
A Distributed Privacy-Preserving Mechanism for
Mobile Urban Sensing Applications

Delphine Christin∗†, Daniel M. Bub‡, Andrey Moerov∗, Saffija Kasem-Madani∗
∗ Computer Science IV, University of Bonn, Bonn, Germany

† Fraunhofer Institute for Communication, Information Processing and Ergonomics, Wachtberg, Germany
‡ Secure Mobile Networking Lab, Technische Universität Darmstadt, Darmstadt, Germany

Emails: christin@cs.uni-bonn.de, daniel.bub@seemoo.tu-darmstadt.de, moerov@informatik.uni-bonn.de, kasem@cs.uni-bonn.de

Abstract—In urban sensing applications, participants carry
mobile devices that collect sensor readings annotated with spa-
tiotemporal information. However, such annotations put the par-
ticipants’ privacy at stake, as they can reveal their whereabouts
and habits to the urban sensing campaign administrators. A
solution to protect the participants’ privacy is to apply the con-
cept of k-anonymity. In this approach, the reported participants’
locations are modified such that at least k− 1 other participants
appear to share the same location, and hence become indistin-
guishable from each other. In existing implementations of k-
anonymity, the participants need to reveal their precise locations
to either a third party or other participants in order to find k−1
other participants. As a result, the participants’ location privacy
may still be endangered in case of ill-intentioned third-party
administrators and/or participants. We tackle this challenge by
proposing a novel approach that supports the participants in
their search for other participants without disclosing their exact
locations to any other parties. To evaluate our approach, we
conduct a threat analysis and study its feasibility by means of
extensive simulations using a real-world dataset.

I. INTRODUCTION

Urban sensing applications leverage mobile devices, such as
mobile phones, to collect sensor data. Due to the ubiquity of
these devices, urban phenomena, such as noise pollution [1]
or traffic conditions [2], can be monitored in unprecedented
detail. In comparison to existing static sensing stations, the
data collection is improved in both quality and quantity, but
in turn, the privacy of participants carrying mobile devices is
put at stake. In fact, most of the collected sensor readings
are usually tagged with time and location information [3].
Consequently, urban sensing applications do not solely record
the urban phenomena of interest, but also the participants’
whereabouts. This raises two key risks for the participants’
privacy. First, their visited locations are disclosed to the cam-
paign administrators, hence threatening their location privacy.
Secondly, a further analysis of their visited locations (such
as frequency, duration, time of the day) can reveal further
sensitive insights about the participants, such as their medical
condition or political views [4]. In presence of such risks, users
may prefer renouncing their participation rather than putting
their privacy at stake. Protecting the participants’ privacy is
therefore mandatory to ensure an application’s viability, as it
primarily depends on the participants’ willingness to contribute
data.

To protect the participants’ location privacy, most existing
methods tailored to urban sensing applications are based on
the concept of k-anonymity [5]. Its key idea is to protect the
participants’ location privacy against campaign administrators
by replacing their actual location by one shared with at least
k−1 other participants. To find these participants and compute
the corresponding common location, several approaches have
been proposed in the context of urban sensing applications.
However, they require that the participants disclose their
original locations to either a third party or other participants.
The participants therefore need to trust these parties not to
breach their location privacy. In this paper, we tackle this issue
by making the following contributions:

1) We first present a novel solution that enables participants
to find the remaining k − 1 participants in a distributed
fashion without revealing their original locations to any
other parties involved in the urban sensing applications.
In addition to protect the participants’ location privacy
against malicious administrators and participants, our
scheme prevents the campaign administrators from in-
ferring which participants have collected the reported
sensor readings.

2) We next conduct a detailed threat analysis showing that
the participants do not disclose their original locations to
neither other participants nor the third-party administra-
tors nor the campaign administrators. In case of an active
attack, our approach ensures that malicious participants
can at most gain access to the cloaked locations of
honest participants.

3) We finally evaluate the feasibility of our approach by
means of extensive simulations based on the GeoLife
dataset [6], [7], [8]. To this end, we evaluate the impact
of different parameters on the number of groups of k
participants that can be built using our approach.

