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Zusammenfassung
Das Standardmodell der Teilchenphysik ist das erfolgreichste physikalische Modell. Den-
noch ist bekannt, dass es unvollständig ist. Mit der Entdeckung des Higgs-Bosons im
Jahr 2012 wurde das Standardmodell vervollständigt. Dies führte zu zahlreichen Studien,
die seine Eigenschaften mit den Vorhersagen des Standardmodells vergleichen. Da das
Higgs-Boson an Masse koppelt, bietet es Möglichkeiten, nach Physik jenseits des Stan-
dardmodells zu suchen.
Diese Arbeit konzentriert sich auf die resonante Produktion von Higgs-Boson-Paaren im
bbWW ∗-Zerfallskanal mit einem geladenen Lepton im Endzustand unter Verwendung
simulierter Atlas Run 3-Daten. Die hohe Masse der skalaren Resonanz führt zu ei-
ner „boosted“ Topologie, bei der die Zerfallsprodukte des Higgs-Bosons, das in ein bb-
Quarkpaar zerfällt, sowie die Zerfallsprodukte des hadronisch zerfallendenW -Bosons nicht
einzeln aufgelöst werden können. Außerdem überlappt das geladene Lepton mit einem
der large-R Jets, die aus diesen hadronischen Objekten rekonstruiert wurden. Dies macht
die Topologie einzigartig, aber auch schwierig in der Rekonstruktion.
Das Ziel dieser Arbeit ist es, eine neue Analyse für diesen Zerfallskanal zu konzipieren,
wobei zunächst eine Vorselektion etabliert werden soll, um anschließend die Ergebnisse der
auf Schnitten basierenden Selektion mit einer Klassifikation auf Basis eines Feedforward
Neuronalen Netzes zu vergleichen.

Stichwörter: Teilchenphysik, Masterarbeit, Higgs Boson Paarproduktion, Neuronale
Netze

Abstract
The Standard Model of Particle Physics is the most successful physics model in describing
fundamental physics phenomena. Still, it is known to be incomplete. With the discovery
of the Higgs boson in 2012, all Standard Model particles have been observed. This led
to many studies testing its properties against the Standard Model prediction. Since the
Higgs boson couples to mass, it can provide opportunities to search for physics beyond
the Standard Model.
This thesis focuses on resonant Higgs boson pair production in the bbWW ∗ decay channel
with one charged lepton in the final state using simulated Atlas Run 3 data. The large
mass of the scalar resonance leads to the boosted topology, in which the decay products
of the Higgs boson decaying to a bb quark pair as well as the decay products of the
hadronically decaying W boson cannot be resolved. The charged lepton also overlaps
with one of the large-R jets reconstructed from these hadronic objects. This makes the
topology unique but challenging to reconstruct.
The aim of this thesis is to conceptualise a new analysis for this decay channel, focusing
on first establishing a preselection to then compare the performance of the cut-based
selection with a feed-forward neural network based classification.

Keywords: Particle Physics, Master thesis, Higgs boson pair production, Neural Net-
works
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1. Introduction

The Standard Model of particle physics (SM) [1–4] is a highly precise and successful
model. It is widely accepted and intensively tested. Since the discovery of the Higgs bo-
son in 2012 [5, 6], many studies have been performed to test the Higgs boson’s properties
against Standard Model predictions. In particular, a direct measurement of the Higgs
self-coupling is important to characterise the Higgs potential. This coupling strength
could be measured in Higgs boson pair production, motivating the search for such pro-
cesses, although, the SM predicted cross section σSM

HH = 31.05 fb [7–9] is very small, due
to destructive interference.
Furthermore, it is known that there must be physics beyond the SM (BSM) as the SM fails
to account for the existence of dark matter and other observed phenomena [10]. Many
BSM theories predict additional, highly massive narrow-width particles, X, which can
decay to two Higgs bosons, H, enhancing the Higgs boson pair production cross section.
Since the mass of X is not predicted by theory in this approach, a wide range of masses,
mX , is considered, resulting in various decay topologies.
This Master’s thesis focuses on the boosted topology of the BSM decay channel
X → HH → bbWW ∗ in the 1-lepton final state. In this context, ”boosted” means that
the two Higgs bosons have large kinematic energies of several hundred GeV, resulting
in their respective decay products being highly collimated. The aim of this thesis is to
develop an analysis for this decay for Run 3 data recorded by the Atlas detector from
2022 until 2025 with an expected integrated luminosity of

∫ Ldt = 150 fb−1. A few years
ago, Peer Drescher showed in his Bachelor’s thesis [11] for the Run 2 analysis that using a
model based on a neural network for the separation of signal and background outperforms
a cut-based approach. Given these results, a similar model should be developed for Run
3.
In chapter 2 of this thesis, the theoretical foundations are first discussed, where an
overview of the Standard model of particle physics, as well as a brief explanation of
the Higgs mechanism with a BSM extension, is given. Afterwards, in chapter 3, an in-
troduction to Machine Learning and neural networks is given. Then, in chapter 4, the
experimental setup of the Lhc and the Atlas detector with all its subdetectors is de-
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1. Introduction

scribed. In chapter 5, the studied decay channel, the analysis objects and the data samples
used for this analysis are explained in detail. In chapter 6, the baseline signal selection
for the analysis as well as the neural network model are presented. Lastly, in chapter 7,
the results of this Master’s thesis are summarized and an outlook is provided.
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2. Theoretical Background

In this chapter, the theoretical background of this Master’s thesis is covered. First, the
Standard Model of Particle Physics (SM) [1–4] is described in detail, including three of
the four known fundamental forces. The Higgs boson was the last discovered particle from
the SM [5, 6]. The Higgs mechanism [12–17], which gives mass to particles, is explained
in detail as well. After that, Higgs boson pair production is discussed.

2.1. The Standard Model of Particle Physics

There exist four fundamental forces in the universe: the gravitational, the electromagnetic,
the weak and the strong force. Einstein’s General Theory of Relativity [18] explains the
gravitational force, while the other three interactions have been unified into quantum field
theory known as the SM. It also describes all known elementary particles as excitations
of quantum fields.

2.1.1. Particles and Forces

The elementary particles in the SM can be split into two categories: fermions with spin-1
2

and bosons with integer spin. Fermions are the elementary particles that make up matter
and bosons are the mediators of the fundamental forces and the Higgs mechanism.
There are twelve fermions and five bosons in the SM. In Figure 2.1, all elementary parti-

cles of the SM and some of their properties are listed. The twelve fermions can be further
split into quarks and leptons, each consisting of six particles in three generations. Each
generation includes two quarks and two leptons in weak isospin doublets with differing
masses. There are electrically charged leptons with an electrical charge of −1 and also
neutral leptons called neutrinos. The quarks can be further divided into up-type quarks
with an electrical charge of +2

3 and down-type quarks with an electrical charge of −1
3 .

Quarks also carry the charge of the strong interaction called colour. The three distinct
values of the colour charge are red, blue and green. While the charges stay the same over
the three generations of fermions, their masses and flavours change. To every fermion
there exists an anti-particle with exactly opposite charges.
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2. Theoretical Background
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Figure 2.1.: The elementary particles of the SM. In the upper half the quarks and in the lower
half the leptons are shown. Both are grouped into the three generations with particles from higher
generations increasing in mass and decreasing in lifetime. The gauge bosons that mediate the three
fundamental forces are to the right of the fermions. The Higgs boson is also depicted in grey. Their
colours correspond to the mediated force, indicated by coloured corners for each particle. Also the
electric charge, the spin and the particle masses are given. Taken from Ref. [1].

The fermions in the first generation are stable, while particles from the second and third
generation have increasingly higher masses and decay into fermions of lower masses. The
three lepton flavours are called electron (e), muon (µ) and tau (τ), each having a cor-
responding neutrino of their respective flavour. Quarks have six different flavours. The
up-type quarks are called up (u), charm (c) and top (t) while the down-type quarks are
called down (d), strange (s) and bottom (b).
All bosons but the Higgs boson are spin 1 gauge bosons. These are called gluon (g),
photon (γ), W− boson, W+ boson and Z boson. The gluon mediates the strong force,
the photon the electromagnetic force, and the two W bosons as well as the Z boson
mediate the weak force. The last boson, the Higgs boson, is a spin 0 Goldstone boson.
Goldstone bosons stem from spontaneous symmetry breaking of massless particles (see
Section 2.1.2). The interaction with the Higgs field generates masses to the SM particles.
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2.1. The Standard Model of Particle Physics

Quantum Electrodynamics
The quantum field theory describing the interaction between electrically charged parti-
cles via photon exchange is Quantum Electrodynamics (QED) [19]. The electromagnetic
Lagrangian for a massive fermion ψ and a massless spin-1 photon field Aµ is

LQED = ψ (iγµ∂µ −m)ψ + geψγ
µψAµ − 1

4F
µνFµν , (2.1)

where ψ = ψ†γ0 is the adjoint spinor, γµ are the gamma matrices, m is the particles mass
and

Fµν = ∂µAν − ∂νAµ, (2.2)

denotes the electromagnetic field strength tensor. The second term of the electromagnetic
Lagrangian introduces interactions between the photon and the fermion with a coupling
of ge.
Furthermore, the electromagnetic Lagrangian is invariant under local U(1) transforma-
tions with a phase α:

ψ → ψ
′ = eiαψ; Aµ → A

′

µ = Aµ+ 1
ge

∂µα. (2.3)

Quantum Chromodynamics and Electroweak Unification
The quantum field theory describing the interaction between particles carrying colour
charge via gluon exchange is Quantum Chromodynamics (QCD)[20, 21]. In analogy to
QED, the Lagrangian can be written as

LQCD = qi

(
iγµ (Dµ)ij

)
qj − 1

4G
µνGµν , (2.4)

with Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µGν and

(Dµ)ij = ∂µδij − igs (Ta)ij G
a
µ, (2.5)

representing the kinematic terms of the eight gluon fields Ga
µ. Here gs denotes the

coupling strength of the strong interaction and the indices i and j correspond to the
colour state of the quarks q. QCD has an underlying SU(3) symmetry with respect to
the colour charge, meaning it is invariant under local SU(3)C gauge transformations.
QCD has some special properties. As the gluon itself also carries a colour charge, it can
interact with itself resulting in the coupling constant becoming larger for smaller energies
[22, 23]. This means that increasing the distance between quarks leads to the creation of
quark-antiquark pairs because the energy in the coupling increases. This process is called

5



2. Theoretical Background

hadronisation. Another interesting phenomenon of QCD is the fact that a free quark has
never been observed, this phenomenon is called colour confinement [24]. This means that
hadronised quarks only exist in colour neutral states, either by three differently coloured
quarks forming a bound state called baryon or by a quark anti-quark pair with the same
colour forming a bound state called meson.

Finally, there is the weak interaction. It is transmitted by the either positively or
negatively charged W boson or the neutral Z boson. It is the only force that neutrinos
interact with, as they neither have an electric charge nor a colour charge.
The Glashow-Salam-Weinberg (GSW) Theory [2–4] allows the simultaneous description
of electromagnetic and weak interaction through introduction of the hypercharge

Y = 2
(
Q− I(3)

w

)
, (2.6)

where Q denotes the electric charge and I(3)
w the third component of weak isospin. This

leads to the description of the photon field Aµ and the Z boson field Zµ via a new boson
field Bµ:

Aµ = Bµ cos θW +W (3)
µ sin θw (2.7)

Zµ = −Bµ sin θW +W (3)
µ cos θw, (2.8)

with θw being the weak mixing angle. It is apparent that the photon field Aµ and the Z
boson field Zµ are superpositions of W (3)

µ and Bµ. In a similar way, the W± bosons are
superpositions of the W (1)

µ and W (2)
µ fields:

W±
µ = 1√

2
(
W (1)

µ ∓ iW (2)
µ

)
. (2.9)

2.1.2. The Brout-Englert-Higgs Mechanism

The combined SM Lagrangian

LSM = −1
4G

a
µνG

µν
a − 1

4W
a
µνW

µν
a − 1

4BµνB
µν︸ ︷︷ ︸

kinematics of gauge fields

+ ψ
f

Liγ
µDµψ

f
L + ψ

f

Riγ
µDµψ

f
R︸ ︷︷ ︸

kinematics and interactions of fermions

(2.10)

with
Dµψ = (∂µ − igsTaG

a
µ︸ ︷︷ ︸

SU(3)C

− ig2TaW
a
µ︸ ︷︷ ︸

SU(2)L

− ig1TBµ︸ ︷︷ ︸
U(1)Y

)ψ, (2.11)
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2.1. The Standard Model of Particle Physics

contains all previously discussed quantum field theories and is invariant under
SU(3)C × SU(2)L × U(1)Y symmetry. For both gauge bosons and fermions, the SM La-
grangian does not contain mass terms to preserve this invariance. Thus neither gauge
bosons nor fermions should have masses if the Lagrangian was complete. But particle
masses are clearly observed for various elemental particles.
The mass terms can be achieved through the Higgs mechanism, developed by Brout, En-
glert, Guralnik, Hagen, Higgs and Kibble [12–17], which introduces a doublet of complex
scalar fields Φ. The Langrangian of Φ is given by

LHiggs = (DµΦ)† (DµΦ) − V (Φ) , (2.12)

and the Higgs potential is

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
. (2.13)

In Figure 2.2 the Higgs potential is sketched for λ > 0 and µ2 < 0. Under such conditions,
the Higgs potential has an infinite number of minima around the origin at Φ†Φ = v2 =
−µ2/λ, where v is the vacuum expectation value. Due to the rotational symmetry of the
Higgs potential, when expanding the field around the minimum, the ground state can
arbitrarily be chosen to be real:

⟨Φ⟩ =
0
v

 . (2.14)

Figure 2.2.: Illustration of the Higgs potential for λ > 0 and µ2 < 0.

