

Funded by

rschungsgemeinschaft German Research Foundation

Abteilung **UNIVERSITÄT BONN**

Fakultät für Agrarwissenschaften Department für Nutzpflanzenwissenschaften Abteilung Pflanzenbau

Spatial and Temporal Variability of Nitrous Oxide Fluxes in a German Crop Rotation

Paulina Englert^{1,2}, Antonios Apostolakis¹, Henning Schröer¹, Christian Markwitz³, Alexander Knohl³, Klaus Dittert⁴, Stefan Siebert¹, Ana Meijide^{1,2}

paulina.englert@uni-goettingen.de

C NTROD

SE

НУРОТ

- Nitrous oxide (N₂O) fluxes show **high temporal and spatial variability** \rightarrow challenging its accurate quantification
- N₂O fluxes depend on numerous factors and their interactions (e.g. soil aeration, temperature, mineral nitrogen, easily available organic carbon, microbial activity) \rightarrow making it difficult to identify the most important drivers
- Management practices (i.e. **fertilization**) and **precipitation** result in short-term N₂O peaks which could be missed with discontinuous chamber measurements
- N₂O fluxes show a large **spatial variability** during emission peaks which is related to variations in soil properties
- → Combining Eddy Covariance (EC) and chamber measurements with soil analysis, climate and management data will help to accurately quantify N₂O fluxes and understand their drivers

CONCLUSION

 $\rightarrow N_2 O$ peaks appear after fertilization or meterological events, while the advantages of **both EC** and chambers is needed for detection

 $\rightarrow NO_3^-$ and WFPS can explain the temporal variability of chamber N₂O fluxes but cannot explain the high **spatial variability** after fertilization

100 Sampling points:

- **High spatial variability** of N₂O fluxes (COV* 245.97%)
- Soil nitrate (NO_3^{-}): 90 220 kg/ha \bullet
- Water filled pore space (WFPS): 65% 80%
- **No significant effects** of NO_3^- , WFPS or temperature on N_2O 8 Chambers: *Coefficient of Variation
- Increased N₂O fluxes after fertilization
- Significant positive effect of NO₃⁻ and WFPS:
 - $log(N_2O) = 0.056 \times NO_3^* + 0.051 \times WFPS^*$ $-0.001 \times NO_3$:WFPS* + (1|chamber) $*p < 0.05, R^2 = 0.54$

Preliminary EC-N₂O fluxes:

- **Short-term N₂O peak induced by** increasing temperature and 75 mm of **precipitation** after 5 dry weeks, while NO₃⁻ decreased to ~50 kg/ha 9 weeks after fertilization
- positive effect of 30-minute means of WFPS and soil temperature on EC-N₂O fluxes
- low signal-to-noise ratio is challenging the detection of small N₂O peaks

D H

MET

8

RIA

ATE

Σ

- EC-Fluxtower on a 10 ha field with common agricultural practise, location 51.49°N, 9.93°E
- Sowing of sugar beets 2023-04-20 following white mustard as catch crop
- 8 static chambers (diameter 60 cm) located within the tower footprint, gas samples analyzed with gas chromatography, flux calculation with R package gasfluxes
- Soil samples (NO_{3⁻}, NH₄⁺, DOC) and soil moisture measurements next to each chamber
- 100 points measured with Licor-7820 on 2023-04-27, soil samples at every third point
- EC-tower with closed-path N₂O analyzer (LGR) and sonic anemometer (uSonic-3 MP Cage, METEK), flux calculation with EddyPro, tower equipped with soil moisture/temperature, air temperature and rain sensors

 Analysing dissolved organic carbon (DOC) in all soil samples

• Measuring N₂O fluxes after harvest of the sugar beet + leaf incorporation and during winter wheat cultivation period

 Improving the mechanistic understanding using natural-abundance of N₂O isotopic species and analysis of gene abundance in the soil

¹Abteilung Pflanzenbau, Department für Nutzpflanzenwissenschaften, Universität Göttingen, Germany ²Environment Modeling, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, Universität Bonn, Germany ³Abteilung Bioklimatologie, Fakultät für Forstwissenschaften und Waldökologie, Universität Göttingen, Germany ⁴Abteilung Pflanzenernährung und Ertragsphysiologie, Department für Nutzpflanzenwissenschaften, Universität Göttingen, Germany

We thank Christiane Münter, Gabi Kolle & Edgar Tunsch for technical support!

www.uni-goettingen.de/en/influx/667004.html