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Abstract
In dieser Bachelorarbeit wird ein neuer Ansatz zum Truth Tagging für die tt̄H(bb) Anal-
yse mithilfe eines neuronalen Graphnetzwerks untersucht. Analysiert wird die Perfor-
manz des neuronalen Netzes im Vergleich zu den etablierten Effizienz Karten und dem
Direct Tag für verschiedene Jet-Regionen, Arbeitspunkten und Anzahl an getaggten Jets.
Weiterhin wird der Einfluss von Hadron Variablen auf die Performanz des neuronalen
Netzes untersucht sowie die Fähigkeit des neuronalen Netzes, bottom-Jet Multiplizitäten
vorherzusagen.

Es wird gezeigt, dass das neuronale Netz auch mit geringer vorhandener Statistik umge-
hen kann und für unterschiedliche Anzahlen an Jets innerhalb eines Ereignisses vergleich-
bare Resultate erzielt. Weiterhin wird gezeigt, dass das neuronale Netz ein Problem bei
der Vorhersage von light Jets mit einem pT von unter 60GeV hat. Die genaue Ursache
dieses Problems konnte noch nicht ergründet werden. Zusätzlich wird gezeigt, dass das
neuronale Netz ein geeigneter Kandidat für den Einsatz in einer möglichen tt̄H(bb) Anal-
yse Region ist. Jedoch sind für eine abschließende Bewertung weitere Untersuchungen
erforderlich.

Stichwörter: Physik, Teilchenphysik, Truth Tagging, neuronales Netzwerk, neuronales
Graphnetzwerk, tt̄H(bb) Analyse

Abstract
In this thesis, a new approach for truth tagging within the tt̄H(bb) analysis via a graph
neural network is analysed. It is analysed how the neural network performs in comparison
to the established efficiency map and the direct tag for various jet regions, working points
and number of tagged jets. Furthermore, the influence of hadron variables on the perfor-
mance of the neural network and the ability of the neural network to predict bottom-jet
multiplicities is investigated.

It is shown that the neural network can deal with low statistics and can produce similar
results for various numbers of jets within an event. Furthermore it is shown that the neural
network has a problem dealing with light jets which have a pT below 60GeV. The cause
of this problem has not been found. Additionally, it is shown that it is likely that the
neural network can be used for a possible tt̄H(bb) analysis region, but more investigations
are required for a final conclusion.

Keywords: Physics, Particle Physics, Truth Tagging, Neural Network, Graph Neural
Network, tt̄H(bb) analysis
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1. Introduction

The goal of particle physics is to describe the fundamental components of our universe
and their interactions. The currently most successful theory of particle physics is the
Standard Model, describing the fundamental components of our universe as elementary
particles and their interactions through the exchange of gauge bosons. One example of
these interactions is the Yukawa coupling between the Higgs boson and the top quark.
The top quark was discovered by the DØand CDF collaborations at Fermilab in the year
1995, making it the most recently discovered quark [1, 2]. The Higgs boson H was pre-
dicted by the Higgs mechanism in the year 1964 [3, 4] and discovered by the Atlas and
Cms experiments at the Lhc in the year 2012 [5, 6], thus completing the Standard Model.
One way to measure the Yukawa coupling between the Higgs boson and the top quark
properly is to examine the cross section of the tt̄H(bb) interaction, which is a Higgs boson
associated production of a top-antitop quark pair (tt̄H), discovered by the Atlas and
Cms collaborations [7, 8], where the Higgs boson decays into a bottom-antibottom quark
pair (H → bb̄). Evidence for this decay has been found in the year 2018 [9–11]. Since the
Higgs boson couples directly to the top quark during this interaction, the cross section
of this process is proportional to the strength of the Yukawa coupling squared. But this
process has a high background, which has to be distinguished from the signal events. A
part of this background has additional light and c-jets and is therefore reducible by apply-
ing b-tagging, as will be further discussed in chapter 2.4. b-tagging is an algorithm which
provides a discriminator that the jet came from a b quark. The Atlas collaboration
currently uses the DL1r algorithm for b-tagging [12, 13].
A first step to do this is the so-called direct selection cut, in which regions of phase
space with a higher signal purity get defined for further processing. These selection cuts
are used to reduce background contamination and include b-tagging cuts for the tt̄H(bb)
channel because of the four b-jets expected in the final state. Events with too few b-
tags at a specific Working Point are being rejected to purify the signal, but therefore the
number of events usable for later developments of multivariate classification techniques
is strongly reduced, resulting in lower training statistics. This can give badly modelled
variable distributions for backgrounds which are almost completely removed. Therefore,
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1. Introduction

another approach needs to be developed. One alternative approach is the so-called "Truth
Tagging" [14], which has the goal to imitate the behaviour of direct tagging without re-
jecting events with few b-tags.
Within this thesis, a new approach of truth tagging by the means of artificial neural net-
works originally developed for a V H(bb) analysis will be evaluated on tt̄H(bb) background
samples. The results will then be compared to the direct cut and the truth tagging with
efficiency maps, which is the currently established procedure of truth tagging. The ap-
proach of truth tagging by the means of artificial neural networks was first introduced by
Francesco Di Bello et al. [15]. Truth tagging will be discussed further in chapter 5 after a
brief summary of the standard model in chapter 2, an overview of the Lhc and the Atlas
detector in chapter 3 and a general overview of the functionality of neural networks and
graphs in chapter 4. After this, the tools used will be described in chapter 6, followed
by a presentation of the results in chapter 7 and a discussion of them in chapter 8. In
the end, a summary of the thesis will be given in chapter 9, together with an outlook for
further research and applications.
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2. The Standard Model of Particle
Physics

The Standard Model (SM) is the currently accepted underlying theory of particle physics,
describing the fundamental particles and their interactions except for gravity [16–19].
Even if there are many things the SM cannot explain, as discussed in more detail in
chapter 2.5, it is currently the most successful scientific theory ever created.

2.1. Basics of the Standard Model

All particles can be divided into two groups: The bosons, which have an integer spin,
and the fermions, which have a half numbered spin. All matter that we see consists of
fermions, while the fundamental forces electromagnetism, strong interaction and weak
interaction can be described by the exchange of bosons. The fermions can be divided
further into the quarks, which interact through the strong interaction, and the leptons,
which do not. Also, the fermions are ordered into three groups, called generations, which
roughly distinguish the particles by their mass. The particles of the SM can be seen in
Figure 2.1 together with their mass, electric charge and their spin [20].
All fermions, except neutrinos, and the W bosons interact via the electromagnetic force,
which is described by the exchange of photons. The charge, which describes the sensitiv-
ity of the particles to the electromagnetic interaction, is the electric charge. All quarks
interact via the strong force, which is described by the exchange of gluons, which also in-
teract via the strong force themselves. The corresponding charge is the colour charge. All
particles except the photon and the gluons interact via the weak force, which is described
by the exchange of W and Z bosons. The sensitivity of particles to the weak interaction
is described by the weak isospin. The quarks furthermore hadronise because of colour
confinement, which states that quarks cannot occur isolated in a single state, but only in
bound states with neutral colour charge, creating so called hadrons. Two different types
of hadrons exist: The baryons, which are bound states with a half numbered spin, and

3



2. The Standard Model of Particle Physics

Figure 2.1.: The particles of the Standard Model of particle physics. Shown are the
three fermion generations and the force carrying bosons together with their
mass, electric charge and spin. The values for the particle properties are
taken from [20]. Courtesy of Konrad Helms 2022.

the mesons, which have an integer spin. An example for baryons are the protons, which
are used for collisions in the Large Hadron Collider.