The field expansion

Φ = 1√
2

 θ1(x) + iθ2(x)
v +H(x) + iθ3(x)

 (2.15)

results in three massless Goldstone bosons θi(x) and one massive Higgs boson H(x).

7



2. Theoretical Background

Applying unitary gauge, the Goldstone bosons are absorbed by the longitudinal degrees
of freedom of the W and Z bosons and vanish. The field takes the form

Φ = 1√
2

 0
v +H(x)

 (2.16)

and the Lagrangian can be written as

LHiggs =1
2∂µH∂

µH − λv2H2 − λvH3 − 1
4λH (2.17)

+ 1
8
(
v +H2

) (
W 1

µ W 2
µ W 3

µ Bµ

)

g2 0 0 0
0 g2 0 0
0 0 g2 gg′

0 0 gg′ g2




W 1

µ

W 2
µ

W 3
µ

Bµ

 . (2.18)

The terms in the first line of the Lagrangian describes a free massive scalar with cubic
and quartic self-interactions, where the interaction strength is proportional to λ. The
second line describes the interaction of the Wµ and Bµ fields with the scalar Higgs field.
The second line of the Lagrangian also gives rise to a massless photon and massive W±,
Z and Higgs boson H with masses

mH =
√

2λv2, mW = gv

2 , mZ = v

2
√
g2 + g′2 and mA = 0. (2.19)

From Equation (2.18), it can be seen that the couplings of the gauge bosons to the Higgs
boson are proportional to the squared mass of the gauge bosons. Thus, the more massive
the gauge boson, the greater the coupling to the Higgs boson.
The Higgs field also generates masses for fermions via the Yukawa coupling. Both the
Higgs field and the fermions form a SU(2) doublet. In unitary gauge, the Higgs doublet
projects onto the T3 = −1/2 part of the weak isospin doublet of the fermion. Thus,
the fermion masses are generated separately for down-type quarks together with charged
leptons and for up-type quarks together with neutrinos, according to their weak isospin
properties. For down-type quarks as well as charged leptons, the Lagrangian density
includes terms such as

Ld = −gfv√
2
(
dLdR + dRdL

)
− gf√

2
H
(
dLdR + dRdL

)
. (2.20)

The fermion mass arises in the first term as

mf = gf
v√
2
, (2.21)

8



2.2. Higgs Boson Pair Production

where gf is the Yukawa coupling constant [4, 25, 26]. The interaction of the fermion with
the Higgs field is described by the second term. For up-type quarks and neutrinos the
Lagrangian density includes

Lu = −gfv√
2

(uLuR + uRuL) − gf√
2
H (uLuR + uRuL) , (2.22)

giving the same result as for down-type quarks and charged leptons.

2.2. Higgs Boson Pair Production

g

g

t

H

H

(a) box diagram

g

g

H

H

H

t

(b) cubic self-coupling

Figure 2.3.: Dominant Feynman diagrams for SM Higgs pair production.

In pp collisions at a centre-of-mass energy of
√
s = 13.6 TeV, SM Higgs boson pair pro-

duction without any additional particles occurs predominantly via two production mech-
anisms at hadron colliders [27], both initiated by gluon-fusion processes. The Feynman
diagrams for both processes are shown in Figure 2.3. For both processes, the Higgs boson
pair production is non-resonant and the mediating Higgs boson can have an off-shell mass.
The two processes interfere destructively, reducing the overall cross section. The cross
section is [7–9]

σgg→HH = 31.05+2.2%
−5.0% fb. (2.23)

This cross section is three orders of magnitude smaller than the single Higgs gluon-gluon
fusion cross section, making a discovery at Lhc challenging.
While SM Higgs boson pair production is solely possible in a non-resonant mode, beyond
the Standard Model (BSM) theories allow the resonant production of Higgs boson pairs
by introducing a heavy particle X that can decay into Higgs bosons. A possible BSM
theory to describe this extra scalar particle is briefly discussed.

The two-Higgs-doublet model [28] introduces a second complex scalar doublet Φ2. The

9



2. Theoretical Background

potential for two complex scalar doublets is

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

(
Φ†

1Φ2 + Φ†
2Φ1

)
+ λ1

2
(
Φ†

1Φ1
)2

+ λ2

2
(
Φ†

2Φ2
)2

+ λ3Φ†
1Φ1Φ†

2Φ2

+ λ4Φ†
1Φ2Φ†

2Φ1 + λ5

2 [
(
Φ†

1Φ2
)2

+
(
Φ†

2Φ1
)
],

(2.24)

which becomes minimal for

⟨Φ1⟩ = 1√
2

 0
v1

 , ⟨Φ2⟩ = 1√
2

 0
v2

 . (2.25)

Due to doubling the number of doublets with respect to the SM, the extension around the
vacuum expectation values yields double the amount of fields, totalling in eight fields. In
analogy to the SM case, three of those fields are absorbed when applying unitary gauge
resulting in the masses of the W± and Z bosons. The remaining five fields are all physical
scalar fields: two neutral scalar particles (light and heavy Higgs H, X), two charged scalar
particles (H±) and one neutral pseudoscalar particle (A). All these scalar particles couple
to each other. For this thesis, the heavy scalar Higgs boson X and the light scalar Higgs
boson H are of interest. The light scalar Higgs boson should have very similar properties
to the SM Higgs boson to reflect the good agreement of the Higgs signal rate to the SM
prediction.

bb WW ττ ZZ γγ

bb 33%

WW 25% 4.6%

ττ 7.4% 2.5% 0.39%

ZZ 3.1% 1.2% 0.34% 0.076%

γγ 0.26% 0.10% 0.029% 0.013% 0.0005%

Figure 2.4.: Higgs pair branching ratios for mH = 125 GeV [29].

The Higgs boson has a decay width of ΓH = 4.097 MeV [29] and thus a lifetime of
τH = 1.6 × 10−22 s. It decays too quickly to reach the detector, such that only its de-
cay products are visible in the detector. Figure 2.4 lists the branching ratios of Higgs
pairs. As the Higgs coupling strength is proportional to the mass of particles, it is more
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2.2. Higgs Boson Pair Production

likely for the Higgs boson to decay into heavy particles.
The decay to W+W− and ZZ boson pairs are kinematically suppressed though, as the
invariant mass of such systems surpasses the Higgs boson mass. For these decay modes to
occur, one gauge boson must be off-shell. This makes the decay of a Higgs boson pair into
the bbbb final state most likely with 33 %. But this decay channel is hard to separate from
background making it difficult to identify. The decay channel with the second highest
branching ratio is bbWW ∗, which is the channel of interest for this Master’s thesis, with a
branching ratio of 25 %. The W boson then has a 32.75 % chance of decaying leptonically.
If it does not, it decays into a pair of quarks. This analysis focuses on the 1-lepton final
state, meaning one W boson decays leptonically and the other hadronically. All other
decay channels have significantly lower branching ratios.
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3. Fundamentals of Neural Networks

In recent years, machine learning has become increasingly popular in the Atlas, Cms,
and high-energy physics communities. Researchers have used machine learning techniques
such as neural networks to better separate signal events from background noise [30]. The
performance of neural networks has improved due to new training methods and more
efficient use of computing resources.

This chapter discusses the fundamentals of neural networks. Neural networks excel in
recognising and learning patterns, making them applicable for a variety of different tasks,
such as image or speech recognition and even complex scientific analyses. The pattern
recognition ability makes neural networks invaluable to particle physics research as they
have no problem with processing large amounts of data. In this thesis, neural networks
are used to classify signal and background events.

First, a short introduction into the large field of machine learning is given. Afterwards,
neural networks will be discussed in detail focusing on classification problems.

3.1. Introduction to Machine Learning

The term machine learning was first used by an IBM programmer, who was a pioneer
in the field of artificial intelligence, in 1959 [31]. In machine learning, an algorithm is
created and adapted for learning some kind of statistical model and make decisions based
on what it learned. This is different from the ”classical” approach, where an algorithm is
given explicit instructions to solve a specific problem. The machine learning algorithm
solves a problem without explicit instructions.

This requires training of the algorithm. There are three different training approaches used
for training depending on the task at hand. The first approach is supervised learning [32],
the algorithm is presented with vast amounts of data which were already divided into
different classes by a human. The algorithm is supposed to learn properties of the input
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to differentiate between the classes.
The second approach is unsupervised learning [32], were the algorithm is presented with
data without any labels applied. The algorithm is supposed to find its own structure in
the presented input. This learning technique can uncover hidden patterns in data.
The third and final learning approach is the reinforcement learning [33]. It is a completely
different approach in which the idea is to reward or punish the algorithm for the action
it takes. Simple examples for reinforcement learning are self-driving cars or non-playable
characters in video games.
Independently of the training approach, the more data is presented to the algorithm
during training, the better the training results are. After the training, the algorithm is
confronted with new data and is now supposed to apply what it learned.

In this thesis, a neural network is trained using the supervised training approach. The
training process is explained in detail in Section 3.3.

3.2. Neural Networks

The origin of Neural networks dates back to the late 1950s. They are a class of machine
learning algorithms that mimics the neural structure of human brain cells. A neural
network made up of a single layer is called a perceptron [32, 34]. Figure 3.1 shows a
schematic of a perceptron.
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xn

∑
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i=0 wixi + b

b

w2
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w0
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wn

y

inputs

weights
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Figure 3.1.: Illustration of a perceptron. Information travels from the input layer towards the binary
output y.
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Perceptrons are the basis of neural networks. They are able to solve linearly separable
problems. This works by summing over n weighted input variables w ·x and adding a bias
b. Applying the activation function f to the biased sum, which provides the possibility
to describe non-linear relations between different variables, leads to the output

y = f

(
n∑

i=1
wi · xi + b

)
. (3.1)

Many perceptrons running in parallel are called a layer. A layer takes n inputs and runs
them through m perceptrons to produce m outputs. Thus, a layer can be expressed by
the weights matrix W , the bias vector b⃗ and an activation function:

y⃗ = f
(
Wx⃗+ b⃗

)
(3.2)

Applying multiple perceptrons after one another creates a multi-layer perceptron (MLP),
also known as neural network. MLP are able to solve non-linear separable problems if the
right structure for the given problem is chosen. The MLP consists of several layers and
several nodes within one layer. First is the input layer, where the data enters the neural
network. After that comes one or more hidden layers, which take the outputs of the input
layer or the preceding hidden layer as input. Finally there is the output layer, which gives
one binary output for a simple binary classification problem. For a multi-class problem,
multiple outputs are needed. The number of nodes and layer can be chosen freely. In
general, it is better to have more hidden layers than needed rather then too few, as the
neural network could not be flexible enough to be able to deal with the non-linearities
in the data. Extra weights that form excess hidden units vanish when applying fitting
regularisation.

A MLP is a fully connected neural network. Each node in one layer is connected with
every node in the preceding and following layer. In Figure 3.2, a schematic of a MLP
with one hidden layer is shown.

The choice of activation function is crucial to the performance of a neural network. It has
direct influence on the network’s ability to learn and classify datasets [35]. Non-linear
activation functions enable the network to learn complex relations within the data
and handle high-dimensional datasets. Additionally, the activation function should be
differentiable (almost everywhere) due to the gradient based optimisation of neural
networks. In Figure 3.3, some common activation functions are depicted.
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Figure 3.2.: Illustration of a Multi-Layer Perceptron consisting of an input layer, one hidden layer
and the output layer with a single node. Each node in the hidden layer represents a perceptron.

