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The Genetic Architecture of Maize
Flowering Time
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Flowering time is a complex trait that controls adaptation of plants to their local environment in
the outcrossing species Zea mays (maize). We dissected variation for flowering time with a set of
5000 recombinant inbred lines (maize Nested Association Mapping population, NAM). Nearly a
million plants were assayed in eight environments but showed no evidence for any single large-
effect quantitative trait loci (QTLs). Instead, we identified evidence for numerous small-effect QTLs
shared among families; however, allelic effects differ across founder lines. We identified no
individual QTLs at which allelic effects are determined by geographic origin or large effects for
epistasis or environmental interactions. Thus, a simple additive model accurately predicts flowering
time for maize, in contrast to the genetic architecture observed in the selfing plant species rice
and Arabidopsis.

The nature of standing genetic variation
and its relation to phenotypic variation
in plants affects our understanding of

evolution (1), sustainable agriculture, and pres-

ervation of inter- and intraspecific variation in
times of environmental change. Maize inbred
lines have an average nucleotide diversity in
genic regions around 1% (p = 1 to 1.4%) (2, 3),
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similar to the divergence between humans and
chimpanzees (4). It is not uncommon to find
maize haplotypes that are 5% divergent from
one another (5), which indicates that the maize
gene pool reaches back 2 to 4 million years
(with one generation per year).

Maize is adapted to a range of environments
from the lowland tropics to the Andean high-
lands and has been widely introduced world-
wide into both temperate and tropical regions.
Maize’s genetic architecture for flowering time
has evolved as its wild relatives adapted to dis-
tinct ecological zones in elevations differing by
more than 3000 m in Mexico and then under
both natural and artificial selection over the last
7000 years, with especially intense selection over
the past century. This genetic architecture has
evolved under a predominantly outcrossing mat-
ing system in a species with little population dif-
ferentiation (6).

Flowering time reflects the adaptation of a
plant to its environment by tailoring vegetative
and reproductive growth phases to local climatic
effects. Maize landraces vary widely, from 2 to
11 months, for the time required to mature (7). In
addition, asynchrony of male and female flower-
ing in maize may be adaptive in some cultivars,
but can result in losses under drought conditions,
especially in modern uniform varieties (8). Flow-
ering time has been extensively studied in the
predominantly self-fertilizing species Arabidopsis.
Like maize, Arabidopsis grows across a wide
range of latitudes and has flowering time con-
trolled by the interaction of the photoperiod (light
sensing and circadian rhythm), vernalization, and
autonomous flowering and gibberellic acid–response
pathways (9, 10). In grasses, which include maize,
wheat, and rice, some of the same genes are
involved in flowering, but they have different
functions (11–13).

In maize, diversity-based dissection of flow-
ering time has been hindered by tight linkage

of the trait to population structure and by the
lack of a reference genome. However, putative
orthologs for flowering-time genes identified
in other species have been identified through
QTL meta-analyses (14), although only one ma-
jor maize flowering-time QTL has been position-
ally cloned [vegetative to generative transition
1 (vgt1) (15)].

Experimental design. We used the maize
NAM population (16) of 200 recombinant
inbred lines (RILs) from 25 crosses between
diverse inbred lines and B73 (each referred to
as a family), which resulted in a total of 5000
lines (17). Because maize has rapid linkage dis-
equilibrium (LD) decay, joint linkage analysis of
the maize NAM population was used to eval-
uate complex trait genetic architecture, as we
have insufficient marker density for a genome-
wide association study (GWAS). The 5000 lines
plus 500 checks—nearly one million plants—
were evaluated in four locations over 2 years.
We scored days to silking (DS, female flower-
ing) and days to anthesis (DA, male flowering),
and we calculated the anthesis-silking interval
(ASI). We estimated heritability to be 94% for
DS and DA and 78% for ASI; within-cross
heritability averaged 83 to 84% for DS and DA
and 68% for ASI (table S1). Overall, our phe-
notypic data were highly heritable, and sub-
stantial replication across environments reduced
environmental effects on the phenotypic mean
values of the lines.