2.2. Top Quark

Of special interest for this thesis is the top quark (t quark), the heaviest of the known
elementary particles with a mass of mt = (172.69 ± 0.30)GeV [20]. Since the typical
timescale of hadronization lies within the order of 10−23 s [21] and the t quark has a decay
width of Γ= 1.42+0.19

−0.15 GeV [20], giving it a mean lifetime of τ ≈ 5 · 10−25 s, the t quark is
the only known hadron that decays before it hadronises. Therefore, it presents the unique
opportunity to investigate properties of quarks in a non-bound state. The t quark has
an electric charge of +2

3 e and is the weak isospin partner of the bottom quark (b quark).
Because of its short life time, it cannot be measured directly with the Atlas detector, but
only through its decay products. The t quark mostly decays into a b or b̄ quark together
with a W+ or W− boson, respectively, as described by the CKM matrix [22, 23]. The W -
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2.3. The Higgs Boson

Figure 2.2.: Hadronic decay channel of the t quark

Figure 2.3.: Leptonic decay channel of the t quark

boson then furthermore decays either hadronically (W → qq̄′) or leptonically (W → `ν`).
Examples for the decay channels of the t quark can be seen in the figures 2.2 and 2.3.
The decay into a pair of qq̄′ is more difficult to measure in comparison to a leptonic decay:
Because quarks cannot occur in non-bound states, the separation of quarks leads to the
creation of particle jets. One of the main problems in hadron collider experiments is the
identification of the flavour of the quark from which they originate. This procedure is
called "Flavour Tagging", which will be further discussed in chapter 5.

2.3. The Higgs Boson

The Higgs boson is predicted by the Higgs mechanism, which was developed in 1964 [3, 4].
The Higgs mechanism solves the problem of how the W and the Z bosons acquire mass,
since they were required massless by the gauge invariance in the SM, what was in con-
tradiction to experimental results. The Higgs boson was predicted to be the quantized
excitation of the Higgs field.
Since the Higgs boson couples to the mass of a particle, it couples with all SM parti-
cles except the photon, the gluon and the neutrinos. The t quark is the most relevant
interaction partner for the Higgs boson since it has the highest mass of all known parti-
cles. Therefore, it is important to know the properties of the t quark if working in Higgs
physics.
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2. The Standard Model of Particle Physics

Figure 2.4.: Gluon fusion into a pair of top quarks and a Higgs boson.

The Higgs boson has a mass of mH = (125.25 ± 0.17)GeV [20], a spin of zero and a
decay width of Γ = 3.2+2.8

−2.2 MeV [20]. With the Atlas detector, the Higgs boson cannot
be measured directly but instead via its decay products, for example a decay into a bb̄
pair.

2.4. tt̄H Production Mode

The main goal in the investigation of tt̄H production is to measure the strength of the
top-Higgs Yukawa coupling. One of the main production modes of tt̄H is shown in Figure
2.4. A pair of gluons merges into tt̄ from which a Higgs boson is emitted. The Higgs
boson thereupon decays into bb̄. The notation for this decay channel is tt̄H(H → bb̄).
The tt̄H can decay fully leptonically, fully hadronic or semileptonically. The jets, which
develop as a result of the W decay, can be any jets which are lighter than the W boson,
making the analysis explicitly more difficult. But in most cases of hadronic decay, the
W boson decays into a b jet together with a ū- or c̄ jet or into a b̄ jet and a u- or c jet,
respectively, because the decay into d- and s jets have smaller CKM matrix elements.
This production mode is dominated by background processes in collision data. A back-
ground is everything that can be misinterpreted as the examined event. The dominant
background is shown in Figure 2.5. A pair of gluons merge into tt̄. After the merge one
of the t quarks emits a gluon, which furthermore decays into bb̄, resulting in the same
final state particles as the examined tt̄H signal event. It is also possible that a gluon
is emitted from an initial state parton. Backgrounds can be distinguished into reducible
and irreducible backgrounds: Events, where the emitted gluon decays into light jets or
c-jets can be cut away by applying b-tagging and are therefore reducible, whereas events
with the same final state particles cannot be cut away and are therefore irreducible. To
reduce this background within collision data via b-tagging, a direct selection cut is ap-
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2.5. Limitations of the Standard Model

Figure 2.5.: Gluon fusion into a pair of top quarks, whereby an additional gluon gets
emitted which decays into bb̄, resulting in the same final state as tt̄H.

plied. The concept of tagging will be discussed in more detail in chapter 5. But this
approach has some difficulties, for example it lowers the number of usable events by a
huge amount, and therefore needs to be improved, as discussed further in chapter 5. The
tt̄H production mode with various decay modes of the Higgs boson was first observed by
the Atlas and Cms collaborations in the year 2018 [7, 8], but the tt̄H(H → bb̄) decay has
not been directly observed yet [9–11] and needs to be measured more precisely to extract
the strength of the top-Higgs Yukawa coupling.

2.5. Limitations of the Standard Model

Although the SM is currently the scientific theory tested to the highest precision ever
achieved, there are many things the SM cannot explain.
For example, there is no explanation in the SM how gravity works at microscopic scales.
Also, there is no explanation for the phenomena of dark matter or why there is more
matter within the universe than antimatter [24, 25]. Physics that tries to expand the
SM to explain these phenomena is called "Physics beyond the Standard Model" (BSM).
One example for a theory from the field of BSM is the Supersymmetry (SUSY), in which
the assumption is made that every particle of the SM has a "Superpartner" with higher
mass [26]. For example, within SUSY, the superpartners of WP, B0 and π0 would be
candidates for the dark matter.
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3. Experimental Setup

3.1. The LHC

The Large Hadron Collider (Lhc) [27], run by CERN, is located in Switzerland near
Geneva and is currently the largest and most powerful particle accelerator in the world.
The Lhc was installed in the same 26.7 km long tunnel with a tunnel cross section diameter
of 3.7m where the Large Electron-Positron Collider (Lep) was located [28]. The tunnels
are located between 45m and 170m below the surface. The Lhc is a proton-proton collider
and therefore consists of two rings with counter-rotating particle beams. The protons are
being injected through two transfer tunnels with a length of about 2.5 km, which connect
the Lhc with the CERN accelerator complex. There are four different interaction points
used at the Lhc, each one of them belonging to one experiment. Currently there are four
experiments working at the Lhc: Atlas, Cms, Lhcb and Alice [29–32]. While Atlas
and Cms are multipurpose detectors, the focus of Lhcb lies on precision measurements
of CP violation and rare decays of B hadrons and Alice is examining heavy ion physics
and the quark-gluon plasma of the SM.
Currently, the Lhc is starting Run 3, where its center-of-mass energy is increased from
√
s = 13TeV in Run 2 to

√
s = 13.6TeV [33].

3.2. The ATLAS Detector

After the collision of the particle beams at the interaction point, the particles produced
in the interaction need to be identified and their properties like energy or transverse mo-
mentum need to be measured. For this purpose, the Atlas (A Toroidal LHC ApparatuS)
detector was developed. The goal of Atlas is to test the SM and to search for physics
beyond the SM [29].
The Atlas detector has a height of 25m and a length of 44m. It is forward-backward
symmetric with respect to the interaction point. It consists of four different concentric
layers: The inner detector, the electromagnetic calorimeter, the hadron calorimeter and
the muon spectrometer [29]. A cross-section of the Atlas detector can be seen in Figure
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3. Experimental Setup

Figure 3.1.: Computer generated Cross-section of the Atlas detector. Atlas Experi-
ment © 2008 CERN.

3.1.

