ministry
for Higher Education, Research and the Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE.

Availability

We publish VIRTFUZZ under an open-source license at
https://github.com/seemoo-lab/VirtFuzz.

References

[1] M. Vanhoef, “Fragment and forge: Breaking Wi-Fi
through frame aggregation and fragmentation,” in Pro-
ceedings of the 30th USENIX Security Symposium.
USENIX Association, August 2021.

[2] M. Vanhoef and F. Piessens, “Key reinstallation at-
tacks: Forcing nonce reuse in WPA2,” in Proceedings
of the 24th ACM Conference on Computer and Com-
munications Security (CCS). ACM, 2017.

[3] J. Classen and M. Hollick, “Happy MitM: Fun and
Toys in Every Bluetooth Device,” in WiSec ’21:
Proceedings of the 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks,
C. Pöpper, M. Vanhoef, L. Batina, and R. Mayrhofer,
Eds. ACM, June 2021, pp. 72–77, event Title:
14th ACM Conference on Security and Privacy in
Wireless and Mobile Networks. [Online]. Available:
http://tubiblio.ulb.tu-darmstadt.de/130931/

[4] D. Antonioli, N. O. Tippenhauer, and K. B.
Rasmussen, “The KNOB is broken: Exploiting
low entropy in the encryption key negotiation
of bluetooth BR/EDR,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 1047–
1061. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/antonioli

[5] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen,
“BIAS: Bluetooth Impersonation AttackS,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 549–562.

[6] M. von Tschirschnitz, L. Peuckert, F. Franzen, and
J. Grossklags, “Method Confusion Attack on Bluetooth
Pairing,” in 2021 IEEE Symposium on Security and
Privacy (SP), 2021, pp. 1332–1347.

[7] J. Ruge, J. Classen, F. Gringoli, and M. Hollick,
“Frankenstein: Advanced Wireless Fuzzing to Exploit

New Bluetooth Escalation Targets,” in Proceedings
of the 29th USENIX Security Symposium, S. Capkun
and F. Roesner, Eds. USENIX Association, August
2020, pp. 19–36. [Online]. Available: http://tubiblio.
ulb.tu-darmstadt.de/130926/

[8] J. Classen, F. Gringoli, M. Hermann, and M. Hollick,
“Attacks on Wireless Coexistence: Exploiting Cross-
Technology Performance Features for Inter-Chip Priv-
ilege Escalation,” in 2022 IEEE Symposium on Security
and Privacy (SP), 2022, pp. 1229–1245.

[9] D. Maier, L. Seidel, and S. Park, “BaseSAFE:
Baseband SAnitized Fuzzing through Emulation,”
CoRR, vol. abs/2005.07797, 2020. [Online]. Available:
https://arxiv.org/abs/2005.07797

[10] G. Hernandez, M. Muench, D. Maier, A. Milburn,
S. Park, T. Scharnowski, T. Tucker, P. Traynor, and
K. R. B. Butler, “FirmWire: Transparent Dynamic
Analysis for Cellular Baseband Firmware,” in Sym-
posium on Network and Distributed System Security
(NDSS), 2022.

[11] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim,
“BaseSpec: Comparative Analysis of Baseband Soft-
ware and Cellular Specifications for L3 Protocols,” in
Symposium on Network and Distributed System Secu-
rity (NDSS), 2021.

[12] D. Heinze, J. Classen, and M. Hollick, “ToothPicker:
Apple Picking in the iOS Bluetooth Stack,” in 14th
USENIX Workshop on Offensive Technologies (WOOT
20), 2020.