The paper is organised as follows. In Section II, we detail
related work. We introduce our system and threat models in
Section III. We present the architecture of our approach in
Section IV. We conduct a threat analysis in Section V and
present our evaluation results in Section VI. We finally make
concluding remarks and discuss future work in Section VII.
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II. RELATED WORK

Different approaches based on k-anonymity [5] have been
proposed to protect the participants’ location privacy. The idea
is to build sets of k participants sharing the same location
so that these participants become indistinguishable for the
campaign administrators. Most solutions, however, differ in the
methods applied to build the different participants’ sets. For
example, centralised approaches rely on a central trusted third
party (TTP) to which participants report their encrypted pre-
cise location. The TTP then computes the smallest region con-
taining at least k−1 other participants to fulfil the k-anonymity
property. In [9], the TTP directly replaces the participant’s
location with the computed region in the participant’s message
before forwarding it to its final destination. Alternatively, it
returns the computed region to each participant, who uses it
in lieu of his actual location in future messages as proposed
in [10]. Building on this concept, different optimisations have
been introduced. For example, [11] maintains the locality
of the computed region as close as possible to the actual
participants’ location. Depending on the participants’ spatial
distribution, fewer than k participants may be located in the
same area. Instead of waiting for the remaining participants
and hence increasing the reporting latency, [12] proposes to
introduce a timeout, which determines when the region is
computed independently on the number of participants. In all
schemes, the participants hence need to trust the TTP not to
breach their location privacy by, e.g., disclosing their locations
to unauthorised parties.

To overcome this issue, several decentralised approaches
leveraging ad hoc communication between participants’ de-
vices have been presented. In the case of location-based
services, [13] proposes to locally cache the results of the
requests answered by the server. By doing so, the participants’
location is only disclosed to the server when the requested
information is not already available from nearby devices.
Instead of caching information, devices can search for nearby
participants such that the k-anonymity requirement could be
fulfilled [14], [15]. The area containing all k devices is then
locally computed, and used as a cloaked location in the request
to the server. Instead of ad hoc-based communication, [16]
uses peer-to-peer communication for the potential identifica-
tion of k nearby peers. However, in all these solutions, partici-
pants reveal their locations to other participants and hence need
to trust their peers not to misuse the disclosed information. We
tackle this issue by proposing a novel scheme that shares the
more similarities with [16] but kept the participants’ locations
hidden from both other participants and third parties.

III. ASSUMPTIONS

We make the following assumptions regarding our system
model and the related threats to privacy.

A. System Model

We assume an urban sensing system including multiple
clients (e.g., smartphones) carried by the participants and an
application server managed by the campaign administrators.

We further assume that all parties own a public/private key
pair. To fulfil sensing tasks, the clients collect sensor readings
in form of triplets. Each triplet T has a unique identifier
IDT and consists of the time of the measurement, its location
noted l, and the measured sensor data. Additional processing,
such as noise filtering or feature extraction, can be locally
applied on s before the triplets are reported to the application
server. The application server then processes the received
triplets to, e.g., build maps and compute statistics. The results
are finally made available to the end users who can be the
participants themselves or any interested parties depending on
the application scenario.

B. Threat Model

We assume a honest-but-curious adversary model, in which
the campaign administrators attempt to passively breach the
privacy of the participants, but runs the system normally and
faithfully. This means that the campaign administrators focus
on the data reported by the participants to the application
server in order to breach their privacy. They, however, do
not launch active attacks (such as collusions with malicious
participants) to obtain further information. As an artefact
of our approach, participants as well as the administrators
of the third party introduced in our solution can also be
interested in inferring the location of (other) participants.
Like for the campaign administrators, we assume that the
third party administrators are honest-but-curious. We further
consider malicious participants who can launch active attacks
against peers.

IV. ARCHITECTURE

Our approach follows the three main steps illustrated in
Fig. 1 and detailed in the following sections.