3.2.1. Mathematical Description

The Atlas detector is described through a cylindrical coordinate system. The z-axis
corresponds to the beam line. The x and y axis are perpendicular to the beam line. Fur-
thermore, an azimuthal angle φ and a polar angle θ are used. Often, θ is not used directly,
but instead the pseudorapidity η is used [29]. The pseudorapidity has the advantage that
the difference of two pseudorapidities is invariant under a Lorentz transformation, which
is important, if one wants to transform between the lab frame of reference and the center
of mass system. η and θ are connected through

η = − ln
(

tan
(
θ

2

))
. (3.1)

3.2.2. Inner Detector

The inner detector is immersed in a 2 T solenoidal field and consists of Pixel, a silicon pixel
detector, a semi-conductor tracker (SCT) and a transition radiation tracker (TRT) [34, 35].
Within the inner detector, the particles are being tracked and with the transition radiation
tracker the electrons are being distinguished from the hadrons. Because of the magnetic
field, the charged particles get deflected via the Lorentz force, forcing the particles to
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3.2. The ATLAS Detector

perform a circular movement. This deflection allows the calculation of their transverse
momentum and the identification of the electric charge through a measurement of the track
curvature. Since b-tagging relies on identifying a secondary vertex within the detector, the
tracking of particles by the inner detector is crucial for b-tagging. The Pixel detector [34]
has the task to precisely track the particles near the interaction point. It is made of
silicon, which is divided into pixels to increase the precision. For run 2, the insertable
b-layer (IBL) [36] was added to further increase the precision. The semi-conductor tracker
tracks the particles at larger scales but with lower resolution. The transition radiation
tracker [35] consists of straw tubes, filled with a gas mixture. The tubes offer tracking
within a large volume but with a comparatively bad resolution and are used for cost
efficiency reasons, mainly for particle identification and to separate electrons from pions.

3.2.3. Calorimeters

The electromagnetic calorimeters measure the energy and momentum of electrons and
photons while the hadronic calorimeters measure the energy and momentum of hadrons.
Within the calorimeters, particle showers evolve due to electromagnetic effects like pair
production and Bremsstrahlung or due to strong interactions between hadrons and the
calorimeter material. The energy of the particles can be calculated through the measure-
ment of the generated charge within the calorimeter or through the arising scintillation
light from particles traversing the calorimeter. Since the energy resolution of a calorimeter
increases as 1√

E
, calorimeters are very useful for high energy physics. The electromag-

netic calorimeter cover a pseudorapidity of |η| < 3.2 and is filled with high granularity
liquid-argon (LAr). The hadronic calorimeters have a range of |η| < 1.7, but together
with the LAr forward calorimeters, which can measure both electromagnetic and hadronic
showers, the range of the calorimeters increases to |η| = 4.9.

3.2.4. Muon Spectrometer

Muons do not interact much within the calorimeters, therefore their energy and mo-
mentum is measured with the muon spectrometers, which consist of three layers of high
precision tracking chambers. The idea of the muon spectrometers is the same as of the
inner detector: A magnetic field is created by outer toroidal magnets, forcing the muons
to perform a circular movement and therefore the calculation of their transverse momen-
tum through a measurement of the track curvature is possible.
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3.2.5. Trigger System

Within the Lhc, there is an interaction every 25 ns, which is too much data to be pro-
cessed. Therefore, the Atlas detector has a trigger system [37], which filters the in-
teresting data from the less relevant. The trigger system consists of a hardware-based
component, called "Level 1 Trigger", and a software based component, called "High level
Trigger". The level 1 triggers measure if particle quantities like energy, momentum or
missing transverse energy of the event exceed a predefined barrier. If the events are ac-
cepted by the level 1 trigger, the events are passed on to the higher level trigger, which in
turn uses information like the tracking information of the inner detector and the calorime-
ter deposits to decide if the event gets accepted or rejected. If the event is accepted by
the higher level trigger, the data of the event gets passed on to external storage.
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4. Neural Networks and Graphs

4.1. Structure of Neural Networks

Neural networks (NN) are a widely used tool for machine learning (ML). ML has the goal
to create algorithms that are capable of ’learning’. Learning means that the considered
algorithm gets a set of training data as input and practices to make predictions or deci-
sions without an external user telling the program to do so.
A fully connected NN, which is the easiest form of an NN, consists of different layers, as
shown in Figure 4.1. The layers can be split in three categories: The first layer is the
input layer, in which the NN takes the input data it shall process. The last layer is the
output layer, in which the NN outputs the result of its calculation. The layers between
the first and the last layer, also called hidden layers, have the purpose to process the input
data into the output result.

Each layer consists of different nodes n, which correspond to the neurons in the brain.
Each node holds a number, which represents its activation an. The higher the number,
the higher the activation of the node. Each node is connected to each node of the previous
and of the following layer. A weight w can be assigned to every connection, representing
the strength of this connection. The activation of a node within the layer j can therefore
be described as the weighted sum over all nodes in the layer j− 1. The output of a node,
given an input, is described by an activation function σ, for example a linear activation
function or a rectified linear unit (ReLU) function. The ReLU function is defined as

Figure 4.1.: The Structure of a Neural Network. Courtesy of Konrad Helms 2022.
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4. Neural Networks and Graphs

f(x) = max(0, x). (4.1)

Furthermore, a bias bn is assigned to every node to control how big the weighted sum
has to be to activate the node:

a(j)
n = σ

(
N∑

i = 1
w

(j)
i,n · a

(j−1)
i + b(j)

n

)
(4.2)

4.2. Loss Functions

Each connection weight and bias can be seen as a variable. In the beginning, the weights
and biases are randomly initialised. After the NN processed the first input, the resulting
output gets compared to the expected output. To compare the result of the NN with the
wished result, a cost function (CF) gets defined. The inputs of the CF are the output of
the NN and the expected output. The CF thereafter returns a positive value, the loss.
The loss indicates, how high the difference between the output of the NN and the expected
output is. Within this thesis, the CrossEntropyLoss function is used.

4.3. Training of Neural Networks

The goal of the training of an NN is to find the minimum of the CF. The algorithm, by
which the minimum of the CF gets calculated, is called the optimizer of the NN. The
commonly used optimizers are using the gradient descent of the CF: At first, the NN
gets filled with random variables and the CF gets calculated for this set of variables.
Thereupon, the gradient ∇CF of the CF gets calculated. If m is the number of variables
within the NN, then ∇CF is an m dimensional vector pointing in the direction of the
largest increase of the CF. Therefore -∇CF points in the direction of the largest decrease
of the CF. The variables of the NN get updated by going a step into the direction -∇CF
and the CF with the new variables gets calculated. The size of the step is called the
learning rate of the GNN. This procedure gets repeated until the training converges. It
is also possible that the learning rate gets reduced after a few training steps to avoid
overshooting of the gradient descent. The factor, by which the learning rate is reduced,
is called the gamma factor.
It is important to not overdo the training of the NN, otherwise the NN gets too used to
the training data and cannot work well with a different set of data. This case is called
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4.4. Graphs

Figure 4.2.: Example of an undirected graph with five vertices

"overtraining". Furthermore, it is important to test the performance of the NN with a set
of data which is not used doing the training to assure that the NN performs well on an
before completely unknown set of data. After the training is complete, the validation of
the NN takes place with another set of data.

4.4. Graphs

A graph is a data structure that consists of two different types of components: The
vertices and the edges, which represent the relations between the vertices and are drawn
as connecting lines between them [38]. An example for a graph structure can be seen
in figure 4.2. Although there are many different types of graphs, for example directed
graphs or mixed graphs, the only relevant type of graphs for this thesis is the graph with
undirected but weighted edges. Graphs are very useful to describe sets of objects and
correlations between these objects and are widely used in chemistry, traffic analysis or
physics. The usage of graphs for this thesis will be further described in chapter 5.2.2.