The sigmoid activation function [32]

σ = 1
1 + e−x

(3.3)

is a widely used activation function for binary classification problems with binary vari-
ables. It transforms the input values into the range [0, 1].
The preferred activation for most use cases is the Rectified Linear Unit (ReLU)[36]:

ReLU(x) = max(0, x). (3.4)

It hinders negative outputs to propagate through the network further. By that it also is
more efficient than other activation functions as it causes only a subset of nodes to acti-
vate at the same time, reducing computational complexity. However, when the gradient
becomes zero, it can be problematic and lead to training instabilities. To counter this
problem, similar, but fully differentiable functions have been developed [37].
The softmax activation function

Softmax(xi) = exi∑
n exn

, (3.5)

where xi denotes the output for class i, is the activation function of choice for multi-class
classification problems. It is an extension of the sigmoid function converting the network
output into a probability distribution over all possible classes. The softmax activation
function is usually applied to the output layer of a multi-class classification neural network
to obtain the final class probabilities.
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Figure 3.3.: Common activation functions.

Depending on the way nodes are connected, different types of neural networks exist. The
most commonly used type of neural network is the Feed-forward neural network (FNN).
In FNNs, information is only passed forward through the network layers, from the input
to the output layer without looping back.
Deep neural networks (DNNs) are a type of neural network with multiple hidden layers,
making them more complex compared to conventional neural networks. There is a variety
of DNN architectures, such as Recurrent Neural Networks (RNNs) [38], Convolutional
Networks (CNNs) [38] and Graph Neural Networks (GNNs) [39].

3.3. Neural Network Training and Optimisation

To train and evaluate a neural network, the data is split into three groups: training,
validation and testing. The training dataset contains the data used to train the neural
network. During training, the validation dataset is used to cross check the performance
of the neural network. Finally, the test dataset is used to evaluate the performance of
the network after training. Thus, the test data cannot be visible to the model during
training.
Neural network training is done in epochs. An epoch refers to one complete iteration of
the entire training dataset through the learning algorithm. This means that when all the
data passed through the neural network, one epoch is completed.
During training, overfitting can occur if the training dataset is too small or the model is
not well optimised. In such cases, the neural network performs well on the training data
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but not on the test data. It has thus learned the training data too well. In contrast,
an underfit model is unable to properly learn the training data and performs poorly in
general.
In this section, the loss function, the main metric to evaluate neural network training, is
explained in detail. Some optimisation techniques are also presented.

3.3.1. Loss Function

Neural networks are trained by minimising a loss function [32]. The choice of loss func-
tion has a huge impact on the model training. Loss functions describe how much the
model output and the actual target value deviate from each other. They also offer the
means to evaluate model performance during training and provide a metric for the model
optimisation. For this, the loss function should be differentiable almost everywhere and
furthermore it should have a global minimum. Many different functions obeying these
conditions are used as loss functions in machine learning. For classification problems with
n classes the Cross-Entropy-Loss

Cross-Entropy(p, t) = −
n∑

i=1
ti · log pi (3.6)

is commonly used. Here pi denotes the model prediction for class i and ti the truth label
for class i. Combining the Cross-Entropy-Loss with a softmax activation function in the
output layer, ensures that the output is p ∈ [0, 1]n. In this special case the Cross-Entropy-
Loss becomes the categorical Cross-Entropy-Loss. Due to its logarithmic nature, the
Cross-Entropy-Loss mitigates large deviations from the desired value. Also, minimising
the Cross-Entropy-loss is equivalent to maximising the likelihood, which is a well known
and often used statistical optimisation technique [32].
In this analysis, the categorical Cross-Entropy loss is used together with the softmax
activation function.

3.3.2. Optimisation techniques

For developing efficient and high accuracy neural networks, optimisation plays an impor-
tant role. Optimisation depends highly on the network’s task and the data provided. In
this context, optimisation describes the fine-tuning of various network parameters with
the goal to find the best performing model. Especially in complex applications, opti-
misation techniques are essential to obtain high-quality results. Optimisation of neural
networks is a challenging and time-consuming task, highly benefiting from experience of
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working with neural networks.

Hyperparameters
Parameters that are fixed before the network training are called hyperparameters. The
following hyperparameters define the training stability and performance of an FNN:

• Number of layers: defines the depth of the neural network.

• Number of nodes per layer: defines the width of the neural network.

• Activation functions used per layer: influences layer output and network usage.

• Loss function: measure of the training performance. The aim is to minimise the
loss during training.

• Optimiser: enhances the speed and accuracy of training by adjusting the models
weights based on gradients. The optimiser’s learning rate determines the variation
of weights during optimisation. The ADAM [40] optimiser is favoured for its adapt-
ability and efficiency. It is an first-order gradient-based optimiser that is named
after Adaptive Moment estimation.

Learning Rate based Optimisation
The learning rate of the optimiser can be set to a constant value or varied during training
through scheduling methods. Learning rate scheduling techniques reduce the learning rate
over time and the ReduceLearningRateOnPlateau (see Appendix A.1.3) method lowers
the learning rate when the training loss does not change more than a defined value over
a set number of epochs, which helps to improve the training accuracy.

Early Stopping
Early stopping is a method in neural network training to manage computation resources
more efficiently. It also prevents overfitting by monitoring the validation loss. If it diverges
from the training loss for a set number of epochs the training is stopped and reverted to
the point of divergence.
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4. Experimental Setup

In this chapter, the machines that allow us to study the bbWW ∗ channel are discussed in
detail. This includes an overview of all the accelerators leading up to the Large Hadron
Collider (Lhc) in Section 4.1. The Lhc provides accelerated protons for collision in the
Atlas detector, which is described in detail in Section 4.2. There, the properties of the
particles generated in the collision, such as momenta, energies and charges, are recorded
through multiple detection layers.

4.1. The Large Hadron Collider

Figure 4.1.: Schematic of the full acceleration complex of the Lhc [41].

The Large Hadron Collider is a synchrotron accelerator with a circumference of 27 km
based at Cern in Geneva [42]. It is designed as a proton-proton (pp) as well as heavy
ion collider with a current pp-collision centre-of-mass energy of 13.6 TeV. To achieve
such high energies, the protons need to be accelerated through a series of acceleration
steps seen in Figure 4.1. The start is the Linear Accelerator 4 (LINAC4) where negative
hydrogen ions are accelerated to 160 MeV and passed to the Proton Synchrotron Booster
(PSB). The PSB strips away the electrons, leaving only the protons, which are after that
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4. Experimental Setup

accelerated further to 2 GeV and passed to the Proton Synchrotron (PS). The protons
then reach energies of 26 GeV before being injected into the Super Proton Synchrotron
(SPS), which accelerates the protons to energies of 250 GeV. Following that, the protons
are passed to the Lhc. In the Lhc, it takes roughly 20 minutes for the protons to reach
their final energy. At that point, the protons travel at almost the speed of light.
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Figure 4.2.: The average number of interactions per bunch crossing through Run 1 (2011-12) to
Run 3 (2022-23) [43].

Two proton beams, going in opposite directions, are accelerated in this way. The dipole
magnets used for forcing the protons onto a circular orbit need field strengths of B = 8 T.
Hence, the magnets are superconducting and need to be cooled down to 2 K. The beams
are focused via quadrupole and higher order multipole magnets. The protons travel
through the accelerator in bunches of 1.15 × 1011 protons per bunch. Bunches follow one
another with a time interval of 25 ns. Collisions take place with a rate of 40 MHz. Every
time the two beams cross, many interactions occur. For Run 3, there are on average
46.5 interactions per bunch crossing, as can be seen in Figure 4.2. The figure shows the
recorded luminosity with respect to the mean number of interactions per crossing for Run
1, Run 2 and Run 3.
From the frequency of the bunch crossings f , the particle number per bunch in both
beams N1 N2, the number of bunches nb, the transverse beam dimension σx/y,i and a
reduction factor S, the luminosity delivered by the Lhc can be determined by [44]

L = N1N2nbfS

2π
√
σ2

x,1 + σ2
x,2

√
σ2

y,1 + σ2
y,2
. (4.1)

During operation, the proton beams lose protons due to collisions and beam losses, such
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that after approximately 15 h the beams are dumped and new beams are created.
An experiment is situated at each of the four beam crossings of Lhc. The two large
experiments are Atlas [45] and Cms [46], both general purpose experiments focusing on
precision measurements and search for BSM physics. The Lhcb [47] experiment focuses on
b-physics and the Alice [48] experiment studies lead-lead collisions, providing conditions
that mime the state of the universe shortly after the Big Bang.
The Lhc in not running constantly. In between run periods there are long shutdown
phases where the machine is maintained and upgrades are installed. The Lhc started
operation in 2010 with lower luminosity of 36 fb−1 and a centre-of-mass energy of 7 to
8 TeV. In Run 2, from 2015-2018, both luminosity and centre-of-mass energy increased
further to an integrated luminosity of 140 fb−1 and

√
s = 13 TeV. In the current Run 3

period, which is scheduled from 2022 to 2025, the target integrated luminosity is 250 fb−1,
nearly double the amount of Run 2, and the centre-of-mass energy is at 13.6 TeV. As
of now, roughly 80 fb−1 of integrated luminosity have been accumulated for Run 3. The
long-term aim is to repair and upgrade the Lhc and Atlas in the next long shutdown to
reach an integrated luminosity of 3000 fb−1 in Run 4.

4.2. Atlas Detector

Since this Master’s thesis analyses simulated data of the Atlas experiment, an overview
of the detector is provided based of Ref. [45].
The Atlas (A Toroidal LHC ApparatuS) [45, 49] detector is the largest particle detector
at the Lhc with a length of 46 m and a diameter of 25 m. It weighs 7000 t. It has
a cylindrical shape and the beam axis corresponds to its symmetry axis. The detector
covers nearly the full solid angle. As it is a general-purpose detector, it comprises of several
detector layers in an onion like structure with different tasks each. It can be divided in
three main detector parts: the Inner Detector (ID), focusing on tracking information, the
Calorimeter System, focusing on energy measurements, and the Muon Spectrometer for
muons which do not deposit enough energy in the previous detector parts to be stopped
and thus, are measured again. Figure 4.3 shows a schematic illustration of the Atlas
detector.
The detector components are described in more details in the following including the
detector coordinate system and the most common variable definitions used in this thesis.

Coordinate System
The Atlas detector is a cylindrical detector with an orthogonal right-handed coordinate
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Figure 4.3.: Computer-generated overview of the Atlas detector. People for scale. Taken from
Ref. [50].

system, where the origin is placed at the center of the detector. In Figure 4.4, the Atlas
coordinate system is shown. In most cases a spherical coordinate system is used with
the azimuthal angle ϕ around the z-axis in the x-y-plane and the polar angle θ between
the z-axis and the x-y-plane. The azimuthal angle ϕ ranges from −π to π and the polar
angle can take values from 0 to π.

Figure 4.4.: Sketch of the Atlas coordinate system. Cartesian and spherical coordinates are shown,
as well as the pseudorapidity η. The red arrow illustrates a particle with momentum p⃗ travelling
through the detector.

As the partons inside the protons collide with one another in the Atlas detector the
exact momentum of the decay products is unknown. Thus, transverse variables play an
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important role for analyses, as they are invariant under Lorentz-boosts in the z-direction.
One important variable is the transverse momentum of a particle

pT =
√
p2

x + p2
y, (4.2)

where pX and py are the respective momenta in x- and y-direction.
Another key variable is the pseudorapidity

η = − ln
(

tan
(
θ

2

))
= 1

2 ln
(

|p⃗| + pz

|p⃗| − pz

)
. (4.3)

Here p⃗ is the total momentum and pz the momentum in z-direction of the particle.
The variable ∆R describes distances between two particles a and b. It is defined as

∆R(a, b) =
√

∆η2 + ∆ϕ2 =
√

(ηa − ηb)2 + (ϕa − ϕb)2 (4.4)

and is approximately invariant under boosts in the z-direction.

