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Abstract—An increasing number of buildings are equipped
with embedded sensing systems in order to capture what is
happening within. These smart buildings process collected sensor
data to increase user comfort and safety, cater for ambient
assisted living, or help the residents save energy. However, saving
energy is not always beneficial to the power grid, especially when
renewable sources are present. More specifically, the volatile
nature of their primary energy carriers (e.g., fluctuating wind
speeds) may lead to situations where significant surplus energy
is being generated, which must be consumed in order to keep
the power grid stable. Likewise, when unexpected drops in the
generation occur, utilities must react and possibly even disconnect
loads. At present, grid operators only react to the observed
power consumptions, and the efficacy of the measures taken to
maintain grid stability is moderate. We demonstrate how the
sensor infrastructure present in smart buildings can be leveraged
to accurately predict future power consumptions. Our system is
based on commercially available device-level measurement units
that transmit consumption data to a central building server. The
server extracts characteristic fingerprints from historical power
consumption data and uses time series pattern matching in order
to detect similarities. Our demo shows that long-term predictions
of an appliance’s power consumption can be made, even when
an appliance has been in operation for less than a minute.

I. INTRODUCTION

Power grids that comprise renewable sources often experi-
ence high generation dynamics. The lack of energy storage
components in today’s power grids, however, necessitates
that surplus energy provided during periods of high winds
or intense sunshine must be consumed at the time of its
generation. Renewable sources may also yield unexpected low
output power due to the volatility of their primary energy
carrier. The prevalent solution to maintain grid stability in
such situations is to keep conventional power plants ready as
reserve plants and even to intentionally disconnect renewable
plants [1], yet neither of them represents a sustainable solution.

Accurate estimations of supply and demand help operators
to alleviate this situation, yet only a few countries have
accurate short-term forecasts of their renewable generation [2].
Predictions for electricity demand currently provide even less
detail, as they are almost exclusively based on stochastic user
models (load profiles) [3]. Although smart meters are widely
deployed in numerous countries, the collected data is also
rarely used to extrapolate future consumption characteristics
in practice.

Instead of addressing the challenge of load prediction from
the power grid perspective, we propose the use of sensor
data that is available from smart building infrastructure. More
precisely, our system utilizes distributed power consumption
metering units, sometimes referred to as “smart plugs”. Al-
though more and more of these devices are deployed in
households in order to assess appliance energy consumption,
the collected power data is rarely used for the benefit of the
power grid. We demonstrate how accurate power consumption
forecasts can be extracted from distributed power consumption
data. These predictions can be forwarded to the grid operator
to facilitate the matching between supply and demand, and
thus ultimately bolster the efficiency of the smart grid.

II. DEMONSTRATION SYSTEM

The overall architecture of our demonstration system is
depicted in Fig. 1. In essence, it is based on distributed
metering units, which are connected between appliances and
wall outlets. The metering units use a low-power wireless
communication link to forward their readings to a gateway,
which in turn relays them to a server via a wired connection.
The server maintains a database of previously collected data
in order to permit matching real-time consumption readings
against the historical data. Furthermore, it comprises signal
conditioning and preprocessing components to improve the
reliability of the underlying data, and thus reduce the risk
of erroneous predictions. Lastly, the server visualizes how
accurate the projected consumptions match the real-time data.
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Fig. 1. System architecture of the proposed demo



A. Hardware Components
As indicated in Fig. 1, our demonstration system will com-

prise several different household appliances and the distributed
metering units connecting them to the wall outlets. The data
collection methodology follows the approach proposed in our
previous work [4]. A gateway is employed to translate the data
from the wireless sensors to an Ethernet connection, which
is then interfaced to the server. Detailed descriptions of the
individual hardware components are provided as follows.

1) Appliances: Several household appliances will be used
in order to demonstrate the functional principle of our pre-
diction system and to subsequently show its accuracy and
real-world applicability. The set of appliances may include a
toaster, a water kettle, a paper shredder, and further devices
that allow us to showcase the concepts outlined in Sec. IV.

2) Power sensors: The distributed metering units connect
between the appliances and the wall outlets and collect read-
ings of each appliance’s real power consumption at least
once per second. For our demonstration system, we use the
Plugwise Sting [5] devices to collect data due to their electric
safety approval and the simple deployment. The Plugwise
system communicates sensor readings wirelessly using low-
power IEEE 802.15.4 radio transceivers.

3) Gateway: Only a single sink node is supported by the
Plugwise network, yet multiple systems might possibly require
access to the collected data. As a result, we have added a
gateway device to the demonstration system. The gateway
functionality is realized by a Raspberry Pi [6] system, on
which a dedicated script continuously polls for power data
and forwards them to all interested recipients. A display can
be connected to the gateway to show a live view of the current
device power consumptions.

4) Server: The server system will be realized by a computer
system with sufficient computational power to perform time
series pattern matching, which represents the basis for our load
forecasting. Besides performing the computations, the server
system also displays the resulting predictions on a screen.