Genetic architecture of flowering.Wemapped
QTLs both within the 25 families separately
(using stepwise regression and inclusive com-
posite interval mapping) and in joint analyses
that combined information across all families
(joint stepwise regression and joint inclusive
composite interval mapping, JICIM (17). These
methods produced concordant results in terms of
the magnitude of effects; however, they have
different power and resolution capabilities. Joint
linkage QTL analysis identifies nearly twice as
many significant effects compared with individ-
ual family analyses. The multiple-family joint
stepwise regression method identified 36 and 39
QTLs that explained 89% of the total variance for
DA or DS, respectively, whereas 29 QTLs ex-
plained 64% of the ASI variance (Fig. 1, top).
JICIM generally found evidence for an addi-
tional 20 minor QTLs for each trait (Fig. 1,
bottom). These findings are concordant with the
evidence for 50 or more QTLs identified that
affect oil content in a large maize population
(18). Six major QTL regions previously identi-
fied in meta-analysis of maize flowering (14)
were concordant with QTLs identified here.
Robust QTL mapping with NAM permitted un-
precedented estimation of the genetic archi-
tecture in terms of the magnitude of gene effects,
epistasis, gene-environment interactions, and
pleiotropy.

The number of days to silk emergence varied
by 32 days among NAM founder lines and by
28 days among NAM RILs. However, relative

to B73, the largest effect DS QTL allele had
an additive effect of only 1.7 days (Fig. 2A),
whereas the largest ASI effect was 0.4 days. Over
98% of the QTL alleles affected DS by less than
1 day (Fig. 2A). In contrast, in Arabidopsis,
crosses between lines that flower at roughly
the same time can segregate for QTLs that have
3- to 18-day effects (19). Rice and barley, both
self-fertilizing species, also exhibit larger ad-
ditive effects for variation in flowering time
(20, 21). Ma1, the major photoperiod-sensitivity
locus in sorghum, has an additive effect of
40.3 days and explains 85.7% of the pheno-
typic variance for flowering time in a close in-
terspecific (Sorghum bicolor × S. propinquum)
mapping family (22).

Our results demonstrate that large differences
in flowering time among inbred maize lines are
not caused by a few genes of large effect, but by
the cumulative effects of numerous QTLs (Fig.
2B), each with only a small impact on the trait.
The latest flowering lines had significant allele
effects at 24 QTLs, of which 75% delay flower-
ing; the earliest had significant allele effects at 18
QTLs, with 66% of the QTLs accelerating flow-
ering. In outbreeding species, flowering of indi-
vidual plants must be substantially synchronous
within a local population to ensure mating suc-
cess. Selection may have favored a genetic ar-
chitecture of additive small-effect QTLs, so that
most offspring are likely to have partially syn-
chronous flowering times to ensure fitness. The
dispersion of heritable effects across 50 to 100 of
these small-effect QTLs may permit the adapta-
tion to a wide range of environments by accumu-
lation of alleles that consistently increase or
decrease flowering time.

We tested all pairwise marker combinations
for epistatic interactions within each family
separately. Epistatic interactions were detected
for DS and DA and only within two families.
We also tested all marker pairs for epistasis in a
joint analysis of all populations, which resulted
in detection of epistasis for two marker pairs
for ASI, which, combined, explained only 2%
of the phenotypic variation. The low epistasis
detected for these traits was surprising because
flowering time in plants results from interac-
tive molecular pathways (10), and epistatic ef-
fects have been observed in Arabidopsis (23)
and rice (24).