4.5. Graph Neural Networks

A graph neural network (GNN) is a special kind of NN, that takes a graph as an input
and operates on it [39]. A GNN has the advantage, that it can deal with inputs of variable
sizes, whereas normal NNs can only deal with a fixed number of input parameters. Within
this Thesis, a GNN will be used to classify the vertices of a graph and therefore predict
the flavour of a jet, which is represented by this vertex. This will be further discussed in
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4. Neural Networks and Graphs

chapter 5.2.2.
To classify a vertex, the GNN takes the information of the vertex itself and all vertices
that are connected to the considered vertex via edges. If the vertex n has the status v
during step k, then the status during step k+1 depends on the update function f via

vk+1
n = f(vk

n, g(vk
i ),∀i ∈ V ), (4.3)

where V is the set of all vertices that are directly connected to the considered vertex
and g is the aggregation function, which determines, how the information of the vertices
vi get processed.
Therefore, within the first actualisation step, only information of vertices that are directly
connected to the considered vertex have an impact on the classification. But since those
vertices are connected with other vertices themselves and will be updated by considering
those information, the information of all vertices of the graph will be used to classify
a certain vertex step by step, prioritising the information of vertices, that are directly
connected to the considered vertex over those, which are not.
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5. Flavour Tagging methods

Because of colour confinement, as described in chapter 2.1, highly energetic quarks pro-
duced in collisions form showers of hadrons, called jets. Therefore the problem arises to
identify which quark-flavour is the origin of a certain jet. The procedure of assigning a
jet to an origin quark is called "Tagging".
Of special interest for this bachelor thesis is the b-tagging since the decay of a t quark
nearly always results in a b-jet. b hadrons have the advantage that they travel a cer-
tain distance before they decay, but they still decay inside the detector, resulting in a
secondary vertex, which can be reconstructed using the inner detector of the Atlas de-
tector. Therefore, a major component in the process of b-tagging is to search for this
secondary vertex [40]. For this thesis, two types of tagging are of special interest: The
direct tagging and the truth tagging. While direct tagging is the only technique that
can be used for detector data, truth tagging is used to enhance statistics of Monte-Carlo
(MC) Simulations. For both methods, a working point (WP) is given. The WP indicates
what proportion of b-jets has to be tagged correctly. By decreasing the proportion of
correctly tagged b-jets, the proportion of mistagged light- and c-jets gets decreased to a
larger extent, resulting in a higher purity of correctly tagged b-jets.

5.1. Direct tagging

By using direct tagging, every event that does not fit in the region defined by b-tagging
multiplicity for a given WP is being rejected. Although this procedure is working very
well in identifying the b-jets, the problem is that a lot of data is required to reach usable
amounts of statistics due to the high event rejection rate. Therefore, a technique, which
imitates the direct tagging behaviour, but does not reject events with a low b-tagging
probability, is desirable.
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5. Flavour Tagging methods

Figure 5.1.: Comparison of direct tagging and truth tagging. Courtesy of Francesco Di
Bello et al. [15]. No changes to the image have been made.1

5.2. Truth tagging

The goal of truth tagging is to achieve the same tagging behaviour as with the direct
tagging, but without the high event rejection rate. Therefore, instead of rejecting all events
that do not fit the tagging requirements, every event gets a weight assigned corresponding
to the probability that the event has the required number of jets which are tagged as b-
jets. The higher the probability that the event fulfills a tagging selection cut, the higher
is the weight of the event. The difference between direct tagging and truth tagging
is illustrated in figure 5.1. Within truth tagging, every jet of an event gets a weight
assigned. The jet weight is corresponding to the probability of the jet being tagged as
a b-jet. These jet weights are then combined to an event weight by multiplying the
probability of jets being tagged or not tagged, respectively, depending on the number of
aimed tags. Different permutations of tagged jets are being considered by summing them
up, where the kinematic variables of one of those permutations gets randomly chosen to
represent all permutations. For example, for an event with two jets, the calculation of the
event weight is given by

εevent =


(1− ε1)(1− ε2) if ntag = 0
ε1(1− ε2) + (1− ε1)ε2 if ntag = 1
ε1ε2 if ntag = 2

(5.1)

Here, ε1 and ε2 are the weights of jet 1 and 2, respectively, and ntag indicates the
required number of tagged jets.
Two types of truth tagging are relevant for this thesis: The truth tagging by the usage of
efficiency maps and the truth tagging with GNNs.

1A copy of the license to use this image is available under https://creativecommons.org/licenses/by/4.0/
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5.2. Truth tagging

Figure 5.2.: Principle of truth tagging with graph neural networks. Courtesy of
Francesco Di Bello et al. [15]. No changes to the image have been made.2

5.2.1. Efficiency maps

Efficiency maps are the commonly used technique for truth tagging so far. An efficiency
map is a two-dimensional map, consisting of different bins. A jet gets assigned to a certain
bin depending on its transverse momentum and pseudorapidity. After that, the tagging
probability of that bin, which depends on the reconstruction of secondary vertices and
combined track impact parameter information of reconstructed charged particles, gets
assigned to the jet. The problems of this approach are that they neglect correlations like
the angular distance ∆R between the jets and are limited by statistics for more than two
variables. Therefore, another approach, which considers the correlations between the jets
and can handle more variables, is in need of being developed.

5.2.2. Truth tagging with graph neural networks

Truth tagging by the means of graph neural networks aims to circumvent the limitations
of the efficiency maps approach. This approach was first developed by Francesco Di Bello
et al. [15]. The idea is to handle the events as a graph, where the jets are the vertices
and the angular distances ∆R between the jets are represented by the edges. A GNN
then takes the event as input and tries to predict the probabilities of the jets to be in the
different WP bins by classifying the corresponding vertex of the graph. The outputs of
the GNN are the weights of the jets, which then get combined to an event weight. This
method is illustrated in figure 5.2. The specifics of the GNN used in this thesis will be
further discussed in chapter 6.3.

2A copy of the license to use this image is available under https://creativecommons.org/licenses/by/4.0/
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6. Methods

6.1. Sample and event selection

The used sample was a tt̄ sample in the semileptonic decay channel from the Powheg
+ Pythia 8 MC generator [41, 42] within the five flavour scheme, which states that the
b-quarks are assumed to be massless. The Atlfast-II generator was used for the detector
simulation [43].
Every event has at least 5 jets and, if not otherwise indicated, a maximum of 8 jets. No
event, which has a jet with a pT of more than 1 TeV, was used.
During the preprocessing, the Sample was split into four parts based on the event number.
Two of the parts were used for the training of the GNN, one for the evaluation after each
epoch and the last part was used for the final validation after the training. Furthermore,
a downsampling was applied to the heavy flavour classification (HF classification) [11] so
that the sample has the same magnitude of tt+ b, tt+ c and tt+ light events. However,
this downsampling was applied only to the train sample and the evaluation sample. There
was no downsampling applied to the final validation sample to make the validation sample
more realistic.
Before the preprocessing, the used sample had 33,243,348 events in total. After the pre-
processing, the train data set had 2,135,576 events, the evaluation data set had 1,018,111
events and the validation data set had 7,692,397 events.