[13] D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert,
and M. Franz, “Agamotto: Accelerating kernel driver
fuzzing with lightweight virtual machine checkpoints,”
in 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, Aug. 2020, pp.
2541–2557. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity20/presentation/song

[14] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner,
and T. Holz, “Nyx: Greybox hypervisor fuzzing
using fast snapshots and affine types,” in 30th
USENIX Security Symposium (USENIX Security 21),
2021. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/schumilo

[15] D. Vyukov, “Syzkaller,” 2015. [Online]. Available:
https://github.com/google/syzkaller

[16] H. Peng and M. Payer, “USBFuzz: A framework
for fuzzing USB drivers by device emulation,” in
29th USENIX Security Symposium (USENIX Security
20). USENIX Association, Aug. 2020, pp. 2559–
2575. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/peng

[17] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili,
S. Hao, C. Kruegel, and G. Vigna, “DIFUZE:
Interface Aware Fuzzing for Kernel Drivers,” in
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 2123–2138. [Online]. Available:
https://doi.org/10.1145/3133956.3134069

https://github.com/seemoo-lab/VirtFuzz
http://tubiblio.ulb.tu-darmstadt.de/130931/
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
http://tubiblio.ulb.tu-darmstadt.de/130926/
http://tubiblio.ulb.tu-darmstadt.de/130926/
https://arxiv.org/abs/2005.07797
https://www.usenix.org/conference/usenixsecurity20/presentation/song
https://www.usenix.org/conference/usenixsecurity20/presentation/song
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://github.com/google/syzkaller
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://doi.org/10.1145/3133956.3134069

[18] S. Schumilo, C. Aschermann, R. Gawlik,
S. Schinzel, and T. Holz, “kAFL: Hardware-Assisted
feedback fuzzing for OS kernels,” in 26th
USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association,
Aug. 2017, pp. 167–182. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/schumilo

[19] OASIS Committee Specification 01, “Virtual
I/O Device (VIRTIO) Version 1.2,” July 2022,
edited by Michael S. Tsirkin and Cornelia Huck.
https://docs.oasis-open.org/virtio/virtio/v1.2/cs01/
virtio-v1.2-cs01.html.

[20] R. Russell, “Virtio: Towards a de-facto standard for
virtual i/o devices,” SIGOPS Oper. Syst. Rev., vol. 42,
no. 5, p. 95–103, jul 2008. [Online]. Available:
https://doi.org/10.1145/1400097.1400108

[21] D. Vyukov, “syzkaller: Adventures in Continuous
Coverage-guided Kernel Fuzzing,” 2020. [On-
line]. Available: https://www.youtube.com/watch?v=
YwX4UyXnhz0

[22] A. Herrera, H. Gunadi, S. Magrath, M. Norrish,
M. Payer, and A. L. Hosking, “Seed Selection
for Successful Fuzzing,” in Proceedings of the
30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2021.
New York, NY, USA: Association for Computing
Machinery, 2021, p. 230–243. [Online]. Available:
https://doi.org/10.1145/3460319.3464795

[23] V. M. Manes, H. Han, C. Han, S. Cha, M. Egele,
E. J. Schwartz, and M. Woo, “The Art, Science, and
Engineering of Fuzzing: A Survey,” IEEE Transactions
on Software Engineering, vol. 47, no. 11, pp. 2312–
2331, nov 2021.

[24] “kcov: code coverage for fuzzing,” https://www.kernel.
org/doc/html/v5.19/dev-tools/kcov.html.

[25] “The Kernel Address Sanitizer (KASAN),” https://
www.kernel.org/doc/html/v5.19/dev-tools/kasan.html.

[26] “The Undefined Behavior Sanitizer - UBSAN,” https://
www.kernel.org/doc/html/v5.19/dev-tools/ubsan.html.

[27] “Kernel memory leak detector,” https://www.kernel.
org/doc/html/v5.19/dev-tools/kmemleak.html.

[28] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert,
P. Larsen, and M. Franz, “Sok: Sanitizing for security,”
CoRR, vol. abs/1806.04355, 2018. [Online]. Available:
http://arxiv.org/abs/1806.04355

[29] G. Motika and S. Weiss, “Virtio network paravir-
tualization driver: Implementation and performance
of a de-facto standard,” Computer Standards &
Interfaces, vol. 34, no. 1, pp. 36–47, 2012.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0920548911000559

[30] A. Bulekov, B. Das, S. Hajnoczi, and M. Egele,
“Morphuzz: Bending (Input) Space to Fuzz Virtual
Devices,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 1221–1238. [On-
line]. Available: https://www.usenix.org/conference/

usenixsecurity22/presentation/bulekov
[31] R. Mayrhofer, J. V. Stoep, C. Brubaker, and