Inner Detector
Going outward from the interaction point, the first detector layer is the Inner Detector.
The Inner Detector is 6.2 m long and has a diameter of 2.1 m. Its purpose is the detection of
charged particles trajectories by measuring ionisation signals in the detector layers which
are combined into tracks. Tracks are combined signals of multiple hits in the detectors
of the Inner Detector to determine the path a particle took through the detector and to
determine some of its properties such as its transverse momentum. The Inner Detector
starts at a radial distance of 3.3 cm from the interaction point and consists of multiple
layers of pixel and strip detectors as well as a transition radiation tracker (TRT).
The pixel part is the most inner part of the Inner Detector providing a high resolution
for reconstruction of the interaction point and tracks. The inner most pixel layer is the
Insertable B-Layer [51], which was installed shortly before Run 2. It has a pixel size of
50 × 250µm2 to improve the vertex resolution even further. The pixels in the subsequent
layers all have a pixel size of 50 × 400µm2. The strip detector part follows the pixel
part. It consists of four layers in the barrel region and nine end-cap disks on each side.
These strips are placed every 80µm and slightly rotated with respect to the preceding
one. The pixel and the strip detector parts cover a range of |η| < 2.5. The last part of
the Inner Detector is the TRT, covering the |η| < 2.0 range. The TRT is made out of
long straw tubes filled with a gas mixture following the principle of drift tubes. When a
particle passes through the TRT it excites the gas mixture which is the transferred into
an electrical signal.
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The Inner Detector lies within the 2 T magnetic field of a solenoid magnet parallel to the
beam axis. Due to this magnetic field, the Lorentz force acts on charged particles, forcing
their tracks to bend according to their charge and momentum. The spatial resolution
of the Inner Detector lessens with the distance from the interaction point. The overall
momentum resolution of the Inner Detector is σpT

/pT = 0.05% pT [GeV] ⊕ 1%

Calorimeters
After going through the Inner Detector, particles enter the calorimeter, which measures
the energy of the particle independently of its charge by stopping it via a mechanism called
showering. Particles passing through dense materials, interact with the material and emit
radiation and undergo pair-production, by which the number of particles increases. The
newly produced particles again interacting and create a particle shower.
The calorimeter is divided into the electromagnetic calorimeter (ECAL), dominantly
measuring the energy of electrons, positrons and photons, and the hadronic calorime-
ter (HCAL), measuring the energy of hadrons. The ECAL covers the η range |η| < 3.2
in barrel and endcaps region. The HCAL has an additional η coverage in the forward
region of 3.1 < |η| < 4.5 for precision physics analysis. The exact η coverage for the two
subsystems can be seen in Table 4.1.
The ECAL has a total thickness of >22 radiation lengths (X0) in the barrel and >24
X0 in the end-caps and a high granularity, providing good resolution for precision mea-
surements electrons and photons. The ECAL is surrounded by the HCAL. The HCAL
has a coarser granularity, sufficient for jet construction. As electrons, positrons and pho-
tons only shower via electromagnetic processes, whereas hadrons mostly interact via the
strong force, different materials, both active and passive, are used for ECAL and HCAL.
The ECAL consists of alternating layers of liquid argon active material and lead passive
material. Analogous to the ECAL, the HCAL is split up into the barrel, end-cap and
forward calorimeter parts. In the end-caps and in the forward region of the HCAL, also
liquid argon is used as the active material with copper passive material, and additional
tungsten passive material in the forward region. The barrel region of the HCAL uses scin-
tillation tiles as active material and steel as the passive material. The energy resolution
of the ECAL is σE/E = 10%/

√
E [GeV] ⊕ 0.7%. For the HCAL the energy resolution in

the barrel and end-cap parts are σE/E = 50%/
√
E [GeV] ⊕ 3% and in the forward part

σE/E = 100%/
√
E [GeV] ⊕ 10%.

Muon Spectrometer
Muons are minimal ionising particles. Muons however, are tracked in the Inner Detector
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and only deposit minimal energy in the calorimeter system. Since the muon’s momentum
is typically very high, it is not measured accurately in the Inner Detector. To improve
the muon momentum measurement an additional tracking detector is used, the muon
spectrometer. It is the most outer part of the Atlas detector and surrounded by three
toroid magnets, which bent the muon’s track, facilitating the momentum measurement.
The muon spectrometer is comprised of 4000 individual muon chambers applying various
detector technologies. Monitored Drift Tubes measure the track curvature and Resistive
Plate Chambers are used for triggering and tracking in the Muon Spectrometer barrel
region, while Cathode Strip Chambers and Thin-Gap Chambers provide precise spatial
resolution in the end-caps. The Muon Spectrometer has a momentum resolution of
σpT

/pT = 10% at pT = 1 TeV.

The schematic in Figure 4.5 illustrates the behaviour of different particles in the individual
detector layers of the Atlas detector, and in Table 4.1, the resolutions and η coverage of
all the detector parts are summarised.

Figure 4.5.: Sketch of the Atlas detector layers with all particle interactions. ©Cern (colours
inverted)

Trigger System
The amount of data produced by the Atlas detector is far too much to store. Per
second, 1.348 billion interactions occur. Though most of the interactions occur at low
energy scales and thus do not feature interesting physics for Atlas analyses. Therefore,
it is highly important to filter the events in real time and only store interesting ones.
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Detector component Required resolution [GeV] η coverage
Measurement Trigger

Tracking σpT
/pT = 0.05%pT ⊕ 1% ±2.5

EM calorimetry σE/E = 10%/
√
E ⊕ 0.7% ±3.2 ±2.5

Hadronic calorimetry
barrel and end-cap σE/E = 50%/

√
E ⊕ 3% ±3.2 ±3.2

forward σE/E = 100%/
√
E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Muon spectrometer σpT
/pT = 10% at pT = 1 TeV ±2.7 ±2.4

Table 4.1.: Summary table of resolutions and η coverage of the individual parts of the Atlas
detector [45].

For this purpose, there is a two-stage trigger system in place [52, 53]. The first trigger stage
is the Level-1 (L1) trigger which uses hardware-level information from the calorimeters
and the Muon Spectrometer to select events with large energy deposits in the calorimeter
or a high energy muon. After the L1 trigger, the event rate is reduced to 100 kHz.
The second trigger stage is the High-Level Trigger (HLT), which is a software based
trigger and uses all available information and simplified reconstruction algorithms. The
HLT runs through multiple steps. Each step can cause the current event to be removed.
The HLT reduces the event rate further to 3 kHz, resulting in approximately 3 GB data
stored per second.

28



5. The X → HH → bbWW ∗ Channel

This Master’s thesis investigates the resonant production of Higgs boson pairs via a scalar
resonance X in the bbWW ∗ decay channel with one charged lepton in the final state. The
purpose of this chapter is to first introduce the possible topological signatures of this
decay channel. Afterwards the simulated data used for this analysis is described, and in
the end an overview of the relevant reconstructed objects is given.

5.1. Decay Topologies

Depending on the resonant mass mX , the topology of this decay chain differs. For very
high resonant masses mX ≳ 2 TeV, the final state will be boosted. A schematic for
the boosted topology can be seen in Figure 5.1. The hadronic decay products of the
Higgs boson decaying into an b quark pair are collimated and cannot be reconstructed
as separate objects due to detector resolution. The same is true for the hadronically
decaying W boson, which is one of the two W bosons into which the other Higgs boson
decays. Furthermore, the lepton from the leptonically decaying W boson is very close to
the decay products of the hadronically decaying W boson and might even overlap with
them. The boosted topology is very unique and is easier to distinguish from backgrounds
but comes with challenges in the object reconstruction.
For lower resonant masses, the topology becomes more and more resolved: All objects are
well separated from one another. This topology is also relevant for non-resonant Higgs
boson pair production as predicted by the SM.
This Master’s thesis focuses on the boosted topology.

H W

W
ℓ
ν

q
qH Xb

b

Figure 5.1.: The boosted decay topology for the decay X → HH → bbWW in the 1-lepton final
state.
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5.2. Monte Carlo Simulation of Signal and
Background

The raw data from the Atlas detector consists of spatial coordinates, the time and signal
amplitudes from multiple detector parts. Monte Carlo (MC) samples imitate such raw
data of the detector with the advantage of knowing which particle caused which signal
called truth information. This study only uses MC simulated data.

X → HH Samples
For the signal decay channel three different mass-points mX = 2, 3 and 4 TeV of the
heavy scalar X are analysed. The signal samples are generated using MadGraph 3.5.1
[54] with the NNPDF23LO tune [55]. The hadronisation and parton shower are simulated
with Pythia 8.308 [56] with the heavy quark flavours being generated with EvtGen
2.1.1 [57]. The H → bb and H → WW ∗ branching ratios are set to be 50 % each. A
final state filter ensures that one Higgs boson decays into bb and the other to WW ∗ and
that there is one charged lepton in the final state. The MC samples are then converted
to another file format for use in the analysis framework using the. Each of the three files
contains 50.000 events. The exact filenames for these samples are listed in Appendix A.2.

Background Samples
For the scope of this thesis, three different kinds of background events are analysed: top
quark pair production (tt), W boson production in association with jets (W + jets) and
multi-jet production (dijet).
For the production of tt samples, the Powheg v2 generator is used with the NNPDF23LO
tune. Pythia 8.307 is used for parton shower simulation with EvtGen 2.1.1 for heavy
quark flavours. In the tt background sample a filter is applied to ensure an one lepton
final state. It contains 50 million events.
The W + jets background sample is generated using Sherpa 2.2.14 [58]. It is comprised
of multiple sub-samples containing several million events each, and each applying different
jet flavor filters. These were added together to result in the final background sample.
The dijet background sample is generated using Pythia 8.308 with EvtGen 2.1.1 for
patron shower simulation. The dijet sample is also divided into multiple sub-samples,
filtered by the transverse momentum of the leading truth jet. The size of the sub-samples
varies from 1 million to 30 million events per file.
All the background samples are converted to another file format again and their names
are also listed in Appendix A.2.
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5.3. Object Reconstruction

To interpret raw data of the Atlas detector or MC data, multiple algorithms are used
to identify the particles responsible for the real or simulated detector responses. In Fig-
ure 4.5, the detector responses for different particles are shown. To end up with accurate
values for transverse momenta and particle masses, energy calibrations are applied. Lastly,
to prevent double counting energy, an overlap removal is usually applied. In this thesis,
however, there is no overlap removal applied yet, because the overlap removal was not yet
correctly implemented for large radius jet objects used in this analysis.

5.3.1. Leptons

In pp-collisions, there are two ways to produce leptons. They can come from the decay of
heavy particles such as W bosons and top quarks produced in the collision or they stem
from the decay of hadrons. For the first possibility, the decay happens very quickly and
close to the primary vertex of the collision such that is considered as identical. These
leptons are called prompt leptons. For leptons produced in hadron decays on the other
hand, the decay happens after the hadron travelled a considerable distance from the
primary vertex, and the two vertices can be distinguished. These leptons are called non-
prompt leptons.
For prompt leptons, only electron and muons are considered in this analysis, as tau
leptons decay very quickly and require more advanced reconstruction methods. Electrons
and muons from tau decays are also considered prompt for this analysis. Neutrinos do
not interact with the detector.
To be able to distinguish prompt and non-prompt leptons, various selection criteria are
applied on the leptons. These criteria can be seen in Table 5.1 and are explained in the
following.

Electrons Muons
pmin

T >10 GeV >10 GeV
|η|max <2.47 w/o 1.37 < η < 1.52 <2.5

Identification all LooseBLayer Loose
prompt Medium Medium

Isolation all NonIso NonIso
prompt TightTrackOnly_VarRad PflowLoose_VarRad

Table 5.1.: Current lepton selection criteria for all leptons and prompt leptons. The prompt lepton
selection is applied on top of the selection for all leptons. For identification and isolation, the working
point names are given. The definitions of the isolation working points are found below and in Ref.
[59].
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Electrons
Electrons are reconstructed from Inner Detector tracks and energy deposits in the elec-
tromagnetic calorimeter. To ensure that the reconstructed object is indeed an electron,
all electron candidates need to pass a likelihood identification (ID). Many discriminating
variables are used for this identification procedure which can be found in Table 1 of Ref.
[60]. Based on these variables, different working points are defined for the ID. Here, the
available working points are Loose, Medium and Tight, with the Loose working point
putting the least and the Tight working point the most constraints on the electron can-
didates.
Additionally to the ID, the isolation of the electron is important to determine if it is
prompt or non-prompt. It gives a measure on how many other particles are in the vicin-
ity of the electron by putting a cone based on transverse momentum or energy around
the electron’s track or calorimeter cluster and calculate how much transverse momentum
or energy of other particles is inside that cone. The less transverse momentum or energy
that is inside such a cone, the more isolated the electron is. The isolation can be expressed
in terms of the transverse energy as [60]

EconeXX
T = EXX

T,raw − ET,core − EXX
T,leak(ET, η) − EXX

T (η) (5.1)

where XX refers to the cone size ∆R = XX/100. The track isolation variable
(
pconeXX

T

)
is

calculated analogously in terms of the transverse momentum. For the isolation for PFOs
[61], selected tracks are combined with neutral PFOs

(
EconeXX

T,neflow

)
into cones around the

electron’s track.
It is also possible to define isolation variables based a cone with variable radius. This
variable size cone (varcone) is defined as

∆R = min
(

10 GeV
pT

,
XX
100

)
. (5.2)

The definitions of the different isolation working points based of these variables can be
seen in Table 5.2.