1) Partitioned Spatial Cloaking: We first assume a client
A. It first cloaks its location l using the common spatial
partition as depicted in Fig. 1(a). This means that it selects
a set SA = {rA0

, rA1
, ...rA(NrA

−1)
} of NrA regions rAi

(with
0 ≤ i ≤ NrA and NrA ≥ 1). The number of selected regions
NAN depends on the participants’ privacy preferences. In the
case of NrA = 1, the cloaked location only corresponds to
the region including l, while it includes additional adjacent
regions for NrA > 1. Choosing multiple regions reduces
the accuracy of l, and hence the precision of the application
results. Simultaneously, it increases both the probability to
find other participants sharing the same region(s) and the
participants’ privacy protection. The region selection can be
done either randomly or by the participants, who can manually
discard sensitive regions. A second client B does the same.

2) Private Location Matching: To protect their location k-
anonymity, the clients then look for k − 1 other participants
that may share the same region(s) as depicted in Fig. 1(b).
A third party in form of a publish-subscribe server supports
this search by enabling direct communication between clients.
Each pair of clients apply a private set intersection mechanism,
such as [17]. The goal is hence to compare their respective
set of regions sA and sB using a function f that returns the



Client A 

Client B 

Original 
location 

Set SA of NrA
 selected 

regions 

Original 
location 

Set SB of NrB
 selected 

regions 
 

1 

1 

(a) Partitioned spatial cloaking

Client A 

Client B 

Boolean circuit f (SA )  

Private set intersection  

SB  

Mutual region 

SA 

2 

3 

4 5 

6 

(b) Private location matching

Client A 

Client B 

Division  
in shares 

Share distribution 

10 7 

7 

8 

8 

9 

10 

Encryption 

Reporting 

Application 
server 

(c) Joint information disclosure

Fig. 1. Three key steps of our architecture

regions common to both A and B without disclosing their sets
to each other. To this end, A converts sA into a boolean circuit
f(sA) using Yao’s garbled circuit technique [18] and transfers
this circuit to B. Note that A does not reveal sA to B as it is
only included in the circuit. B then applies the received circuit
to sB and only sends the result to A. The result is the mutual
region(s) shared by both A and B. In other words, neither
A nor B gain access to unshared regions at any steps of the
protocol. After having run the private matching scheme, two
cases are possible: (1) n < k−1 or (2) n ≥ k−1, with n being
the number of successful matches. In the first case, the client
can wait until n ≥ k − 1, but this increases the latency until
the sensor readings can be reported to the application server.
Alternatively, the client can directly report T using its cloaked
location obtained in the above step (see Sec. IV-1) or even
drop it to protect its privacy. This would reduce the reporting
latency, but both the participant’s location k-anonymity and
the originator’s k-anonymity would not be guaranteed. If n ≥
k − 1, the matching process is completed and the matched
clients replace each l by the intersecting region(s) in their
respective T .

3) Joint Information Disclosure: To further ensure that the
application administrators cannot infer who has collected the
sensor readings, each client encrypts its sensor reading T
into m ≥ k shares according to the secret sharing algorithm
introduced in [19]. Then, it encrypts each share along with
IDT (i.e., the unique identifier of T ) using the application
server’s public key. Each client keeps one share and distributes
the m − 1 remaining ones to the other group members as
illustrated in Fig. 1(c). Since the shares are encrypted with
the application server’s public key, the shares are hidden from
the other group members. Then, each client reports its own
share and m− 1 shares from the other group members to the
application server. According to [19], the application server is
only able to decrypt each T if at least p ≤ m shares have
been reported. In our case, we especially choose p ≥ k. This
first ensures that at least k clients have reported shares to
the application server, i.e., at least k-anonymity is guaranteed.
Additionally, this supports missing shares, e.g., if clients opt
out before the mechanism completion. Once T is decrypted,
the application server can further process it as usual and
compute result summaries, for example.

V. THREAT ANALYSIS

We consider the threat model presented in Section III-B and
argue that our solution is resilient against the following threats.