In general, the vast majority of flowering
QTLs we identified showed largely consistent
results across environments. Although 59% of
QTLs had significant environmental (E) interac-
tions, the genetic variation was many times larger
than QTL×E interaction variation (Fig. 3A).
Overall, this suggests a stable genetic architecture
across environments. ASI appearedmore sensitive
to genotype-by-environment interactions (G×E)
than the other flowering phenotypes observed
here. Our testing environments had substantial
differences in temperatures and rainfall, but day
lengths were consistently longer than the critical
photoperiod for short-day maize. Therefore, we
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expect that G×E interactions may be stronger if
tested under both short and long day length
environments.

This study was able to investigate pleiotropy
by correlating the allelic effects on multiple traits
of each QTL across a robust sample of founders.
We observed that 100% of DS and DA QTLs
have correlated effects on both male and female
flowering (average r = 0.90 across all loci). In
contrast, only about 70% of ASI QTLs had
correlated effects on DS, and only 14 to 21% of
the ASI QTLs had correlated effects on DA.
Overall, genetic control of male and female flow-
ers appears to involve the same set of genes
(although magnitudes of effects likely vary).
However, the asymmetry between DA-ASI and

DS-ASI correlations resulted from the higher
variation in the DS phenotype.

We used the significant NAM QTL additive
effect estimates to predict the timing of flowering
of the NAM founder lines and were able to
accurately predict parental flowering time (R2 =
87 to 91%) (Fig. 3B). This suggests that NAM
QTL results are more reliable than individual
family QTL effect estimates (25) and provides
further evidence that epistasis is relatively unim-
portant. By including nonsignificant additive ef-
fect estimates in the model, analogous to genome
selection, our predictive ability increases to R2 =
95%. Although we cannot extend these predic-
tions to unrelated lines because of insufficient
marker density, our results suggest that with large

enough samples, additive QTL models can ac-
curately predict phenotype.

Our maize founder lines represent a wide
range of latitudinal variation (tropical↔ temperate
dent↔Northern Flint). We tested the correlation
between QTL effect estimates of each founder
allele with quantitative estimates of their rela-
tion to families of origin to determine whether
population structure is defined by the allelic
effects at any individual QTL (26). QTL effects
at 26% of the loci were correlated (P < 0.05)
with the tropical-temperate cline. The large ef-
fects observed for the QTLs on chromosome
10 were highly correlated with tropical origin,
yet only 3 of the 16 lines with substantial trop-
ical origin carried alleles at this locus that in-
creased time to flowering by more than 0.4 days.
Overall, allelic effects at many loci were weak-
ly correlated with population structure, but
tropical origin was not defined by specific QTL
alleles; instead, it appears that numerous loci
work in concert to produce latitudinal adapta-
tions (Fig. 4A).

QTL and allele frequency. Thirty percent of
the polymorphisms in maize were found to be
unique to a single founder line (Fig. 4B), which
indicates that rare sequence variants are com-
mon in diverse maize. We tested whether the
phenotypic variation observed across families
was mostly due to many rare variants (segregat-
ing in only one family) or to a smaller number of
loci causing variation in multiple families. As
each founder line gave rise to 200 offspring RILs,
represented by about 40,000 plants, our design
provided sufficient power to detect rare QTLs
and to distinguish between these alternative

Fig. 2. All QTL allele effects were relatively modest. (A) Histogram of
additive allele estimates for the 39 days to silking QTLs for all 25 founder
lines relative to B73. Count of effects increasing flowering time above the
line, and decreasing flowering time below the line. There were 333 QTL
alleles that were significant at P< 0.05. Only seven (2.1%) hadmore than a
1-day effect on flowering time. (B) Large differences in the parental lines are
the product of stacking large numbers of modest-effect QTL. Sums of the
estimated additive positive and negative QTL allele effects for each line for
DS. Number of QTLs next to each bar.