WP name Definition
HighPtCaloOnly Econe20

T < max (0.015 · pT, 3.5 GeV)
Loose pvarcone30

T /pT < 0.15 && Econe20
T /pT < 0.3

Tight pvarcone30
T /pT < 0.06 && Econe20

T /pT < 0.06
TightTrackOnly_VarRad pvarcone30

T /pT < 0.06
TightTrackOnly_FixedRad pvarcone30

T /pT < 0.06 (pT < 50 GeV), pcone30
T /pT < 0.06 (pT > 50 GeV)

Table 5.2.: Definition of the available isolation working points for electrons [59].
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5.3. Object Reconstruction

To be used in this analysis, certain selection criteria are placed on the electron. These
selection criteria are seen in Table 5.1. Previous studies [62] showed that these criteria
work well with the given topology. In the electron selection, the crack region between
the barrel and the end-caps is excluded in the 1.37 < η < 1.52 window because in that
detector region, instrumentation is lacking, due to the electronics and readout cables there.

A brief study of the available electron ID and isolation working points was performed to
decide which ones to choose. For this study, electrons candidates are divided into prompt
and non-prompt electrons by truth level information provided by the framework.
The electron ID efficiencies for the signal samples are shown in Figure 5.2. As is expected,
the efficiencies decrease for tighter electron ID working points across all available mX . For
prompt electrons, the efficiency also decreases with increasingmX , because with increasing
mX the overlap between the lepton and the hadronically decaying W boson also increases,
making it harder to identify the electron. This behaviour is not observed for non-prompt
electrons. The rejection of the non-prompt electrons is above 99.7 % for all three ID
working points, with the Tight working point having the highest rejection, as would be
expected.
Despite having a lower efficiency than the Loose working point, the Medium ID working
point was chosen for electrons, as previous studies [62] showed how the analysis benefits
from it.
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Figure 5.2.: Prompt electron efficiencies and non-prompt electron rejections of ID working points.

Next, a similar study was performed for many electron isolation working points. The
results are shown in Figure 5.3 for electrons passing the Medium ID working point. The
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isolation working point with the best performance is the TightTrackOnly_VarRad iso-
lation working point. It has the highest prompt electron efficiency, except for when no
isolation is applied, while the non-prompt electron efficiency is similar to the Loose isola-
tion working point which makes the TightTrackOnly_VarRad the best working point to
use for this analysis.
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Figure 5.3.: Prompt and non-prompt electron efficiencies of isolation working points. Medium ID is
applied to both prompt and non-prompt electrons.

Muons
Muons are reconstructed using information from all parts of the Atlas detector,
including tracks from the Inner Detector, energy deposits in the calorimeters and also
tracks in the Muon Spectrometer. For muons, there are also criteria placed on all muon
candidates to be able to distinguish between prompt and non-prompt muons. These
selection criteria can also be seen in Table 5.1. In contrast to electrons, the crack region
is not excluded as the muon spectrometer covers that η region.

Likelihood identification and isolation working points are also applied on all muon
candidates. For muons, only the Loose and Medium ID working points are available
and the definitions of the muon isolation variables can be found in Table 5.3. Again, a
study of the available ID and isolation working points is performed for muons. The split
into prompt and non-prompt muon candidates is also done by looking at truth level
information.
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5.3. Object Reconstruction

WP name Definition
PflowLoose_VarRad (pvarcone30

T + 0.4 Econe20
T,neflow)/pT < 0.16

PflowTight_VarRad (pvarcone30
T + 0.4 Econe20

T,neflow)/pT < 0.045
Loose pvarcone30

T /pT < 0.15 && Econe20
T /pT < 0.3

Tight pvarcone30
T /pT < 0.04 && Econe20

T /pT < 0.15
TightTrackOnly_VarRad pvarcone30

T /pT < 0.06

Table 5.3.: Definition of the available isolation working points for muons [59].

Figure 5.4 shows the results of the study of muon ID working point efficiencies. For both
working points, the efficiencies are above 90 % for prompt muons across all studied values
of mX . In contrast to the prompt electron efficiencies, the dependence on mX in negligible
for prompt muons. For non-prompt muons, the rejection for both working points is very
high with roughly 99 %. For the Medium ID working point, the rejection is slightly higher
than for the Loose ID working point. The Medium ID working point is chosen for further
studies due to its high efficiency in prompt muon identification in combination with a
high non-prompt muon rejection. Also some later investigations of the dijet background,
which can be found in Section 6.3.2, strongly suggest the use of the Medium ID working
point.
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Figure 5.4.: Prompt muon efficiencies and non-prompt muon rejections of ID working points.

Next, the available isolation working points are checked. The isolation efficiencies for
these working points for all three signal samples can be seen in Figure 5.5. The
TightTrackOnly_VarRad working point performs best. Isolation efficiencies decrease sig-
nificantly for all the other working points. There is also a decrease in efficiency with an
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increase in mX for all but the TightTrackOnly_VarRad working point. The reason for
this is the increasing overlap of the hadronically decaying W boson and the prompt muon.
This is illustrated in Figure 5.6 which shows the efficiencies of the isolation working points
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Figure 5.5.: Efficiencies of isolation working points for muons. Medium ID is applied to both prompt
and non-prompt muons.

for the mX = 3 TeV sample with respect to the muon pT for muons passing the Medium
ID working point. Up until pµ

T ≲ 50 GeV, all isolation working point efficiencies increase
but only the TightTrackOnly_VarRad isolation efficiency continues to increase beyond
that and reaches nearly full efficiency around pµ

T ≳ 400 GeV. Again, the muon isolation
working point with the highest efficiency is the TightTrackOnly_VarRad working point
with about 70 % efficiency.
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Figure 5.6.: Fraction of muons passing the isolation working point with respect to their pT for the
mX = 3 TeV signal events.

Unfortunately, the TightTrackOnly_VarRad isolation working point is not yet recom-
mended for muons in Run 3, so it cannot be used currently. To obtain the recommenda-
tions for this working point, the corresponding muon scale factors need to be determined
which was beyond the scope of this thesis.
For now, we use the recommended PflowLoose isolation working point, which has the
highest efficiency for prompt muons of the recommended working points.

5.3.2. Jets

A jet develops as the result of the hadronisation of quarks and gluons. Quarks and gluons
produced in the collision (partons) hadronise and cause collimated showers of hadrons.
These hadrons leave energy deposits in the calorimeters and tracks in the Inner Detector
if they are charged. Usually each parton from the collision produces its own jet.
Jets are reconstructed from multiple objects. For the reconstruction of the energy
deposits usually Topological Clusters [63] are used. Jets can also be reconstructed from
tracks in the Inner Detector. Another possibility is to use combinations of tracks and
clusters for reconstruction.

For reconstruction, multiple algorithms have been developed [64, 65] and the most com-
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mon algorithms use the formula

dij = min
(
pk

T,i, p
k
T,j

) ∆R2
ij

R2 with k =


−2 anti- kt

0 Cambridge-Aachen

2 kt

, (5.3)

where k defines the type of algorithm used and R denoting the size parameter.

In a boosted topology, it is possible that multiple partons create a single jet. To find out
how many partons initiated a given jet, information on the energy distribution inside the
jet is needed, also called substructure. For that, two types of substructure variables can
be used. The first type uses the Energy Correlator Functions (ECFs) which are defined
as

ECF(N, β) =
∑

i1<i2<...<iN ∈J

(
N∏

a=1
pT,ia

)N−1∏
b=1

N∏
c=b+1

∆Ribic

β

. (5.4)

The ECFs indicate the energy distribution inside the jet. The ratios

C2(β) = ECF3 × ECF1

ECF2
2

and (5.5)

D2(β) = ECF3 × ECF1 × ECF2
1

ECF3
2

(5.6)

can be used to discriminate between two-prong and one-prong jets. Two-prong jets could
correspond to the boosted decay of a hadronically decaying Higgs or W boson and one-
prong jets would be more consistent with background events.
The second type of variable is a quantity called N-subjettiness τN which is defined as

τN(α) = 1
d0(α)

∑
i∈J

pT,i · min (∆Rα
1i,∆Rα

2i, ...,∆Rα
Ni) (5.7)

with d0(α) =
∑
i∈J

pT,i · ∆Rα. (5.8)

N-subjettiness quantifies how likely a jet is made up of at least N subjets. The ratio
τMN = τM/τN with M > N becomes small if a jet contains M or more subjets.

In Table 5.4, a summary of the different kinds of jets used in this thesis can be found.
The following paragraphs describe all used jet types in more detail.
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Collection Inputs Size R pT [GeV] |η| Use case

PFlow Jet Particle Flow Objects 0.4 > 20 < 4.5 used in Emiss
T calculation and

overlap removal

UFO Jets Unified Flow Objects 1.0 > 200 < 2.0 reconstruction of hadronically
decaying analysis objects

Table 5.4.: Summary of the jet collections used in this analysis.

Particle Flow Jets
Particle flow (PFlow) jets are reconstructed from Particle Flow Objects (PFOs) calibrated
at the electromagnetic scale [66]. PFOs are reconstructed from both tracking and cluster
information, which makes their resolution superior to jets reconstructed only from clusters.
PFlow jets are reclustered with the anti-kT algorithm using a radius of R = 0.4 and to be
used in this analysis they have to fulfil pT > 50 GeV and |η| < 4.5. These jets are used in
the overlap removal and the determination of the missing transverse energy.

Unified Flow Object Jets
The Unified Flow Object (UFO) [67] was introduced by the Atlas Collaboration as
a jet object that performs well over the whole kinematic range by combining tracking
information, PFOs, Topo Clusters and Track-CaloClusters [68] as input. An illustration
of the algorithm is shown in Figure 5.7.

Figure 5.7.: Reconstruction algorithm of unified flow object jets. From Ref. [67].

UFO jets are large radius jets which collect all hadronic decay products of the boosted
decay in a single jet and are reclustered with the anti-kT algorithm using a radius of R =
1.0. To be used in this analysis, they need to pass the selection criteria of pT > 200 GeV
and |η| < 2.0. UFO jets are used for the reconstruction of hadronically decaying analysis
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objects such as the H → bb and Whad candidate.
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6. The Search for X → HH → bbWW ∗

in the 1-Lepton Final State with
the boosted Topology

This Master’s thesis focuses on the boosted 1-lepton togology in the search for resonant
HH production in the bbWW ∗ decay channel. A schematic of the studied topology can
be seen in Figure 5.1. As the final state particles are highly boosted, four objects are
reconstructed in the event in general. These objects are the bb-pair from the Higgs boson
decay (H → bb), the hadronically decaying W boson (Whad) and the charged lepton (ℓ)
with the corresponding neutrino (ν) from the leptonically decaying W boson. The event
is characterised by the H → bb and the Whad being reconstructed as single jet objects.
In this thesis UFO jets are used, and the prompt lepton, which is selected as the signal
lepton, is very close to the Whad or even overlapping with it. Since both the H → bb and
the Whad are reconstructed as the same type of jet object, a classification algorithm is
developed to distinguish them by their properties.
This section first discusses and compares these classification methods. It also introduces a
novel b-tagging tool used in this analysis. After that, the cut based signal region selection
for this search is studied in detail, and in the end two different neural network based
classifications are established and their performance is compared.