6.2. Assignment of hadrons to jets

During the analysis, hadron variables were included to see, if they can improve the perfor-
mance of the GNN. To assign a hadron to a jet, a cone around the jet was considered. If
not otherwise indicated, the size of this cone was ∆R = 0.4 and there was no cut for the
hadron pT . Within the cone, b-hadrons were prioritised over c-hadrons. If there was no
b- or c-hadron within the cone, a light hadron was assigned by default. If there was more
than one b- or c-hadron, either the hadron with the lowest ∆R to the jet was assigned
(∆R matching), or the hadron with the highest pT was assigned (pT matching).
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6. Methods

6.3. GNN Specifics

The GNN used was originally developed for the Atlas VHbb analysis by Nilotpal Kakati
and needed to be retrained since it was adjusted to the tt̄H(bb) analysis. If not otherwise
indicated, a learning rate of l = 10−5 and a batch size of 1024 was used. The gamma
factor was 0.1 and the used optimizer was "Adam". The CrossEntropyLoss function was
used as loss function. The used activation function was a sequence of a linear function, a
ReLU function, another linear function and a tangens hyperbolicus function.
The variables, on which the GNN was trained, were the transverse momentum, the pseu-
dorapidity η, the azimuthal angle ϕ and the truth flavour of the jet and the hadron. For
the hadrons, also the energy and the mass was used. Also the angular distances ∆R
between the jets and the ∆R between the jets and the hadrons were used.
The predictions of the GNN were analysed for the WPs "no Tag", "85% WP", "77% WP",
"70% WP" and "60% WP", where the % value indicates, how high the fraction of cor-
rectly tagged b-jets has to be. For the WP "no Tag", the considered jet does not even
pass the 85% WP. If not otherwise indicated also jets which are tagged at a higher WP
were considered in the histograms for a given WP to imitate the direct tagging. However,
the output of the GNN assigns a jet to only one WP.
All results that are shown in this thesis were produced with a GNN that was trained for
5 epochs.
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7. Results

The goal of this chapter is to compare the predictions of the GNN with those of the
conventional pT - η efficiency maps and the direct selection cut. A possible tt̄H(bb) analysis
region will be reconstructed step by step and the influence of different parameters within
this region will be analysed one by one.
First, the behaviour of different permutations of the sample splitting will be presented.
Then, the influence of hadron variables on the predictions of the GNN will be presented.
After that, the results for leading and subleading jets will be presented, followed by the
results for different WPs and jet regions. Furthermore, the b-jet multiplicity for a given
WP will be analysed. In the end, results for different numbers of tagged jets will be
presented.
The aim of truth tagging is to reproduce the kinematic distributions of the sample with
the direct cut applied so that the truth-tagged sample is a good approximation of a
direct tagged sample with enough statistics. Since the reducible background of the tt̄H
production mode has additional light and c-jets, as described in chapter 2.4, the focus
of this thesis lies on the ability of the GNN to predict the kinematic distributions for
light and c-jets. Within this chapter, the results will be presented for light flavour jets.
Corresponding plots for charm jets can be seen in the Appendix. Investigated were mostly
the 4th highest pT jets in the 5-8 jet region since this region has the most statistics for
light jets. If not otherwise indicated, the chosen WP is 70% since this is the WP that is
used for a possible tt̄H(bb) analysis region.

7.1. Influence of different sample splitting

To examine the influence of the used sample on the predictions and to check for uncer-
tainties introduced by the GNN through the random sample and initialisation, the sample
was subdivided into four parts based on the event number. Two of those were used for
the training of the GNN, one for the evaluation and one for the final validation after the
training. Figure 7.1 shows the predictions of the GNN, if the four parts of the sample
were cyclically permuted. Additionally, the mean of the predictions is shown in red. The
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7. Results

Figure 7.1.: Comparison of the GNN predictions for different permutations of the sam-
ple parts for the 4th highest pT jet, if that jet is a truth light jet, within
the 5-8 jet region at a 70% WP. The errorbars indicate the statistical un-
certainties. The mean is shown in red.

results are shown for the prediction efficiency of light jets for the 4th highest pT jet in
the 5-8 jet region. The chosen WP was 70%. Also jets, that were tagged at a higher WP,
were considered to imitate the direct tagging.
It can be seen that the mean lies within the statistical uncertainty of the different folds.
Therefore the GNN predictions seem to be independent from the chosen permutation.

7.2. Evolution of average loss for training with and
without hadron variables

After each actualisation of the GNN, the loss was calculated as described in chapter 4.2.
Additionally, after each epoch, the GNN was evaluated on a set of data, which it was
not trained on, and the loss from this evaluation was calculated, too. Therefore, two
different evolutions of average losses can be investigated: The train loss evolution, which
shows the loss taken after each iteration, and the evaluation loss evolution, which shows
the loss after each epoch of training on an independent sample. Since the train loss was
calculated using the train data sample and the evaluation loss was calculated using the
evaluation data, differences between the behaviour of the evolution of losses indicate an
overtraining of the GNN. The loss evolutions for the GNN with and without implemented
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7.3. Predictions with and without hadron variables

Figure 7.2.: Evolution of the average loss
for the GNN with imple-
mented hadron variables for
a training of 5 epochs. The
train loss is shown in red and
the evaluation loss in blue.

Figure 7.3.: Evolution of the average loss
for the GNN without imple-
mented hadron variables for
a training of 5 epochs. The
train loss is shown in red and
the evaluation loss in blue.

hadron variables can be seen in the figures 7.2 and 7.3
It can bee seen that the loss evolutions for the GNN with and without hadron variables
behave almost identically. After an exponential and smooth decrease of the train loss
within the first epoch, there is no change after the first epoch except for fluctuations. The
evaluation loss starts after the first epoch and, after a smooth decrease from the first to
the second epoch, the minimum of the evaluation loss becomes the mean of the train loss.
Therefore, an overtraining of the GNN is not observed.
Similiar results were obtained for all trainings of the GNN presented in this thesis.

7.3. Predictions with and without hadron variables

To analyse the influence of the hadron variables on the performance of the GNN, a training
with implemented hadron variables was compared to a training without. The hadrons
were assigned to the jets using the ∆R matching method as described in chapter 6.2.
The results can be seen in the figures 7.4 and 7.5. The predictions were made for the 4th
highest pT jet in the 5-8 jet region. The chosen WP was 70%.
It can be seen that the efficiency map overall performs better than the GNN except for jets
with a pT above 100GeV and implemented hadron variables. This will be further discussed
in chapter 8.2. For the efficiency map the implementation of the hadron variables improves
the results for jets with a pT below 100GeV, but the predictions for jets with a pT above
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7. Results

Figure 7.4.: Results for the GNN with
implemented hadron variables
for the 4th highest pT jet, if
that jet is a truth light jet, in
the 5-8 jet region at a 70%
WP. The last bin serves as
overflow bin. The errorbars
indicate the statistical uncer-
tainties.

Figure 7.5.: Results for the GNN without
implemented hadron variables
for the 4th highest pT jet, if
that jet is a truth light jet, in
the 5-8 jet region at a 70%
WP. The last bin serves as
overflow bin. The errorbars
indicate the statistical uncer-
tainties.

100GeV become worse.
On the other hand, the GNN performs better for jets with a pT above 100GeV if the
hadron variables are implemented. However, the predictions of the GNN become worse
for jets with a pT below 60GeV. This will be further discussed in chapter 8.2.
For the following results, the hadron variables are always implemented using the ∆R
matching method.

7.4. Comparison between leading and subleading jets

To analyse how well the GNN performs for jets of different pT within an event, the
predictions of the GNN were analysed for the leading jet up to the 4th highest pT jet. In
the figures 7.6 - 7.9, the predictions of the GNN are compared to those of the direct tag
and the efficiency maps. The predictions were made for light jets in the 5-8 jet region to
improve the statistics and the chosen WP was 70%.
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7.4. Comparison between leading and subleading jets

Figure 7.6.: Results for leading jets, if that
jet is a truth light jet, in the
5-8 jet region for a 70%WP.
The last bin serves as overflow
bin. The errorbars indicate
the statistical uncertainties.