N. Kralevich, “The Android Platform Security Model,”
ACM Trans. Priv. Secur., vol. 24, no. 3, apr 2021.
[Online]. Available: https://doi.org/10.1145/3448609

[32] Bluetooth Core Specification v5.3, Bluetooth SIG
Std., Rev. v5.3, Jul. 2021. [Online]. Avail-
able: https://www.bluetooth.com/specifications/specs/
core-specification-5-3/

[33] M. E. Garbelini, V. Bedi, S. Chattopadhyay,
S. Sun, and E. Kurniawan, “BrakTooth: Causing
Havoc on Bluetooth Link Manager via Directed
Fuzzing,” USENIX Security Symposium, 2022. [On-
line]. Available: https://asset-group.github.io/papers/
BrakTooth.pdf

[34] M. E. Garbelini, C. Wang, S. Chattopad-
hyay, S. Sun, and E. Kurniawan, “Sweyn-
tooth: Unleashing mayhem over bluetooth low
energy,” in USENIX Annual Technical Confer-
ence (USENIX ATC), 2020. [Online]. Available:
https://asset-group.github.io//papers/SweynTooth.pdf

[35] E7mer, “Owfuzz: a WiFi protocol fuzzing tool,” Nov
2021, https://github.com/alipay/Owfuzz.

[36] V. Palmiotti, “Put an io uring on it:
Exploiting the Linux Kernel,” 2022. [On-
line]. Available: https://www.graplsecurity.com/post/
iou-ring-exploiting-the-linux-kernel

[37] GitHub, “Copilot – Your AI pair programmer,” 2022.
[Online]. Available: https://github.com/features/copilot

[38] QEMU, “A generic and open source machine
emulator and virtualizer,” 2022. [Online]. Available:
https://www.qemu.org/

[39] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik,
and T. Holz, “REDQUEEN: Fuzzing with Input-to-
State Correspondence,” in Symposium on Network and
Distributed System Security (NDSS), 2019.

[40] A. Fioraldi, D. Maier, D. Zhang, and
D. Balzarotti, “Libafl: A framework to
build modular and reusable fuzzers,” 2022,
http://193.55.114.4/docs/ccs22 fioraldi.pdf.

[41] M. Zalewski, “Technical whitepaper for afl-fuzz.”
[Online]. Available: https://lcamtuf.coredump.cx/afl/
technical details.txt

[42] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-Based Greybox Fuzzing as Markov Chain,”
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 1032–1043. [Online]. Available:
https://doi.org/10.1145/2976749.2978428

[43] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang,
and Y. Zhang, “One Fuzzing Strategy to Rule Them
All,” in 2022 IEEE/ACM 44th International Confer-
ence on Software Engineering (ICSE), 2022, pp. 1634–
1645.

[44] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ:
Automatic Grey-Box Fuzzing for Structured Binary
Formats,” in Proceedings of the 29th ACM SIGSOFT

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://docs.oasis-open.org/virtio/virtio/v1.2/cs01/virtio-v1.2-cs01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/cs01/virtio-v1.2-cs01.html
https://doi.org/10.1145/1400097.1400108
https://www.youtube.com/watch?v=YwX4UyXnhz0
https://www.youtube.com/watch?v=YwX4UyXnhz0
https://doi.org/10.1145/3460319.3464795
https://www.kernel.org/doc/html/v5.19/dev-tools/kcov.html
https://www.kernel.org/doc/html/v5.19/dev-tools/kcov.html
https://www.kernel.org/doc/html/v5.19/dev-tools/kasan.html
https://www.kernel.org/doc/html/v5.19/dev-tools/kasan.html
https://www.kernel.org/doc/html/v5.19/dev-tools/ubsan.html
https://www.kernel.org/doc/html/v5.19/dev-tools/ubsan.html
https://www.kernel.org/doc/html/v5.19/dev-tools/kmemleak.html
https://www.kernel.org/doc/html/v5.19/dev-tools/kmemleak.html
http://arxiv.org/abs/1806.04355
https://www.sciencedirect.com/science/article/pii/S0920548911000559
https://www.sciencedirect.com/science/article/pii/S0920548911000559
https://www.usenix.org/conference/usenixsecurity22/presentation/bulekov
https://www.usenix.org/conference/usenixsecurity22/presentation/bulekov
https://doi.org/10.1145/3448609
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://asset-group.github.io/papers/BrakTooth.pdf
https://asset-group.github.io/papers/BrakTooth.pdf
https://asset-group.github.io//papers/SweynTooth.pdf
https://github.com/alipay/Owfuzz
https://www.graplsecurity.com/post/iou-ring-exploiting-the-linux-kernel
https://www.graplsecurity.com/post/iou-ring-exploiting-the-linux-kernel
https://github.com/features/copilot
https://www.qemu.org/
http://193.55.114.4/docs/ccs22_fioraldi.pdf
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1145/2976749.2978428