A. Malicious Participants

Malicious participants can launch attacks in two steps of
our approach. In the first step, they can start a brute-force
attack by proposing all region combinations during the private
location matching process. Since the participants first cloak
their location before applying the private set intersection mech-
anism, malicious participants would have only gain access to
the cloaked location of honest participants. Moreover, a brute-
force attack can be easily detected by analysing the number
of submitted region combinations. In the normal case, only
participants sharing the same cloaked region(s) learn about
them.

In the second step, malicious participants may drop the
shares received from other participants and hence not report
them to the application server. By doing so, the malicious
participants would not gain access to the cloaked location of
honest participants, as it is encrypted using the application
server’s public key. But, it would prevent the application
server from decrypting the corresponding triplets and hence
disturb the application function as soon as the number of
reported shares p is lower than k. As a direct consequence,
the application server will also have no access to the location
information included in the triplets. An incentive system could
be introduced to encourage and reward participants that report
shares. This is however considered as future work.

B. Honest-but-Curious Administrators

Based on our threat model (see Sec. III-B), the adminis-
trators of both the sensing campaign and the third party are
honest-but-curious. Assuming that the private set intersection
algorithm used in the location matching process remains
unbroken, these administrators will not gain access to the
regions submitted by each participant. Depending on the result
of the matching, the campaign administrators will have access
at most to the participants’ cloaked location. This happens
when the number of matches n is below k and the participants
decide to report their triplets using their cloaked location.
Alternatively, the participants can choose to drop them in
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Fig. 2. Considered forms for the partition regions

order to protect their privacy. If n ≥ k, the corresponding
n participants share the same region(s) and hence become
indistinguishable for the campaign administrators. By splitting
the triplets into shares, the campaign administrators cannot
identify who has originally collected the triplets. Assuming
that not all k participants collaborate and report the shares,
this would reveal neither the origin of the triplets nor the
participants’ cloaked location, as the application server would
be unable to decrypt the triplets.

In summary, our solution ensures that the participants’ pre-
cise location is not known from any other entities contributing
to our system model. In the worst case, the participants’
cloaked location might be disclosed but the cloaking still
protects the exact locations from malicious participants.

VI. EVALUATION

Our evaluation is based on the GPS traces from the GeoLife
project ([6], [7], [8]). In this real-world deployment, 182
participants carried GPS-enabled devices to monitor their
location. For our evaluations, we have focused on a square
of edge length 100 km located in Beijing that contains most
GPS traces, and hence removed all entries outside this area.
To simulate an urban sensing application, we have further
subsampled the GPS traces to obtain a data collection period
of 5 min. We have created different types of partitions using
different geometric shapes. We have concentrated on GPS
traces collected between March, the 1st and the 7th, 2009, as
the maximum number of users (i.e., 35) were simultaneously
active in that area during this week. While this clearly presents
a best case scenario, this number still remains low as compared
to the 182 participants having contributed to the dataset as well
as the whole population of Beijing. We have repeated each
simulation 100 times and present the corresponding results in
the following sections.

A. Form of the Partition Regions

We first analyse the impact of different region forms
presented in Fig. 2 on the number of matches n, i.e., the
number of participants sharing at least one region together.
Note that in the case of circles (see Fig. 2(d)), we assign
the closest circle to the participants whose original location is
not covered by any existing circles. The greater n, the better
for the participants’ privacy protection as more participants
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Fig. 3. Impact of the selected forms for the partition regions on the mean
value of n depending on Nr and RA (k=2)

share the same region(s). For all selected forms, Fig. 3(a)
shows the evolution of n depending on the number of regions
Nr selected by each participant, while Fig. 3(b) shows its
evolution depending on the region area RA. In both figures, we
can observe that the smaller Nr or RA, the lower the impact of
the region form on n. As expected, n increases with both Nr

and RA, as the probability that two participants share common
region(s) increases. As compared to the other forms, we see
that both squares and triangles lead to the greatest values for
n. For the remaining simulations, we hence select squares as
baseline for the partition common to all participants.