B. Software Components
The methodology for processing both historical and real-

time power consumption data is visualized in Fig. 2. In a first
step, a repository of signatures is established from historical
data that have been collected earlier and are stored in the
database shown in Fig. 1. This process is shown on the left side
of the figure. Subsequently, i.e., during the system’s regular
operation, the real-time incoming data (shown in the lower
part) is matched against the signature repository to find the
closest match and thus predict the future power consumption
characteristics. We apply the following processing steps.

1) Interpolation: Packet losses may occur due to the wire-
less channel between the power sensors and the gateway.
Likewise, more than one reading per second may be received
under good conditions. In order to allow our system to
correctly predict future consumptions, a unified data basis is
however inevitable. In this step, the system thus interpolates
and re-samples the input data to one sample per second.

Historic input data

Interpolation of
missing values

Preprocessing

Segmentation

Start signature 
extraction

...

Repository of 
signatures

Time series
pattern matching

Real-time 
incoming data

Fig. 2. Processing flow of the load predictor

2) Preprocessing: Across several installations of our power
sensors, we have occasionally observed reports of erroneous
power consumption readings in excess of 17,000 watts. We
have hence added a preprocessing step to eliminate these
values and further contribute to a coherent data representation.

3) Segmentation: After the preprocessing, the continuous
time series of past consumption data is divided into individual
activity segments. The resulting time series representations of
the appliance’s power consumption are then used as templates,
against which real-time consumption data is matched during
the system’s regular operation.

4) Signature extraction: A large number of complete activ-
ity segments may be extracted if the database contains many
historical traces. In order to cater to the system’s scalability, we
thus store a replica of the beginning of each activity segment
in a dedicated signature repository. Each of the resulting
signatures contains a reference to its underlying segment, such
that the segment can be loaded when a signature match has
been detected.

C. System Operation
Once all segments and the corresponding signatures have

been extracted from the historical data stored in the database,
the system is ready to predict appliance power consumptions.
During regular operation, the server receives the readings from
the gateway and applies the preprocessing and interpolation
steps to the data. Subsequently, the input data are matched
against the signature repository by means of time series corre-
lation calculations. The segments linked to the traces with the
highest correlation values are then returned as prospective can-
didates for the appliance’s future power consumption pattern.
This step is repeated for every incoming sample, i.e., every
second, and the segment selection is refined accordingly. Once
the system has detected a sufficiently close match between a
signature and the real-time input data, it reports the expected
remaining activity duration and the corresponding estimated
power consumption.



Fig. 3. Live trace view (left) and consumption predictions for both appliances (right)

III. DEMONSTRATION SETUP AND REQUIREMENTS

The demand for space is largely dominated by the number of
electric appliances that are being used. A table of 4x1 meters
size with at least eight power outlets (230 volts) would be
preferred, such that the following items can be accommodated:

• Four or more household appliances including the attached
distributed metering units.

• The embedded gateway system and a computer monitor
for a live visualization of the reported consumption data.

• One or two server computers with large monitors to show
the prediction system in action and explain the underlying
data processing steps.

Our Plugwise system uses IEEE 802.15.4 channel 15 and
does not permit reconfiguration to another channel. While
the system is resilient against incidentally received packets,
a high concurrent utilization of this channel might lead to
longer reporting intervals and thus to a degraded prediction
accuracy. Other than that, the demonstration is self-contained,
and no further infrastructure is required apart from the mains
connections. The demonstration system can be set up and
configured in less than one hour.

IV. DEMONSTRATED SYSTEM FUNCTIONALITIES

The following aspects of our system will be showcased:
1) Real-time data collection: The power sensors collect

real-time consumption data of electric appliances and transmit
these to the gateway. We will connect a display to the gateway
and visualize the consumption readings at the time of their
collection by the gateway.

2) Database retrieval: We will let the system retrieve
individual traces from the server’s database of historic data
and plot them on the screen. Based on the graphical trace
representation, we explain how the system performs automated
trace preprocessing and segmentation and which parameters
may be tuned to improve the quality of the automated process.

3) Visualization of the signature repository: An overview
of the repository of extracted start signatures will be displayed
on the screen in order to allow visitors to get an impression
of their similarity.

4) Load prediction: We will allow visitors to choose an
appliance of their choice and activate it while it is connected
to one of the distributed power sensors. As the data are

automatically forwarded to the forecasting system, a signature
matching is automatically triggered. Once a match has been
found, the expected power consumption until the appliance’s
deactivation will be forecast on the screen in real-time. The
displayed user interface will look similar to Fig. 3, where a
real-time view of the incoming power sensor data is shown
on the left. Signature matches for both appliances have been
detected, and projections of their power consumption are made
in the window on the right.

5) Continuous prediction refinement: While the appliance
is still connected to the sensor, the system continually updates
its prediction to the most likely signature. Upon each match
with a higher expected accuracy, a prediction estimate is emit-
ted, against which the future consumption is then compared
in the real-time visualization window.

V. CONCLUSION

In this demonstration, we will show the all necessary steps
to forecast the energy consumption of electric appliances. This
ranges from the real-time collection of consumption readings
using smart plugs to the prediction of the appliance run-
time of using time series pattern matching. The audience will
be able to activate appliances of their choice and observe
the forecasting process in real-time. Based on this individual
forecasting, the future energy consumption of buildings can
be predicted, allowing for a global optimization of the load
balance in smart grids.
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