6.1. Analysis Objects

In this Master’s thesis, two different jet classification methods are studied. The first one
was already used in the corresponding Run 2 analysis and performed very well [62]. The
second method uses the GN2x tagger [69], which is a novel b-tagging tool and under active
development. The first classification method classifies the UFO jets by their distance to
the signal lepton. The jet with the smallest distance ∆R to the signal lepton is labelled
Whad. The leading pT jet of the remaining jets is then labelled H → bb.
The second classification method makes use of b-tagging. b-tagging is a method of jet
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flavour tagging to identify jets originating from a b-quark by looking for specific jet
properties such as high pT and secondary vertices. In Run 2, b-tagging was performed on
individual small radius jets rather than large radius jets, such that the H → bb candidate
could be b-tagged multiple times, as the constituent jets coul be b-tagged independently.
The GN2x tagger [69] performs tagging on the whole UFO jet rather than its constituents,
meaning every UFO jet can only be tagged once. It is based on a Graph Neural Network
(GNN) which assigns probability values pHbb, pHcc, ptop and pqcd to each UFO jet in
the input file. From these probabilities, the DHbb discriminant can be calculated, which
describes how likely a given UFO jet originates from the decay of a Higgs boson to a
bb-pair. The DHbb discriminant is defined as

DHbb = ln
(

pHbb

fHcc · pHcc + ftop · ptop + (1 − ftop − fHcc) · pqcd

)
, (6.1)

where fHcc = 0.02 and ftop = 0.25. It can be seen from the formula that high values
indicate a high probability of a given jet originating from H → bb and low/negative values
indicate a low probability. Standard b-tagging working points can then be matched to
the values of the DHbb discriminant. Table 6.1 shows the preliminary discriminant values
with the corresponding b-tagging working point.

Working Point 50 % 55 % 60 % 65 % 70 % 75 % 80 % 85 %
Cut Value on DHbb 4.335 4.087 3.818 3.518 3.166 2.735 2.211 1.560

Table 6.1.: Standard b-tagging working points with corresponding preliminary DHbb score [69].

The DHbb discriminant values for all UFO jets in all signal events is displayed in Figure 6.1.
It can be seen that most jets in the events are unlikely to be H → bb jets. It also shows
that the lowest mass signal sample is shifted slightly towards lower values with respect
to the other two samples. That might be because this sample contains the least boosted
events which might not be boosted enough for the GNN to perform as well as for the
other two samples.
The UFO jet classification based on the DHbb score first searches for the UFO jet with
the highest DHbb score and labels that one H → bb. Afterwards the jet with the smallest
distance ∆R to the signal lepton is labelled Whad.

A quick comparison of the two jet classification methods was performed with respect to
the masses of the H → bb and Whad candidate. Figure 6.2 displays the Whad jet mass
and the H → bb jet mass for both classification methods on the mX = 3 TeV mass point.
Both classification methods perform well. For the DHbb score based classification, the
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Figure 6.1.: DHbb discriminant score for all UFO jet in all signal events.

mass distributions for both jet objects are more focused on the W and Higgs boson mass
respectively. For the distance based classification, both distributions have higher tails
and a less pronounced peak. Nonetheless, the distanced based classification method is
used for further studies, as it was also used in the corresponding Run 2 analysis [62] and
because the GN2x tagger is under active development, meaning that recommendations
regarding the b-tagging working points can change.
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Figure 6.2.: Mass distributions of the two jet objects for both classification methods.

The efficiency of the GN2x b-tagging working point values was also studied briefly. For
this study, the distance based classification is applied. The results of this study are shown
in Figure 6.3. In general, the efficiencies behave as expected with the loosest b-tagging
working point having the highest tagging efficiency and the tightest working point having
the lowest efficiency. It can also be seen that the efficiencies slightly depends on mX as
was also noticed for the DHbb discriminant distribution.
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However, all efficiencies are a little lower as would be expected. Usually, the percentage
of the working point corresponds to its efficiency. The reason for this could be that the
GNN is trained on pure H → bb events and not the X → HH → bbWW ∗ decay studied
in this thesis. This can also lead to some of the H → bb jets not being classified as H → bb

candidates and conversely, other jets being classified as the H → bb candidate.
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Figure 6.3.: Passed b-tagging working points for H → bb jet.

6.2. Preselection

Based on the event topology and the analysis objects used, a preselection of the signal
events is defined. The impact of these cuts is examined in this section with respect to the
three signal samples and the tt background sample, which is expected to be the leading
background contribution. The cuts are based on the corresponding Run 2 analysis [62]
but modified to fit the structure of the Run 3 analysis.

The first cut applied requires pT > 500 GeV for the leading UFO jet to ensure it is well
within the trigger plateau of the UFO jet trigger. An illustration of the dependence of
the trigger dependence on the transverse momentum can be seen in Figure 6.4a. The
trigger efficiency with respect to the pT of the leading jet is shown. The trigger reaches
full efficiency around pT ≳ 480 GeV. The effect of this cut on the signal samples as
well as on a tt background sample can be seen in Figure 6.4b. The figure shows the
distribution of the leading jet pT for all three signal samples and a tt background sample.
The red vertical line indicates the cut value. This first cut already removes most of the
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tt background events while keeping most of the signal events.
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Figure 6.4.: Leading jet pT distributions for all signal mass points and tt background. The vertical
red line indicates the cut value. The UFO jet trigger efficiency motivates the cut value.

The next two cuts are based on the event topology. To pass these cuts, there need to be
at least two UFO jets in the event to be able to classify them as H → bb and Whad and
exactly one signal lepton.

To force the boosted topology, the next cut is placed on the distance between signal
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Figure 6.5.: ∆R distributions between the signal lepton and the closest jet for all signal mass points
and tt background. The vertical red line indicates the cut value.

lepton and the closest UFO jet being ∆R(ℓ, closest jet) < 1.0. In Figure 6.5, the effect of
this cut on the ∆R distribution between the signal lepton and the closest jet after passing
all previous cuts is shown. As the tt background was already reduced drastically by the
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cut on the leading jet pT , the reduction is not as significant for this cut. Although, it
cuts away almost no signal events while remove some more background events. The next
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Figure 6.6.: H → bb jet pT distributions for all signal mass points and tt background. The vertical
red line indicates the cut value.

cut requires that the H → bb jet fulfils pT > 500 GeV. The resulting pT distribution is
displayed in Figure 6.6 where the red line indicates the cut value again. The step in the
distribution results from the first cut, as the H → bb jet is often the leading pT jet.
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Figure 6.7.: DHbb score distributions for all signal mass points and tt background. The vertical red
line indicates the cut value.

For passing the last cut, the H → bb jet needs to pass a certain working point of the GN2x
tagger. Currently, the 75 % working point is chosen as it has a similar signal efficiency as
the b-tagging working point used in the Run 2 analysis [62]. The effects of this cut are
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6.2. Preselection

shown in Figure 6.7 which displays the distribution of the DHbb score. The distributions
for signal and tt background look drastically different. The signal distributions are mostly
positive while the tt background distribution is shifted to the negative values. This cut
removes almost all of the remaining tt background events while keeping a good amount
of signal events.
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Figure 6.8.: Signal event efficiencies after successively applying all the cuts. The solid lines show
the efficiencies for electron and muon events combined, while the different dashed lines represent
electron and muon events individually.

In Figure 6.8, the event efficiencies after successively applying all the cuts is shown. The
solid lines show the event efficiencies for electrons and muons combined, while for the
dashed lines, electron and muons are considered individually. Currently, the biggest loss
in signal efficiency is in the requirement of exactly one lepton. The reason for this are
the identification and isolation efficiencies for electrons and muons. For electrons, most
efficiency is lost when applying the medium ID cut (see Figure 5.2). For muons, the
issue lies in the choice of isolation working point. As discussed in Section 5.3.1, the
TightTrackOnly_VarRad isolation working point outperforms all others significantly, but
that working point is not yet recommended for muon candidate selection. So instead the
recommended PflowLoose isolation working point is used, which has a significantly lower
efficiency for prompt muons (see Figure 5.5a). Obtaining the TightTrackOnly_VarRad
isolation working point as a valid isolation criteria will improve the cut efficiency for
muons drastically.
Assuming an integrated luminosity for Run 3 of

∫ Ldt = 150 fb−1 and a signal cross
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section of σ = 10 fb, this rather simple baseline selection would yield 316 signal events for
mX = 2 TeV, 245 signal events for mX = 3 TeV and 199 signal events for mX = 4 TeV for
electron and muon events combined.
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6.3. Signal & Background Classification using Neural
Networks

After studying the cut-based selection, a machine learning based selection is investigated
as well. To achieve this, appropriate input variables for the neural network training
need to be found. Afterwards the neural network architecture, its optimisations and the
training itself are discussed. Lastly the network performance is evaluated by testing it on
individual signal mass points.

6.3.1. Neural Network Input Variables

For the neural network to be trained efficiently, proper input variables need to be defined.
For that, various different variables were studied for all three signal and the tt, W+jets and
dijet background samples, to look for distributions that differ substantially for signal and
background. As a guideline, the distributions of the variables, which were found to have a
high impact on the training in a previous study [11] for Run 2 of the Atlas experiment,
are studied here as well. Apart from distributions of kinematic variables, distributions
of jet substructure variables, as well as angular and radial distributions between different
analysis objects and also b-tagging information are analysed.
For all possible input variables, the preselection from Section 6.2 is applied to the variables
without the cut on the pT and the b-tagging working point of the H → bb candidate, as
they reduce the background too drastically, not leaving enough statistics for the network
to learn efficiently. The variable distributions are also weighted by taking into account
different cross sections, lepton scale factors, generator weights and filter efficiencies of
the different samples and dividing them by the number of weighted events. Weighting is
important to compare distributions of different samples.

The variable with the highest impact on the training for Run 2 is the number of b-tagged
jets N jets

b-tagged. For Run 3, this information is not available, so the b-tagging of the H → bb

candidate is used instead. In Figure 6.9, the efficiency of the b-tagging working points for
the H → bb candidate are shown for all three signal mass points and tt, W + jets and dijet
background. As expected, The efficiency decreases for tighter working points. For the
background samples, the b-tagging efficiency is significantly lower than for the signal, as
was expected from the preselection study (see Figure 6.7), making this a suited variable
for neural network training.
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Figure 6.9.: H → bb b-tagging working point efficiencies for signal and background.
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Figure 6.10.: Distributions of kinematic variables for the Whad jet candidates for signal and back-
ground.

Next, most of the distributions for the kinematic variables of the Whad candidate, the
H → bb candidate and the signal lepton performed well in Run 2. In Figure 6.10 and in
Figure 6.11, the weighted distributions for pT , m, η and ϕ for the Whad and for the H → bb

can be seen. The non-physical peak in the η spectrum for the Whad jet is discussed in
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Section 6.3.2. For these distributions, the best separation between signal and background
can be seen in the H → bb mass distribution. There, a clear peak around the Higgs boson
mass is observed for the signal samples. The tt background sample features a peak around
the top quark mass and a second peak at low masses. For both the W + jets and the dijet
background the mass distribution peaks at low values.
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Figure 6.11.: Distributions of kinematic variables for the H → bb jet candidates for signal and
background.

Other useful kinematic variables are pWhad
T , pH→bb

T and mWhad , where the background and
signal distributions also differ in shape.

The distributions of the kinematic variables for the signal lepton candidate can be found in
Figure 6.12, for both lepton flavours separately. Looking at the pT distributions for both
lepton types, the dijet background contributions are distinctly different for both lepton
types. The extreme peak of the dijet background towards zero stems predominantly from
the non-prompt muons. For electrons this effect is not as drastic, but also visible. There,
the pT distribution is dominated by fake electron candidates. The distribution is shifted
to much higher values due to electron candidates actually being jets.
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Figure 6.12.: Distributions of kinematic variables for the signal lepton for signal and background.

In the η distributions, the dijet background contributions for both lepton flavours also
look very different. An explanation for the non-physical nature of the muon η distribution
in the dijet sample is given in Section 6.3.2.
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Figure 6.13.: Distribution of the distance between the signal lepton and the closest jet for signal
and background.
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For Run 2, the distance ∆R between the signal lepton and the closest jet was also an
important variable for training. In Figure 6.13, the distributions for signal and background
can be seen. The signal distributions peak towards lower values, showcasing the boosted
topology. The highest signal mass point is the most boosted and thus, the peak is most
pronounced. The dijet background distribution shows similar behaviour to the signal.
This occurs due to misidentification of either a jet or non-prompt lepton as a signal lepton
because they were very close to another jet. For the tt and the W + jets background, the
distributions are very flat.
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Figure 6.14.: Distributions of C2/D2 jet substructure variables for signal and background.

Lastly, in addition to the previously studied variables, jet substructure variables were
analysed. Figure 6.14 shows the C2 and D2 jet substructure variables for the Whad and
the H → bb candidate. The distribution for C2 of both jet candidates look quite sim-
ilar for signal and background. The background distributions have a higher tail. The
tt background distribution contains two separate peaks. The three signal distributions
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also differ. For the D2 distributions, the signal sample distributions agree well with one
another, but the Whad distributions all peak around the same value. The D2 distributions
of the Hbb candidate for signal and background have a small separation between signal
and background.
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Figure 6.15.: Distributions of n-subjettiness jet substructure variables for signal and background.