Figure 7.7.: Results for subleading jets, if
that jet is a truth light jet,
in the 5-8 jet region for a
70%WP. The last bin serves
as overflow bin. The errorbars
indicate the statistical uncer-
tainties.

It can be seen that for the leading jet the predictions of the NN are in most cases lower
than those of the direct tag and lie outside of the statistical uncertainty of the direct tag,
whereas the efficiency map agrees better with the predictions of the direct tag and lies
within the uncertainty.
For the subleading jet, the predictions of the NN become better, especially for jets with
a pT above 200GeV, but also the statistical uncertainty of the NN becomes very high in
this region. But still, the predictions of the efficiency map are closer to those of the direct
tag.
For the third and fourth leading jet, the predictions of the NN are very close to those
of the direct tag and the efficiency map for jets with a pT above 60GeV, whereas the
predictions of the NN are by far higher than those of the direct tag and the efficiency map
for jets with a pT below 60GeV. The reason for this will be discussed further in chapter
8.2.
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7. Results

Figure 7.8.: Results for 3th leading jets, if
that jet is a truth light jet,
in the 5-8 jet region for a
70%WP. The last bin serves
as overflow bin. The errorbars
indicate the statistical uncer-
tainties.

Figure 7.9.: Results for 4th leading jets, if
that jet is a truth light jet,
in the 5-8 jet region for a
70%WP. The last bin serves
as overflow bin. The errorbars
indicate the statistical uncer-
tainties.

7.5. Results for different working points

To analyse the dependency of the GNN performance on the different WPs that could be
used for selection, predictions were made for the WPs "no Tag", in which case no tagging
requirement was made, "85% WP", "77% WP", "70% WP" and "60% WP". In the figures
7.10 - 7.14 the predictions of the GNN in comparison to those of the direct tag and the
efficiency map for different WPs are shown. Investigated was the tagging of light jets for
the 4th highest pT jet. The chosen jet region is the full 5-8 jet region.
For every WP, also jets, which were tagged at a higher WP, were considered to see where
deviations occur. Therefore the plot for the "no Tag" WP can be seen as a sanity check
whether the GNN, the efficiency map and the direct tag are considering the same number
of total events. This is the case, as can be seen in figure 7.10.
For an increasing WP, it can be seen that the GNN predicts higher tagging probabilities
than direct tag for light jets with a pT below 60GeV. While this also happens for the
efficiency map, the effect is by far greater for the GNN. For jets with a pT above 120GeV,
the statistical uncertainty of the GNN and the efficiency map become very large because
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7.6. Results for different jet regions

Figure 7.10.: Results for the "no Tag" WP
in the 5-8 Jet region for 4th
highest pT jet, if that jet is a
truth light jet. Also jets that
are tagged at a higher WP
are considered here. The
last bin serves as overflow
bin. The errorbars indicate
the statistical uncertainties.

Figure 7.11.: Results for the 85% WP in
the 5-8 Jet region for 4th
highest pT jet, if that jet is a
truth light jet. Also jets that
are tagged at a higher WP
are considered here. The
last bin serves as overflow
bin. The errorbars indicate
the statistical uncertainties.

of the low statistics, but still agree with the direct tag. For jets with a pT around 100GeV,
the predictions of the GNN and the efficiency map are within the uncertainty of each other
and within the uncertainty of the direct tag predictions except for the 70% WP, where
only the efficiency map lies within the uncertainty of the direct tag.

7.6. Results for different jet regions

To analyse the performance of the GNN on different jet multiplicity regions, predictions
of the GNN were compared to those of the efficiency map and the direct tag for the 5, 6, 7,
8 and the full 5-8 jet regions. The results are shown in the figures 7.15 - 7.19. Investigated
were the predictions for light jets for the 4th highest pT jet. The chosen WP was 70%.
Overall, it can be seen that the predictions of the GNN are clearly higher than those
of the direct tag and the efficiency map for jets with a pT below 60GeV, whereas the
predictions of the GNN are very accurate for jets with a pT above 60GeV within the 5,

29



7. Results

Figure 7.12.: Results for the 77% WP in
the 5-8 Jet region for 4th
highest pT jet, if that jet is a
truth light jet. Also jets that
are tagged at a higher WP
are considered here. The
last bin serves as overflow
bin. The errorbars indicate
the statistical uncertainties.

Figure 7.13.: Results for the 70% WP in
the 5-8 Jet region for 4th
highest pT jet, if that jet is a
truth light jet. Also jets that
are tagged at a higher WP
are considered here. The
last bin serves as overflow
bin. The errorbars indicate
the statistical uncertainties.

6 and 5-8 jet region. Here, the predictions mostly lie within the uncertainty of the direct
tag. However, for the 5-8 jet region the predictions of the efficiency map are still more
accurate than those of the GNN.
For the 7 jet and 8 jet regions, the predictions of the GNN and the efficiency map differ
from those of the direct tag. In this regions, except for jets with a pT around 50GeV in
the 8 jet region, the predictions of the efficiency map are closer to the direct tag than
those of the GNN. The reasons for this behaviour will be discussed further in chapter 8.1.

7.7. B-jet multiplicity

During the analysis it turned out that the parameters for the assignment of the hadrons
to the jets as described in chapter 6.2 are different from those that were used to assign
the truth flavours used by b-tagging algorithms. The truth flavours were assigned by
considering a cone of ∆R=0.3 and a cut for the hadron pT was applied at 5GeV. This
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7.7. B-jet multiplicity

Figure 7.14.: Results for the 60% WP in the 5-8 Jet region for 4th highest pT jet, if that
jet is a truth light jet. The last bin serves as overflow bin. The errorbars
indicate the statistical uncertainties.

Figure 7.15.: Results for the prediction of
4th highest pT jet, if that jet
is a truth light jet, in the
5 Jet region for a 70% WP.
The last bin serves as over-
flow bin. The errorbars in-
dicate the statistical uncer-
tainty.

Figure 7.16.: Results for the prediction of
4th highest pT jet, if that jet
is a truth light jet, in the
6 Jet region for a 70% WP.
The last bin serves as over-
flow bin. The errorbars in-
dicate the statistical uncer-
tainty.
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7. Results

Figure 7.17.: Results for the prediction of
4th highest pT jet, if that jet
is a truth light jet, in the
7 Jet region for a 70% WP.
The last bin serves as over-
flow bin. The errorbars in-
dicate the statistical uncer-
tainty.

Figure 7.18.: Results for the prediction of
4th highest pT jet, if that jet
is a truth light jet, in the
8 Jet region for a 70% WP.
The last bin serves as over-
flow bin. The errorbars in-
dicate the statistical uncer-
tainty.

Figure 7.19.: Results for the prediction of 4th highest pT jet, if that jet is a truth light
jet, in the 5-8 Jet region for a 70% WP. The last bin serves as overflow
bin. The errorbars indicate the statistical uncertainty.