International Symposium on Software Testing and
Analysis, ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1–13.
[Online]. Available: https://doi.org/10.1145/3395363.
3397372

[45] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee,
Y. Song, and R. Beyah, “MOPT: Optimized Mutation
Scheduling for Fuzzers,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 1949–
1966. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/lyu

[46] “CVE-2022-42719,” Available from NVD, CVE-
ID CVE-2022-42719., 2022. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2022-42719

[47] “KASAN: slab-out-of-bounds read in
hci le meta evt.” [Online]. Available:
https://syzkaller.appspot.com/bug?extid=
e3fcb9c4f3c2a931dc40

[48] “Integrated syzkaller with mac80211 hwsim,”
2020. [Online]. Available: https://github.com/google/
syzkaller/pull/2079

[49] AOSP, “Gabeldorsche Architecture,” 2022. [Online].
Available: https://chromium.googlesource.com/aosp/
platform/system/bt/+/refs/heads/bringup/gd/docs/
architecture/architecture.md

[50] IEEE, “IEEE Standard for Information Technology–
Telecommunications and Information Exchange
between Systems Local and Metropolitan Area
Networks–Specific Requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications Amendment 1:
Enhancements for High-Efficiency WLAN,” IEEE
Std 802.11ax-2021 (Amendment to IEEE Std 802.11-
2020), pp. 1–767, 2021.

[51] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating Fuzz Testing,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery,
2018, p. 2123–2138. [Online]. Available: https:
//doi.org/10.1145/3243734.3243804

[52] S. Schulz and M. Tarral, “Linux branches for fuzzing
with kAFL,” 2022, https://github.com/IntelLabs/kafl.
linux.

[53] S. Schumilo and C. Aschermann, “Ini-
tial Release of Nyx,” 2021, https:
//github.com/IntelLabs/kafl.linux/commit/
c612e238e455c34255bdb92efa7fd2fd963d287b.

[54] B. P. Miller, L. Fredriksen, and B. So, “An empirical
study of the reliability of unix utilities,” Commun.
ACM, vol. 33, no. 12, p. 32–44, dec 1990. [Online].
Available: https://doi.org/10.1145/96267.96279

[55] M. Zalewski, “american fuzzy lop.” [Online].
Available: https://lcamtuf.coredump.cx/afl/

[56] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse,
“AFL++: Combining Incremental Steps of Fuzzing
Research,” in 14th USENIX Workshop on Offensive

Technologies (WOOT 20). USENIX Association,
Aug. 2020. [Online]. Available: https://www.usenix.
org/conference/woot20/presentation/fioraldi

[57] S. Pailoor, A. Aday, and S. Jana, “Moonshine:
Optimizing OS fuzzer seed selection with trace
distillation,” in 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 729–
743. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity18/presentation/pailoor

[58] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote,
D. Warren, G. Grieco, and D. Brumley, “Optimizing
seed selection for fuzzing,” in 23rd USENIX Security
Symposium (USENIX Security 14). San Diego, CA:
USENIX Association, Aug. 2014, pp. 861–875. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/rebert