Fig. 1. Joint QTL mapping results across the genome for DS, DA, and ASI. The vertical lines indicate
the breaks between the chromosomes. (Top) Scanning of the whole genome by using the joint
General Linear Model (GLM). (Bottom) The whole genome scanned by JICIM.
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hypotheses (>90% power for 1-day effect even in
single-family analysis). Most QTLs were shared
among multiple families (Fig. 4B), with many

QTLs showing effects among seven to eight
families (30% frequency). Our data partially sup-
port the common gene hypothesis for flowering-

time genetic architecture, which proposes that
variation at common loci causes phenotypic
variation across different families. This result is
striking because the sharing of QTLs across
families contrasts with the high frequency of rare
single-nucleotide polymorphisms (SNPs) inmaize
(Fig. 4B). This discrepancy cannot be due to bias
in detecting QTLs of modest frequency for sev-
eral reasons. (i) Although lower than that for
common QTLs, our design provides enough
power to detect QTLs segregating in two to four
families; nevertheless, we observed few QTLs
distributed in this way. (ii) NAM can statistically
detect QTLs unique to B73 (common QTLs in
this reference design, but rare QTL alleles in the
species). However, only 1% of the QTLs were
found in 17 or more families compared with 10%
of the SNPs. (iii) Additional QTLs can be iden-
tified within individual families, but when they
were added to the joint family analysis models,
they showed significant effects in additional fami-
lies. And (iv), retesting the final joint population
QTLs model by jackknifing the families (leaving
one or two families out sequentially) resulted in
reduced significance for some of the QTLs, but
none became insignificant.

Although many QTLs appear to be shared
across families, we also found evidence for
allelic series at most loci. Because our founders
were crossed to a common reference line, we
tested for and observed allelic series, including
both positive and negative effects, at the same
locus for 69 to 72% of the QTLs (Fig. 4A),
depending on the trait. Such allelic series have
previously been observed in maize (27). Al-
though rare alleles dispersed across multiple
tightly linked QTLs may also be misclassified
as an allelic series in some cases, our association
analysis suggests an allelic series for flowering-
time effects at vgt1 (below). Our results sug-
gest a model of common genes with uncommon
variants controlling flowering to explain our ob-
servation of a relatively small number of QTLs
(e.g., <100), with many functionally distinct
alleles at each locus, each occurring at low fre-
quency. GWAS studies and fine-mapping mul-
tiple alleles per QTL will be needed to test this
hypothesis.

Genes underlying this architecture. To eval-
uate the power and reliability of NAM, we

Fig. 3. (A) Ratio of genetic variance to genotype by
environmental variance by trait. All traits were
dominated by genetic variance, but Q×E was more
important for ASI. (B) Parental flowering can be
predicted well from the NAM QTL estimates. All
significant QTL effects (P < 0.05) for DS were
summed and added to observed B73 flowering to
predict parental flowering. A consistent underes-
timate of the slope is likely because of epistasis. The
fit increased when nonsignificant alleles were in-
cluded to R2 = 0.95.

Fig. 4. (A) Heat map for DS QTL effects by chromosomal position and allele donor. Of the QTLs,
69% had both positive and negative effects relative to B73, which suggests that allelic series are
important for maize flowering-time variation. The QTLs and population were clustered and sorted
to show maximal population differentiation of QTLs and lines. Although some QTLs certainly are
more common in tropical or temperate lines, no QTL sharply defined these differences. (B) The
distribution of QTLs and SNPs across families was extremely different, with biases toward QTLs of
intermediate frequencies. The QTL and SNP frequency among the NAM families for the three
combined traits (DA, DS, and ASI) showed similar distributions. The SNP line indicates the observed
frequency of SNP differences from a set 3641 SNPs identified through sequencing these lines.
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tested a QTL previously shown to affect flow-
ering time in maize. The maize vgt1 locus
contains an AP2-like gene, rap2.7, involved in
the timing of flowering under regulatory con-
trol of an enhancer region about 70 kb from
the gene (15). We confirmed the presence of a
QTL in the region of vgt1 (DA: P = 4 × 10–44;
DS: P = 7 × 10–40). Prior QTL mapping ef-
forts (28) revealed an early flowering QTL
about 5 centimorgans (cM) from vgt1 that also
may be contributing to the effects detected in
this region; marker saturation across this inter-
val permitted resolution into two linked QTLs.
By controlling for the rest of the genome and
estimating the effects of founder alleles at vgt1,
we observed a distinct allelic series at this locus
(Fig. 5).