B. Value of k

In the previous simulations, we have chosen k = 2. This
means that only two clients should share at least one common
region to have a successful match and guarantee 2-anonymity
to the corresponding participants. In Fig. 4, we next compare
the ratio of successful matches (i.e., n ≥ k) , incomplete
matches (1 < n < k) and no matches (n = 1) depending on
chosen values for k. Recall that k is the number of matches
required to consider the matching as completed and achieve the
targeted k-anonymity. As expected, the number of successful
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Fig. 4. Impact of the value of k on the median ratio and standard deviation of successful, incomplete, and no matches (RA = 25km2, Nr = 8)
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Fig. 5. Influence of number of regions Nr on the median ratio and standard deviation of successful, incomplete, and no matches (RA = 25km2, k = 3)
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Fig. 6. Influence of the region area RA on the median ratio and standard deviation of successful, incomplete, and no matches (Nr = 8, k = 3)

matches decreases when k increases, as more participants
are required to achieve a successful match. In our case, we
have around 50% of successful matches for k = 2, 25%
for k = 3, and 5% for k = 5. This means that adding
one more participant to reach 3-anonymity almost halves the
number of successful matches as compared to k = 2. The
obtained results hence illustrate the existing tradeoff between
k and hence the possible number of successful matches. The
absolute values of these ratios are relatively low especially
when RA = 25km2 and Nr = 8 in these simulations. This
is mainly due the number of participants (35) considered in
our evaluation. Assuming a real-world application, the degree
of granularity provided for the location may be insufficient.
Note that we are mainly interested in comparing the evolution
of the number of matches depending on different parameters,
instead of gauging their absolute values.

C. Number of Regions Nr

We next study how the number of regions selected by the
participants can influence the number of matches. Recall that
the participants can choose Nr regions including the region
in which they are currently located. Fig. 5 shows that the
ratio of successful matches almost increases as Nr increases.
For example, doubling Nr leads to doubling the median

of the successful matches for all participants. By selecting
Nr > 1, the area covered by the Nr regions increases and
hence, the probability of sharing the same region(s) increases.
In particular cases, the combination of multiple regions can
correspond to a square with a greater area, i.e., RA. While
the number of matches is the same in these cases, choosing
multiple regions benefits to the application accuracy in the
remaining cases. Additionally, we have chosen a predefined
value for Nr for these simulations. In a real-world scenario, the
clients could adapt Nr to the population density of the visited
regions to optimise the precision of the cloaked information
while still protecting their privacy.

D. Region area RA

We finally vary the region area RA and display the corre-
sponding results in Fig. 6. Based on the 35 participants active
during the studied week, we can easily observe that only few
successful matches are possible (despite Nr = 8). Around
5% of the matches are successful, i.e., at lest 3 participants
are in the region, when the squares have an edge length of
1 km. Shorter edges lead to even fewer successful matches,
while this ratio increases to 10% for edge length of 2 km.
Again, applying our solution with such limited number of



participants greatly impacts the accuracy of the results sent
to the application server.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel approach to protect
the privacy of participants in urban sensing applications. By
applying it, participants can find k − 1 other participants in
a distributed fashion to build groups of k indistinguishable
users sharing the same region(s), and hence implement the
concept of k-anonymity. Our solution improves existing work
as the participants do not need to reveal their precise loca-
tion to neither a third party nor other participants. Instead,
each participant first cloaks her location by selecting regions
around her current location based on a partition common
to all participants. A private set intersection algorithm next
allows the participants to identify shared regions without
disclosing them to each others. Moreover, our scheme protects
the anonymity of the participants having collected the sensor
readings, as these are divided into shares and distributed within
the previously built groups of k users before being reported by
each participant to the application server. The results show that
increasing k from 2 to 3 halves the number of possible shared
regions between participants, while doubling the number of
regions Nr selected by the participants leads to doubling the
median of the successful matches for all participants.

In the future, we plan to adapt the different studied parame-
ters (i.e., k, Nr, and RA) to the density of active participants in
the same area. By doing so, we aim at dynamically increasing
the number of successful region matches. Moreover, we will
investigate additional real-world datasets in order to evaluate
our scheme with more than 35 participants active during the
same week as it is the case in the GeoLife dataset, and hence
refine our feasibility study.
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