For the τ21 and τ32 substructure variables, seen in Figure 6.15, better separation is
achieved. The τ21 distributions for both jet candidates look substantially different for
signal and background, especially the τH→bb

21 variable has a good separation between
signal and background.

After performing a study of the important training variables for Run 2, as well as for
the jet substructure variables, the following variables will be used for the training of the
neural network:
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• H → bb passing 80 % b-tagging WP

• ∆R(lep,closest jet)

• τ21 for H → bb

• mass of Whad and H → bb

• η of Whad, H → bb and lepton

6.3.2. Dijet Background η Study

During the study of the neural network input variables, unexpected behaviour showed
for the η distributions of the analysis objects. Figure 6.16 shows the normalised η dis-
tributions for the signal lepton and H → bb and Whad candidates for the signal as well
as selected backgrounds. The η distributions for the H → bb candidate look like they
should for all signal and background samples. For the Whad and signal lepton however,
the distribution of the dijet background peaks strongly around η = 0. For the signal
lepton distribution, the peak is more pronounced than for the Whad distribution. This
behaviour is non-physical and thus needed some investigation.
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Figure 6.16.: Normalised η distributions for analysis objects for signal and main backgrounds.

Looking at the signal lepton η distribution for electrons and muons separately, in Fig-
ure 6.17, it becomes clear that the problem is exclusive to muons. After some investigating,
the issue originates from the reconstructed muon types in combination with the applied
muon ID working point. In Figure 6.18, the η distributions for muons passing the Loose
and Medium ID working points can be seen. When applying Loose ID to the muons, the
segmenttagged muons have a significant influence on the η distribution. For Medium ID
working point, only the combined muons remain, which are reconstructed from Inner De-
tector plus corresponding Muon Spectrometer track with extrapolation to the interaction
point. Segmenttagged muons are reconstructed from a track in the Inner Detector if the
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Figure 6.17.: Normalised η distributions for electrons and muons separately.

track matches a signal from a Muon Spectrometer segment. For the dijet events this can
occur, when a high energy non-prompt muon is very close to a jet and the non-prompt
muon signal is matched to the jet’s track. The application of the Loose ID instead of
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Figure 6.18.: η distributions of reconstructed muon types for Loose and Medium ID muons on
partial dijet background.

the Medium ID working point to the signal muons was responsible for this unexpected
behaviour. Due to larger changes to the analysis framework to harmonise it across all
analysed channels, this change in working point went unnoticed until the investigation
of this issue. Due to lack of time it was not possible to repeat the neural network input
variable study for this Master’s thesis. Instead, the neural network training is performed
with the available MC data. A veto is applied to all samples that have |ηlep| < 0.1 to
prevent the learning of this non-physical behaviour.
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6.3.3. Neural Network Setup & Training

For the machine learning based approach for the separation of signal and background,
the results of a previous study [11] for Run 2 were reused and adjusted for Run 3.
A simple feed-forward neural network was trained on the data discussed previously. The
network comprises of the input layer with 265 nodes, two hidden layers with 128 and
64 nodes respectively and the output layer with 2 nodes, which is considerably smaller
than in previous studies, but for this study, the network is just supposed to classify two
classes instead of four. An overview of the network architecture can be seen in Table 6.2.

Layer Dimension
Input Layer R9 → R256

Hidden Layer 1 R256 → R128

Hidden Layer 2 R128 → R64

Output Layer R64 → R2

Table 6.2.: Neural network architecture with dimensionality of each layer.

For training, the data is resampled using the sklearn.utils.resample function (see
Appendix A.1.3) to have equal amounts of signal and background data for the network
to train on. During training, 70 % of the data is visible to the network. The remaining
30 % of the data are reserved for testing and validation, with 20 % and 10 % respectively.

For training the model, the ADAM [40] optimiser is used with a learning rate of 0.001
and as loss function categorical Cross Entropy is used, because the model’s task is
to categorise the data into two classes. Due to a lack of time and expertise, only
very rudimentary optimisation options are implemented. These are the learning rate
schedulers ReduceLROnPlateau and EarlyStopping to prevent overfitting. There are
many more optimisation options available to improve the network performance even
further.

To later compare the model’s performance, two different models were trained. One was
trained on the 3 TeV signal sample and all three backgrounds and the other was trained on
all three signal samples (2, 3 and 4 TeV) and all three background samples. Both models
were trained over 50 epochs. The training history in terms of loss and accuracy for the
model trained on only the 3 TeV signal sample can be seen in Figure 6.19. It can be seen
that the loss rapidly decreases over the first few epochs, while the accuracy increases.
After this steep decrease, the loss stagnates until the learning rate scheduler is triggered
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and reduces the learning rate of the optimiser, resulting in the step in the loss function.
The same behaviour is observed in the accuracy. After this step, the loss continues to
decrease until the training is finished.
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Figure 6.19.: Training and validation loss and accuracy curves for the single mass point trained
model.

The same plots can be seen for the model trained on all signal samples in Figure 6.20.
The overall behaviour of loss and accuracy is the same here, but the validation loss and
accuracy are more erratic, pointing towards the model not being well optimised. Both
loss and accuracy do not reach values as good as for the training on one signal sample.
The total training metrics for both models can be seen in Table 6.3.
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Figure 6.20.: Training and validation loss and accuracy curves for the multi mass point trained
model.

6.3.4. Neural Network Performance Evaluation

After training the single mass point and the multi mass point neural networks, both are
evaluated on all three signal mass points individually. The neural networks output class
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Single mass point model Multi mass point model
Total training loss 0.0858 0.1922
Total training accuracy 0.9708 0.9133

Table 6.3.: Total training loss and accuracy for both trained models.

probabilities for the signal and background class for each tested event. The events are
classified by the maximum predicted class probability. For each model, the distributions
of the prediction probabilities for signal and background class, the ROC curve and the
confusion matrix are analysed for each mass point.

Single Mass Point neural network
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Figure 6.21.: Prediction probabilities for signal and background classes for the one mass point
evaluated at 2 TeV. The colours indicate the true classes.

First, the single mass point network, trained on the 3 TeV mass point, is evaluated for
the 2 TeV signal mass point. The prediction probability distributions for the two actual
classes can be seen in Figure 6.21. The colours indicate the true class of the respective
event. For this mass point, the model fails to correctly classify into signal and background.
For this test, the model often classifies signal events as background. It also misidentifies a
considerable amount of background events as signal events. The peaks around 0.3 and 0.7
are remnants of the fact that the network is not well optimised. With proper optimisation
they should vanish. These peaks occur for both models and all tested samples.
Looking at the ROC curve and the confusion matrix for the 2 TeV test in Figure 6.22, the
same behaviour is observed. Due to the low background rejection for this tested sample,
the Area-under-curve (AUC) for the background class is only at 0.76, while for the signal
class it is 0.83. The macro-average AUC, which takes the average of the two classes,
is 0.80. For the confusion matrix, it shows that the model is still good at classifying
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(b) confusion matrix

Figure 6.22.: Evaluation of the one mass point model with the 2 TeV mass point.

background as background. The model also tends to misidentify the 2 TeV signal as
background, which could be expected, as the input variable distributions for this mass
point are more background-like than for the other signal mass points.

0.0 0.2 0.4 0.6 0.8 1.0
Probability

101

102

103

104

105

106

107

# 
Ev

en
ts

Prediction probabilities for Background

Background
Signal

0.0 0.2 0.4 0.6 0.8 1.0
Probability

101

102

103

104

105

106

107

# 
Ev

en
ts

Prediction probabilities for Signal

Background
Signal

Figure 6.23.: Prediction probabilities for signal and background classes for the one mass point
evaluated at 3 TeV. The colours indicate the true classes.

Next, the 3 TeV mass point was evaluated on the one mass point model. The distributions
for the signal probabilities can again be seen in Figure 6.23. This is the mass point
the network was trained on and thus it performs significantly better. Looking at the
plot for the background prediction probability, the network does not output prediction
probabilities above 88 % for true signal events. It also classifies the signal class with signal
prediction probability values of at least 12 %. The behaviour for the true background class
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6.3. Signal & Background Classification using Neural Networks

is also good, but here the network still misidentifies some background events as signal. The
overall distribution of prediction probabilities for true background events looks similar to
the 2 TeV test.
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Figure 6.24.: Evaluation of the one mass point model with the 3 TeV mass point.

The ROC curve and the confusion matrix in Figure 6.24 agree with the prediction prob-
ability distributions. The AUC for both classes is 0.99 and so is the average, which is a
very good result. The confusion matrix shows that only about 0.5 % of signal events are
falsely identified as background events. For the background class, approximately 5 % of
actual background events are falsely identified as signal events.
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Figure 6.25.: Prediction probabilities for signal and background classes for the one mass point
evaluated at 4 TeV. The colours indicate the true classes.

Lastly for the one mass point model, the model was evaluated with the 4 TeV mass point.
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6. The Search forX → HH → bbWW ∗ in the 1-Lepton Final State with the boosted Topology

Figure 6.25 shows the prediction probabilities. For this mass point the performance
worsened compared to the 3 TeV mass point, but is not as bad as for the 2 TeV mass
point. Again, the general shape of the distribution for true background events looks
similar as before. The model does a better job at identifying the background class than
the signal class. For the background predictions, a considerable amount of true signal
events have high prediction probabilities. The separation of true signal and background
increases towards higher values of the signal prediction probability.
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Figure 6.26.: Evaluation of the one mass point model with the 4 TeV mass point.

Figure 6.26 shows the ROC curve and the confusion matrix for the 4 TeV mass point
evaluation. Here, the AUC for the background class is with 0.89 lower than for the signal
class with 0.92, because the background rejection is low. Looking at the confusion matrix
it can be seen that the background class is well identified. The signal classification
efficiency is ≈ 63 %.

As expected, the one mass point neural network performs well for the mass point it was
trained on and considerably worse on the other two mass points.

Multi Mass Point neural network

The multi mass point network was trained on all three signal mass points simultaneously,
and is evaluated on each signal mass point individually.

The multi mass point model is first evaluated with the 2 TeV mass point. The prediction
probabilities for this evaluation can be seen in Figure 6.27. Similarly to the one mass
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6.3. Signal & Background Classification using Neural Networks

point model, this model performs worst for this mass point. Also, very similar peaks
around 0.3 and 0.7 show up in the prediction probabilities for this model as well, again
stemming from the lack of model optimisation. The trend of favouring the background
class continues here as well, as both actual signal and actual background events have high
background class prediction probabilities. For the prediction probability of the signal
class, the separation of true signal and background increases marginally towards higher
values.
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Figure 6.27.: Prediction probabilities for signal and background classes for the multi mass point
evaluated at 2 TeV. The colours indicate the true classes.

The ROC curve and confusion matrix in Figure 6.28 confirm the poor performance. The
AUC for the average of both classes is only at 0.73, which is the worst performance out of
all tests. In the confusion matrix it can be seen that more than 70 % of the signal events
are misidentified as background events. The reason for this even worse performance of
the multi mass point model is two fold. First of all, the 2 TeV sample is the least boosted
out of all three signal samples and thus the input variable distributions look most similar
to the background out of the three. Second, the network architecture might not be deep
and wide enough for the model to fully learn all three signal samples.
Next, the 3 TeV signal sample is tested on the multi mass point model. The corresponding
prediction probabilities can be seen in Figure 6.29. The predictions are significantly better
for this mass point. The predictions for the true signal events are better that for the true
background. Nonetheless, these results are not as good as for the one mass point model.
There still remain ambiguities for this model.
This result is reflected in the ROC curve and the confusion matrix for the 3 TeV mass
point evaluation as shown in Figure 6.30. The macro-average AUC is 0.97, which is only
slightly worse than for the one mass point model for the 3 TeV mass point. The confusion
matrix also looks comparably good. The signal classification efficiency is at roughly 93 %,
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(b) confusion matrix

Figure 6.28.: Evaluation of the multi mass point model with the 2 TeV mass point.
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Figure 6.29.: Prediction probabilities for signal and background classes for the multi mass point
evaluated at 3 TeV. The colours indicate the true classes.

while the background classification has an efficiency of almost 85 %.
Finally, the multi mass point model is tested with the 4 TeV signal mass point. For this
mass point test, better results than for the one mass point model are expected, as the multi
mass point model is familiar with mX = 4 TeV events from training. The expectation is
met, as can be seen in the prediction probabilities in Figure 6.31. Even though the model
again performs better at identifying the background class than at identifying the signal
class, the separation between true background and signal increases significantly towards
higher signal prediction probability values.
This result becomes more clear when looking at the ROC curves and the confusion matrix
in Figure 6.32, where the AUC for both classes is at 0.92, a value comparable to the 3 TeV
testing. For the confusing matrix however things are a little worse. Before, the model
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(b) confusion matrix

Figure 6.30.: Evaluation of the multi mass point model with the 3 TeV mass point.
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Figure 6.31.: Prediction probabilities for signal and background classes for the multi mass point
evaluated at 4 TeV. The colours indicate the true classes.

was better at classifying signal correctly, now it is better at classifying background. The
Background classification efficiency is at 93 % efficiency and signal classification at only
73 % efficiency. One possible reason for this could be, that the model confuses the 4 TeV
signal with the dijet background. Another reason could again be that the chosen network
architecture is not appropriate for the multi mass point model.
In Table 6.4, the test results are summarised for both models and each tested mass point.
The overall best performance was achieved by the one mass point model when testing
on the trained mass point. Similarly good results are achieved for the multi mass point
model for the same mass point. The multi mass point model also performed well on the
4 TeV mass point. Both models had trouble identifying the signal events in the 2 TeV
signal sample, as it contains the least boosted events.
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Figure 6.32.: Evaluation of the multi mass point model with the 4 TeV mass point.