[59] S. Karamcheti, G. Mann, and D. S. Rosenberg,
“Adaptive Grey-Box Fuzz-Testing with Thompson
Sampling,” CoRR, vol. abs/1808.08256, 2018.
[Online]. Available: http://arxiv.org/abs/1808.08256

[60] Y. Chen, M. Ahmadi, R. M. farkhani, B. Wang,
and L. Lu, “MEUZZ: Smart Seed Scheduling for
Hybrid Fuzzing,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID
2020). San Sebastian: USENIX Association, Oct.
2020, pp. 77–92. [Online]. Available: https://www.
usenix.org/conference/raid2020/presentation/chen

[61] C. Zhou, M. Wang, J. Liang, Z. Liu, and Y. Jiang,
“Zeror: Speed Up Fuzzing with Coverage-sensitive
Tracing and Scheduling,” in 2020 35th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), 2020, pp. 858–870.

[62] D. She, A. Shah, and S. Jana, “Effective Seed Schedul-
ing for Fuzzing with Graph Centrality Analysis,” 2022.
[Online]. Available: https://arxiv.org/abs/2203.12064

[63] P. Jauernig, D. Jakobovic, S. Picek, E. Stapf, and A.-
R. Sadeghi, “DARWIN: Survival of the Fittest Fuzzing
Mutators,” arXiv e-prints, p. arXiv:2210.11783, Oct.
2022.

[64] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM
: A Practical Concolic Execution Engine Tailored
for Hybrid Fuzzing,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 745–
761. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity18/presentation/yun

[65] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and
B. Lee, “HFL: hybrid fuzzing on the linux kernel,” in
27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.
[Online]. Available: https://www.ndss-symposium.org/
ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/

[66] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz,
“Ijon: Exploring Deep State Spaces via Fuzzing,” in
2020 IEEE Symposium on Security and Privacy (SP),

https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://nvd.nist.gov/vuln/detail/CVE-2022-42719
https://syzkaller.appspot.com/bug?extid=e3fcb9c4f3c2a931dc40
https://syzkaller.appspot.com/bug?extid=e3fcb9c4f3c2a931dc40
https://github.com/google/syzkaller/pull/2079
https://github.com/google/syzkaller/pull/2079
https://chromium.googlesource.com/aosp/platform/system/bt/+/refs/heads/bringup/gd/docs/architecture/architecture.md
https://chromium.googlesource.com/aosp/platform/system/bt/+/refs/heads/bringup/gd/docs/architecture/architecture.md
https://chromium.googlesource.com/aosp/platform/system/bt/+/refs/heads/bringup/gd/docs/architecture/architecture.md
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://github.com/IntelLabs/kafl.linux
https://github.com/IntelLabs/kafl.linux
https://github.com/IntelLabs/kafl.linux/commit/c612e238e455c34255bdb92efa7fd2fd963d287b
https://github.com/IntelLabs/kafl.linux/commit/c612e238e455c34255bdb92efa7fd2fd963d287b
https://github.com/IntelLabs/kafl.linux/commit/c612e238e455c34255bdb92efa7fd2fd963d287b
https://doi.org/10.1145/96267.96279
https://lcamtuf.coredump.cx/afl/
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
http://arxiv.org/abs/1808.08256
https://www.usenix.org/conference/raid2020/presentation/chen
https://www.usenix.org/conference/raid2020/presentation/chen
https://arxiv.org/abs/2203.12064
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/

2020, pp. 1597–1612.
[67] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner,

and T. Holz, “HYPER-CUBE: High-Dimensional Hy-
pervisor Fuzzing,” 2020.

[68] Z. Ma, B. Zhao, L. Ren, Z. Li, S. Ma, X. Luo,
and C. Zhang, “Printfuzz: Fuzzing linux drivers via
automated virtual device simulation,” in Proceedings
of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2022.
New York, NY, USA: Association for Computing
Machinery, 2022, p. 404–416. [Online]. Available:
https://doi.org/10.1145/3533767.3534226

[69] D. Maier and F. Toepfer, “BSOD: Binary-Only
Scalable Fuzzing Of Device Drivers,” in Proceedings
of the 24th International Symposium on Research
in Attacks, Intrusions and Defenses, ser. RAID ’21.
New York, NY, USA: Association for Computing
Machinery, 2021, p. 48–61. [Online]. Available:
https://doi.org/10.1145/3471621.3471863

[70] K. Kim, T. Kim, E. Warraich, B. Lee, K. R. B. But-
ler, A. Bianchi, and D. Jing Tian, “FuzzUSB: Hybrid
Stateful Fuzzing of USB Gadget Stacks,” in 2022 IEEE
Symposium on Security and Privacy (SP), 2022, pp.
2212–2229.