32



7.8. Comparison for different number of tags

Figure 7.20.: Distribution of the angular distance ∆R between light jets and assigned
b-hadrons. There is a jump at a angular distance of ∆R=0.3. Sim-
iliar results were observed for light jets with c-hadrons and c-jets with
b-hadrons.

was noticed by analysing the distribution of the ∆R between the jets and the assigned
hadrons. At a angular distance of ∆R=0.3, a jump in the distribution occurs, as can be
seen in figure 7.20.
To analyse the effects of these different cuts, the b-jet multiplicity for the 70% WP in
the 5-8 jet region was investigated for a ∆R cut at ∆R=0.4 and compared to the b-jet
multiplicity if a ∆R cut was applied at ∆R=0.3 and a cut for the hadron pT was applied
at 5GeV in the validation sample following the b-jet definition used by flavour tagging
algorithms. Events with a jet, that does not satisfy the requirements, get rejected.
The results are shown in the figures 7.21 and 7.22. It can be seen that the b-jet multiplicity
predicted by the NN, the efficiency map and the direct tag is almost identical for zero up
to three tagged jets. It also does not matter whether the ∆R cut is applied at ∆R =0.3
or ∆R=0.4 and if a pT cut is applied at 5GeV or not. For four and five tagged jets, the
NN predicts less events than the direct tag if the ∆R cut is applied at ∆R =0.3 and a
pT cut is applied at 5GeV. Here, different permutations were considered as described in
chapter 5.2 However, the NN predicts more events than the direct tag for four and five
tagged jets if the ∆R cut is applied at ∆R =0.4 and there was no pT cut applied. The
efficiency map shows no change in its behaviour. For six tagged jets, the NN predicts far
less events than the direct tag, no matter which cuts were applied. The efficiency map
predictions fit to those of the direct tag but with a high uncertainty.

7.8. Comparison for different number of tags

A possible tt̄H(bb) analysis region could have at least three b tags at a 70% WP. To
investigate how the GNN can deal with various numbers of tagged jets, the predictions
of the NN were compared to those of the efficiency map and the direct tag for one, two
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7. Results

Figure 7.21.: B-jets multiplicity with a
∆R cut at ∆R=0.3 and a
pT cut at 5GeV. The cho-
sen WP is 70%. The error-
bars indicate the statistical
uncertainty. The y-axis is
scaled logarithmic.

Figure 7.22.: B-jets multiplicity with a
∆R cut at ∆R=0.4 and
without an pT cut. The cho-
sen WP is 70%. The error-
bars indicate the statistical
uncertainty. The y-axis is
scaled logarithmic.

and three tagged jets. The hadrons were assigned to the jets using a cut for the angular
distance at ∆R=0.4 and there was no cut for the hadron pT . The predictions were made
without considering the flavour of the jet to improve the statistics and make the results
comparable. Furthermore, by considering all flavours the problem of the different cuts
applied for the flavour assignment in the sample creation and the analysis as described in
chapter 7.7 vanishes.

7.8.1. 1 tagged jet

The results for one tagged jet are shown in figure 7.23. Investigated were the predictions
of the GNN, the efficiency map and the direct tag for the 5-8 jet region. The chosen WP
is 70%. Investigated were the 4th highest pT jets.
It can be seen that the predictions of the GNN and those of the efficiency map fit almost
perfectly to those of the direct tag.
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7.8. Comparison for different number of tags

Figure 7.23.: Results for 1 tagged jet in the 5-8 jet region at a 70%WP. Investigated
were the 4th highest pT jets and no distinction was made for the jet
flavour. The errorbars indicate the statistical uncertainty. The y-axis is
scaled logarithmic. The last bin serves as overflow bin.

7.8.2. 2 tagged jets

The results for two tagged jets are shown in figure 7.24. Shown are the predictions of
two tagged jets for the 5-8 jet region for a 70% WP. Investigated were the pT of the 4th
highest pT jets. All possible permutations of tagged jets were considered as described in
chapter 5.2.
It can be seen that the predictions of the NN and the efficiency map fit almost perfectly
for jets with a pT up to 150GeV. For jets with a higher pT , the predictions of the NN and
the efficiency map differ more, but the NN and the efficiency map have a high statistical
uncertainty because of the low statistics and the direct tag predictions lie within those
statistical uncertainties.

7.8.3. 3 tagged jets

The results for three tagged jets are shown in figure 7.25. Shown are the predictions of
the direct tag, the efficiency map and the GNN for the 5-8 jet region and a 70% WP. The
predictions were made for the 4th highest pT jets. All possible permutations of tagged
jets were considered as described in chapter 5.2.
Overall the predictions of the NN fit to those of the direct tag. For jets with a pT above
200GeV the statistics becomes very low, resulting in a high uncertainty of the GNN and
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7. Results

Figure 7.24.: Results for 2 tagged jets in the 5-8 jet region at a 70% WP. Investigated
were the 4th highest pT jets and no distinction was made for the jet
flavours. The errorbars indicate the statistical uncertainty. The y-axis is
scaled logarithmic.

the efficiency map, but the direct tag predictions lie within the uncertainty of the NN
and the efficiency map for those jets. For jets with a pT below 60 GeV, the predictions
of the GNN and the efficiency map are higher than those of the direct tag. While this
happens both for the GNN and the efficiency map, the differences between the GNN and
the direct tag are higher than those of the efficiency map and the direct tag. This will be
further discussed in chapter 8.2.
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7.8. Comparison for different number of tags

Figure 7.25.: Results for 3 tagged jets in the 5-8 jet region at a 70% WP. Investigated
were the 4th highest pT jets and no distinction was made for the jet
flavours. The errorbars indicate the statistical uncertainty. The y-axis is
scaled logarithmic.
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8. Comparing GNN Predictions to
Conventional Efficiency Maps

8.1. Dependency on statistics and jet number

The GNN seems to be widely independent of the available statistics. For example, one
can see this by looking at the results for different WPs in chapter 7.5. In this analysis,
there are low statistics available for jets with a pT above 100GeV. But still the predictions
of the GNN and the efficiency map lie within the uncertainty of the direct tag. Similar
results can be seen for the results in the 7 and 8 jet region, shown in the figures 7.17 and
7.18, where low statistics are present as well.
One might think that the GNN performs worse the more jets are within an event because
of the additional angular distances ∆R. In this case, the GNN has to deal with more
variables, resulting in more possible sources of error. But by looking at the results in
chapter 7.6, one can see that the predictions of the GNN, if one takes the statistical
uncertainty of the GNN into consideration, are as good in the 7 and 8 jet region as in the
5 and 6 jet regions. The predictions of the efficiency map and the GNN always lie within
the statistical uncertainties of each other for jets with a pT above 60GeV. Furthermore the
predictions of the GNN lie within the uncertainty of the direct tag in most cases for jets
with a pT above 60GeV. The differences for jets with a pT below 60GeV will be discussed
in chapter 8.2.
To conclude, the GNN can deal with low available statistics and performs comparably
well for various number of jets within an event.

8.2. Behaviour above and below 60 GeV

Overall, it can be noticed that the performance of the NN is by far worse for light jets
with a pT below 60GeV compared to those with a pT above 60GeV. For example, this
can be seen in the figures 7.14 and 7.15. While this also happens for the efficiency map
in some cases, as can be seen in figure 7.12, for example, the effect is much larger for the
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8. Comparing GNN Predictions to Conventional Efficiency Maps

Figure 8.1.: Results by using the pT matching method for an 60% WP in the full 5-8
jet region for 4th highest pT jets, if that jet is a truth light jet. The last bin
serves as overflow bin. The errorbars indicate the statistical uncertainty.

GNN than for the efficiency map. A similar behaviour is observable for charm jets with
a pT between 50GeV and 100GeV, as can be seen in the appendix.
Since this behaviour does not occur to the same extent if the hadron variables are not
implemented, as can be seen in figure 7.5, the problem seems to be the hadron variables.
The specific problem of the hadron variables that causes this issue is not clear. One might
think there is a problem with the assignment of the hadrons to the jets in this region. To
check this, a different matching method, the pT matching as described in chapter 6.2, was
tested. The results for the same region as in figure 7.14 are shown in figure 8.1. It can
be seen that the pT matching method produces the same behaviour for the GNN as the
∆R matching method. Therefore the problem does not seem to be the ∆R matching itself.