A previously identified vgt1 allele from north-
ern germplasm associated with a miniature trans-
poson (MITE) (15) was segregating in four of the
NAM families (crosses involving Il14H, P39,
MS71, and Mo17). In confirmation of previous
results, this allele was strongly associated with
early flowering in NAM (Fig. 5). Absence of this
MITE did not explain the late flowering vgt1
alleles, but sequencing of founder lines in this
region identified SNPs at the rap2.7 gene itself
that were associated with this late-flowering ef-
fect (Fig. 5). Associations of both the MITE at
the upstream regulator region (vgt1) and the
SNPs within the rap2.7 gene with flowering time
were confirmed in a separate diverse maize
inbred association panel (MITE: P = 6 × 10–4;
rap2.7 SNP: P = 0.01).

Natural variation at the zfl2 locus also sig-
nificantly affects flowering time (29). Although
the null mutants of this gene previously observed
in natural populations (29) did not segregate
among these NAM families, we nevertheless
found a QTL at the zfl2 locus (DA: P= 3 × 10–10;
DS: P = 1 × 10−15). One line, Ky21, had a phe-

notype associated with a 16–amino acid dele-
tion in the proline-rich domain of this protein.
In addition, other lines showing large effects
have a 7-bp deletion 1 bp before the ATG start
site of zfl2.

Marker saturation of RILs with recombinant
chromosome blocks around the largest-effect
QTL on chromosome 1 resolved the QTL to a
region that includes a homolog of the recently
cloned Ghd7 gene from rice (12). On chromo-
some 1, the bif2 gene, which is involved in auxin
transport (30), overlaps with a QTL for ASI.
Association analysis in unrelated lines implicates
bif2 in the timing of flowering (31). In addition,
maize flowering mutant id1 and homologs of the
barley photoperiod genes (Ppd-H1) (21) fall
within our QTL intervals. As there are over
1000 homologs of Arabidopsis flowering-time
genes in maize, our study demonstrates a means
by which to reliably relate maize QTLs to can-
didate genes.

Implications. Our study of QTLs controlling
flowering time with NAM provides insight into
the genetic architecture of adaptive traits. Our re-
sults suggest that for the outcrossing species
maize, the genetic architecture of flowering time
is dominated by small additive QTLs with few
genetic or environmental interactions (within the
tested range of environments). Human height
may have a similar genetic architecture (32), but
in the case of flowering time, these architectures
are distinct from Arabidopsis and rice, self-
fertilizing plant species, where flowering-time
variation is controlled by fewer genes with larger
effects, epistasis, and environmental interactions
(9, 11, 13, 23). This suggests that the mating
system and demographics influence the genetic
architecture of adaptive traits.

For maize, we now have some of the best
genetic tools to conduct research of complex
genetic architectures. We currently have nearly

15,000 genetic stocks for manipulation and
isolation of the genetic variation throughout the
entire species. We predict that soon it will be
possible to more fully examine the genetic archi-
tecture of other traits of interest in maize. Such
studies can be applied to improving the world’s
food security and to making maize production
more environmentally sustainable.
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Fig. 5. Estimated DS effects and standard errors for the vgt1 region of chromosome 8. Estimates are
relative to B73 allele flowering. The blue alleles have the MITE at vgt1 (the Mo17 family, also scored at the
same time, also carries the polymorphism and equivalent effect). A simple t test of founder-effect estimate
for MITE versus non-MITE was significant (P = 2 × 10–8). The red alleles identify lines that carry
polymorphisms at vgt1 target gene rap2.7, which also differs significantly (P = 6 × 10–4).
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