[71] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim,
“Fuzzing file systems via two-dimensional input space
exploration,” in 2019 IEEE Symposium on Security and
Privacy (SP), 2019, pp. 818–834.

[72] M. E. Garbelini, Z. Shang, S. Chattopadhyay,
S. Sun, and E. Kurniawan, “Towards Automated
Fuzzing of 4G/5G Protocol Implementations Over
the Air,” IEEE Global Communications Conference
(GLOBECOM), 2022. [Online]. Available: https:
//asset-group.github.io//papers/AutoFuzz4G5G.pdf

[73] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na,
S. Volckaert, G. Vigna, C. Kruegel, J.-P. Seifert,
and M. Franz, “PeriScope: An effective probing and
fuzzing framework for the hardware-OS boundary,” in
Network and Distributed System Security Symposium
(NDSS), 2019.

Appendix A.
Meta-Review

A.1. Summary

This paper assesses the security of Linux kernel inter-
faces by developing a fuzzer called VirtFuzz, which uses the
VirtIO interface used by virtual machines to access virtual
devices exposed by a hyper visor. Since VirtIO drivers know
they are running in a virtualized environment, they can allow
higher performance from guest VMs. VirtFuzz uses the
VirtIO interface to pass fuzzed packets to the guest VM, and
these interfaces cover large parts of the kernel subsystem,
allowing the authors to fuzz Wi-Fi and Bluetooth subsys-
tems. The fuzzer is built using libAFL and code coverage
is provided through kcov. 31 new vulnerabilities are found
in the Linux network subsystems, 6 of high severity.

A.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) New vulnerabilities in the Wi-Fi subsystem with major
impact have been discovered with this methodology,
and 31 bugs total have been discovered which is very
significant.

2) Fuzzing is easier to set up compared to approaches such
as syzcaller and fuzzing speed is increased.

3) Does not require heavy patching of the Linux kernel
or qemu.

4) Open-source deployment promised by authors.

A.4. Noteworthy Concerns

Improvements to Bluetooth coverage through VirtFuzz
approach is relatively minimal compared to Wi-Fi. It would
be worthwhile for the authors to provide a limitations section
or guidance to users of the tool so that it is clear when
it can best be used to demonstrate advantages over other
techniques.

Appendix B.
Response to the Meta-Review

We will provide guidance on how to best use VirtFuzz
in the README file of the published source code. This will
enable those who build upon it to enhance driver fuzzing to
make an informed decision and get started more easily.

https://doi.org/10.1145/3533767.3534226
https://doi.org/10.1145/3471621.3471863
https://asset-group.github.io//papers/AutoFuzz4G5G.pdf
https://asset-group.github.io//papers/AutoFuzz4G5G.pdf

	Introduction
	Background
	Threat Model
	VirtFuzz Design and Implementation
	Design Goals
	Universal VirtIO Device
	Proxy
	Linux Kernel Adaptations
	Resulting VirtFuzz Architecture
	Executor
	Coverage
	Crash Deduplication
	Input Scheduling
	Mutations

	Guest Image

	Evaluation
	General Fuzzing Setup
	Advanced Evaluation Setup
	Bug Discovery & Relevance
	WLAN: Heap Overflow on Malicious Beacon Frame
	Bluetooth: Various Vulnerabilities on Multiple Connection Complete Events

	Performance
	Speed Comparison
	Coverage Comparison

	Impact of Genuine Inputs
	Required Adaptations
	Comparison to Other Fuzzing Frameworks
	Adding New VirtFuzz Devices

	Related Work
	Conclusion
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix B: Response to the Meta-Review