For the multi mass point model better results could potentially be achieved for all mass
point when the neural network has more hidden layers and nodes per layer. For both
models proper optimisation as well as increased training time could also improve the
results. For the multi mass point model, larger improvements across all signal samples
are expected than for the single mass point model, hence the focus of this analysis should
be on the improvement and advancement of the multi mass point model.

One mass point model Multi mass point model
Test mass point 2 TeV 3 TeV 4 TeV 2 TeV 3 TeV 4 TeV
Average AUC 0.80 0.99 0.90 0.73 0.97 0.92
Signal classification efficiency 0.23 0.99 0.63 0.29 0.93 0.73
Bkg classification efficiency 0.95 0.94 0.96 0.90 0.84 0.93

Table 6.4.: Results of the tests on the different mass points of the two models.
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7. Conclusion and Outlook

This Master’s thesis presents the ongoing search for resonant Higgs boson pair production
in the using Atlas Run 3 data. As the Higgs boson coupling strength is proportional
to the mass of the particle, studying the Higgs sector with BSM extensions is a good
possibility to search for new particles that do not couple to other SM particles.
The analysis focuses on the bbWW ∗ decay channel with one charged lepton in the final
state. Due to the large mass of the scalar boson X, the two Higgs bosons from the decay
are highly boosted. The boosted topology is characterised by one charged lepton and
two large radius jets. One of them is the H → bb candidate and the other the Whad

candidate. The overlap between the lepton and the Whad candidate leads to a distinct
signature that can easily be distinguished from most backgrounds.
The result of the cut-based selection presented in this thesis seems promising. Considering
that the best performing isolation working point for muons is not yet recommended and
thus cannot be used, improved signal event yields can be expected when the working
point becomes recommended for muon candidate selection.
In the scope of this thesis, two neural networks were trained. The single mass point
model was trained on only the 3 TeV signal mass point. while the multi mass point model
was trained on all three signal mass points. Both neural networks perform well on the
mX = 3 TeV signal mass point and poorly on the mX = 2 TeV mass point. The multi
mass point network model outperforms the single mass point model for the mX = 4 TeV
mass point. Given proper optimisation, which was not possible in the scope of this
thesis, and longer training time, it can be expected that both models achieve even better
results. For the multi mass point model, improved results can be expected across all
three mass points, whereas for the single mass point model the expected improvement
would be exclusive to the 3 TeV mass point.
A final evaluation of the cut-based model against the neural network models can be
made after the recommendation for the best performing muon isolation working point is
obtained. The lack of that working point is responsible for the highest loss in efficiency in
the cut-based model. Considering that a cut-based preselection is applied to the neural
network input variables, this drastic loss in efficiency carries over to the neural network
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training, impacting the efficiency.

The next steps for this analysis should be to first obtain the recommendation for the
needed muon isolation working point by determining the corresponding muon scale fac-
tors. After that, the efficiencies for the cut-based model and the neural network models
should be compared for the new Atlas background sample recommendations, and with
the correct ID and isolation working points, while applying overlap removal to all re-
constructed leptons and jet objects. Then effort should be placed into optimising the
neural networks, focusing on optimisation of the multi mass point model, as its expected
improvement exceeds the improvement of the single mass point model. It could also be
considered to set up two different neural networks, one for the high mass points and one
for low mass, once more mass points are available for Run 3. If the neural network the
outperforms the cut-based selection, as it was shown in Ref. [11] for Run 2, the neural
network should be implemented in the analysis framework for Run 3 for signal and back-
ground event classification. This feature is currently in development, which is why this
could not be done in the scope of this thesis.
It could also be interesting to train the neural networks independently for the two signal
lepton flavours or to setup neural networks with more output classes as it was done for
Run 2 [11] and see how this changes the network’s performance.
While doing this analysis, new analysis tools were developed by the Atlas collaboration,
some of which should also be used for this analysis. It is now recommended to use the
mass dependent GN2x tagger for b-tagging, as the mass independent version cannot han-
dle dijet background very well, and thus cannot be calibrated. There are also some new
algorithms for electron identification. A neural network based approach is currently being
tested and could replace the likelihood method in the near future. It should be considered
to adapt these changes for this analysis as well.
The results of this thesis provide a good basis for the Atlas Run 3 boosted HH →
bbWW ∗ analysis with one charged lepton in the final state. A promising preselection was
established and also the necessity of the TightTrackOnly_VarRad isolation working point
for muons was discovered. The neural network based selection offers a new approach for
this analysis, replacing the cut-based approach, and thus provides new opportunities in
the search for resonant HH production.
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A. Appendix

A.1. Technical Setup

The technical setup of the analysis presented in this thesis is described in this section. The
samples used in this analysis are derived xAOD files (DAOD_PHYS), in which events
that are not interesting and objects not passing certain criteria are removed from the file.
This derivation also adds information and object collections, like specific jet collections,
which are not available at xAOD level.
The DAOD_PHYS samples are then processed by the Easyjet framework which is used
in other Higgs boson pair production analyses as well and is the foundation of a future
common di-Higgs framework. In Appendix A.1.1 more details are given on the framework.
The Easyjet framework outputs data trees, which are then passed to the HHARD frame-
work for post-processing. A description of the HHARD framework is given in Ap-
pendix A.1.2. For the neural network study performed in this thesis, the software Ten-
sorFlow is used. It is introduced in Appendix A.1.3.

A.1.1. Easyjet Framework

The Easyjet [70] framework is a highly modular framework, that runs within Athena
[71]. It is used by many di-Higgs analyses and it is in active development. It consists
of a core framework embedded in the EasyjetHub and analysis specific developments
contained within separate packages and varying for each analysis. For this analysis, the
Easyjet framework is first used to apply the specific selections to the analysis objects and
events, while also keeping track of the efficiencies of each selection cut. Afterwards, the
output variables, e.g. weights, truth information and analysis specific variables, are set,
filled and stored in ROOT n-tuples

A.1.2. HHARD Framework

For post-processing of the Easyjet framework, the HHARD [72] framework developed by
the HH → bbττ analysis is used. It efficiently converts the ROOT n-tuples to histograms
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and also hdf5 files and can handle large amounts of data. It is also applies weights to
the generated events and it is possible to define different regions for the output, such as
individual regions for the two signal lepton flavours in this analysis.

A.1.3. TensorFlow

TensorFlow [73] is a well established and popular machine learning open-source software
library focusing on the training of neural networks. In this thesis, TensorFlow was used
for neural network setup and training as it includes all required features, such as loss
functions, optimisers and learning rate schedulers like ReduceLearningRateOnPlateau. It
is also very user friendly and simple to run on an available GPU. Even though TensorFlow
has many helpful features for training, some other features were missing for this analysis.
In these cases, the python library scikit-learn [74] was used in addition.
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A.2. Monte Carlo Samples

A.2. Monte Carlo Samples

A.2.1. Signal Samples
mc23_13p6TeV.525948.MGPy8EG_PDF30NLO_X2000tohh_WWbb_1lep.deriv.DAOD_PHYS.e8551_s4162_r14622_p5855
mc23_13p6TeV.525949.MGPy8EG_PDF30NLO_X3000tohh_WWbb_1lep.deriv.DAOD_PHYS.e8551_s4162_r14622_p5855
mc23_13p6TeV.525950.MGPy8EG_PDF30NLO_X4000tohh_WWbb_1lep.deriv.DAOD_PHYS.e8551_s4162_r14622_p5855

A.2.2. Background Samples
tt background:
mc21_13p6TeV.601229.PhPy8EG_A14_ttbar_hdamp258p75_SingleLep.deriv.DAOD_PHYS.e8453_s3873_r13829_p5855

W+jets background:
mc23_13p6TeV.700777.Sh_2214_Wenu_maxHTpTV2_BFilter.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855
mc23_13p6TeV.700778.Sh_2214_Wenu_maxHTpTV2_CFilterBVeto.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855
mc23_13p6TeV.700779.Sh_2214_Wenu_maxHTpTV2_CVetoBVeto.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855
mc23_13p6TeV.700780.Sh_2214_Wmunu_maxHTpTV2_BFilter.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855
mc23_13p6TeV.700781.Sh_2214_Wmunu_maxHTpTV2_CFilterBVeto.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855
mc23_13p6TeV.700782.Sh_2214_Wmunu_maxHTpTV2_CVetoBVeto.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855
mc23_13p6TeV.700783.Sh_2214_Wtaunu_maxHTpTV2_BFilter.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855
mc23_13p6TeV.700784.Sh_2214_Wtaunu_maxHTpTV2_CFilterBVeto.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855
mc23_13p6TeV.700785.Sh_2214_Wtaunu_maxHTpTV2_CVetoBVeto.deriv.DAOD_PHYS.e8514_s4162_r14622_p5855

Dijet background:
mc23_13p6TeV.801165.Py8EG_A14NNPDF23LO_jj_JZ0.deriv.DAOD_PHYS.e8514_s4162_r14622_p5980
mc23_13p6TeV.801166.Py8EG_A14NNPDF23LO_jj_JZ1.deriv.DAOD_PHYS.e8514_s4162_r14622_p5980
mc23_13p6TeV.801167.Py8EG_A14NNPDF23LO_jj_JZ2.deriv.DAOD_PHYS.e8514_s4162_r14622_p5980
mc23_13p6TeV.801168.Py8EG_A14NNPDF23LO_jj_JZ3.deriv.DAOD_PHYS.e8514_s4162_r14622_p5980
mc23_13p6TeV.801169.Py8EG_A14NNPDF23LO_jj_JZ4.deriv.DAOD_PHYS.e8514_s4162_r14622_p5980
mc23_13p6TeV.801170.Py8EG_A14NNPDF23LO_jj_JZ5.deriv.DAOD_PHYS.e8514_s4162_r14622_p5980
mc23_13p6TeV.801171.Py8EG_A14NNPDF23LO_jj_JZ6.deriv.DAOD_PHYS.e8514_s4162_r14622_p5980
mc23_13p6TeV.801172.Py8EG_A14NNPDF23LO_jj_JZ7.deriv.DAOD_PHYS.e8514_s4162_r14622_p5980
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A.3. Additional Plots

A.3.1. Lepton WP Study
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Figure A.1.: Fraction of muons passing the isolation working point with respect to their pT and
∆R(Whad,lep).
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A.3.2. Jet Object Classification
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Figure A.2.: ∆R(lep,jet) distributions for Whad and H → bb, distance classification applied.
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Figure A.3.: DHbb distributions for Whad and H → bb, GNN classification applied.
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Figure A.4.: Mass distributions of the two jet objects for both classification methods.
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A.3.3. Neural Network Input Variable Study
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Figure A.5.: Distribution of kinematic variables of Whad and H → bb candidate, weights and
preselection applied.
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Figure A.6.: Distribution of substructure variables of Whad and H → bb candidate, weights and
preselection applied.
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Figure A.7.: Distribution of geometrical and angular distance between signal lepton, Whad and
H → bb candidate, weights and preselection applied.
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Figure A.8.: Distribution of missing ET /momentum and geometrical and angular distance between
missing ET , Whad and H → bb candidate, weights and preselection applied.
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