Furthermore, different cuts for the hadron assignment were tested to check if this can
improve the performance of the GNN. In the results shown in chapter 7, except chapter
7.7, there was no cut for the pT of the hadron applied and the cut for the ∆R between
the jet and the hadron was at ∆R=0.4, as described in chapter 6.2. However, when the
sample was created, the truth flavours of the jets were assigned using a pT cut of 5GeV
and a cut for the ∆R at 0.3. To check if this has led to the bad predictions of the GNN,
the analysis was tested with the same cuts as during the creation of the sample. The
results are shown in figure 8.2.
It can be seen that, while the direct tag and the efficiency map are predicting less events
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8.3. Results for a possible tt̄H(bb) analysis region

Figure 8.2.: Results by applying a pT cut of 5GeV and a cut of 0.3 for ∆R for an 60%
WP in the 5-8 jet region for the 4th highest pT jets, if that jet is a truth
light jet. The last bin serves as overflow bin. The errorbars indicate the
statistical uncertainty.

than without the cut, the predictions of the NN do not change. The fact that the NN
seems to not be affected by the applied cut could be a hint, that the NN is not working
well. Furthermore, the problem that the NN predicts by far more events for jets with a
pT below 60GeV than the direct tag and the efficiency map, still exists.
To conclude, the GNN can not deal well with light jets that have a pT below 60GeV.
Similar problems occur for c-jets with a pT between 50GeV and 100GeV, as can be seen
in the appendix. The cause of this is not clear.

8.3. Results for a possible tt̄H(bb) analysis region

A possible analysis region for the tt̄H(bb) analysis could have at least 3 b-tags at a 70%
WP for events with at least 5 jets. Unfortunately, since the GNN was only analysed for
an exact number of tags, this region could not be investigated directly within this thesis.
However, the results for exactly 3 tags at a 70 % WP within the 5-8 jet region represent
a good approximation of this region. As can be seen in Figure 7.22, the number of events
with 4 b-tags or more is low in comparison to the number of events with exactly 3 b-tags.
Therefore, the region with at least 3 b-tags is dominated by the events with exactly 3
tags.
Figure 7.25 shows that the predictions of the GNN are in general very similar to those of
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8. Comparing GNN Predictions to Conventional Efficiency Maps

the direct tag. The predictions of the GNN and those of the efficiency map lie within the
statistical uncertainty of the direct tag except for jets with a pT below 60GeV and jets
with a pT around 180GeV, where only the predictions of the efficiency map lie within the
statistical uncertainty of the GNN. For jets with a pT below 60GeV, the predictions of the
GNN are higher than those of the direct tag. While this behaviour is a general problem
of the GNN, as discussed in chapter 8.2, the effect for this region is lower than for the
results discussed in chapter 8.2. But still, this is the greatest difference in the predictions
of the NN, the efficiency map and of the direct tag.
A problem is that within this thesis, the truth flavours of the jets were assigned directly
to the jets. However, within the tt̄H(bb) analysis, the HF classification is used, where the
truth flavours are not assigned directly to the jets, but the number of jets with a certain
flavour within an event gets counted. To minimise possible errors that can occur because
of this difference, there was no distinction made for the jet flavour in figure 7.25. But it
is still possible that the GNN behaves differently if the HF classification is used instead
of the direct truth flavour assignment.
In conclusion it can be said that the GNN can imitate the behaviour of the direct tag
for exactly three tags at a 70% WP in the 5-8 jet region except for jets with a pT below
60GeV and jets with a pT around 180GeV.
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9. Summary and Outlook

The performance of a graph neural network (GNN) specialised on generating b-tagging
efficiencies for truth tagging were presented for various jet regions, WPs, jets of different
pT within the event and number of tagged jets. Furthermore, the influence of hadron
variables on the performance of the GNN and the ability of the GNN to predict b-jet
multiplicities was analysed.
It was shown that the GNN can deal with comparatively low statistics and produces sim-
ilar results for various numbers of jets between 5 jets and 8 jets. It was also shown that
the GNN has a problem dealing with light jets that have a pT below 60GeV. Although it
was observed that the implementation of the hadron variables aggravates this problem,
the specific cause of this issue could not yet be found.
In the end, it was shown that the GNN can imitate the behaviour of the direct tag for
three tags at a 70% WP in the 5-8 jet region, which is an approximation of a possible
tt̄H(bb) analysis region, which requires at least three tags at a 70% WP and at least 5
jets within an event. However, this region could not be reconstructed fully. Furthermore,
the assignment of truth flavours to the jets within this thesis varies with respect to the
HF classification that is used in the tt̄H(bb) analysis.

Since the GNN performs well on an approximation of a possible tt̄H(bb) analysis re-
gion, it is likely that the approach of truth tagging with a graph neural network can be
used for the tt̄H(bb) analysis. However, the GNN still needs to be tested on a complete
reconstruction of a likely tt̄H(bb) analysis region and it needs to be investigated how the
GNN performs with the HF classification instead of the direct assignment of the truth
flavours. Furthermore, the cause of the problem that the GNN has with light jets that
have a pT below 60GeV needs to be found.
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A. Further Plots

A.1. Influence of different sample splitting for charm
jets

Figure A.1.: Comparison of the GNN predictions for different permutations of the sam-
ple parts for the 4th highest pT truth charm jet in the 5-8 jet region at a
70% WP. The errorbars indicate the statistical uncertainties.

49



A. Further Plots

A.2. Predictions with and without hadron variables
for charm jets

Figure A.2.: Results for the GNN with im-
plemented hadron variables
for the 4th highest pT truth
charm jet in the 5-8 jet region
at a 70% WP. The last bin
serves as overflow bin. The
errorbars indicate the statis-
tical uncertainties.

Figure A.3.: Results for the GNN without
implemented hadron vari-
ables for the 4th highest pT

truth charm jet in the 5-8
jet region at a 70% W. The
last bin serves as overflow
bin. The errorbars indicate
the statistical uncertainties.
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A.3. Comparison between leading and subleading jets for charm jets

A.3. Comparison between leading and subleading
jets for charm jets

Figure A.4.: Results for the leading jet in
the 5-8 jet region for a 70%
WP. Shown are the predic-
tions for truth charm jets.
The last bin serves as over-
flow bin. The errorbars indi-
cate the statistical uncertain-
ties.

Figure A.5.: Results for the subleading jet
in the 5-8 jet region for a
70% WP. Shown are the pre-
dictions for truth charm jets.
The last bin serves as over-
flow bin. The errorbars indi-
cate the statistical uncertain-
ties.
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A. Further Plots

Figure A.6.: Results for the 3th leading
jet in the 5-8 jet region for a
70% WP. Shown are the pre-
dictions for truth charm jets.
The last bin serves as over-
flow bin. The errorbars indi-
cate the statistical uncertain-
ties.

Figure A.7.: Results for the 4th leading
jet in the 5-8 jet region for a
70% WP. Shown are the pre-
dictions for truth charm jets.
The last bin serves as over-
flow bin. The errorbars indi-
cate the statistical uncertain-
ties.
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A.4. Results for different working points for charm jets

A.4. Results for different working points for charm
jets

Figure A.8.: Results for the "no Tag" WP
in the 5-8 Jet region for the
4th highest pT truth charm
jet. Also jets, that are tagged
at a higher WP, are consid-
ered here. The last bin serves
as overflow bin. The error-
bars indicate the statistical
uncertainties.

Figure A.9.: Results for the 85% WP in
the 5-8 Jet region for the 4th
highest pT truth charm jet.
Also jets, that are tagged at
a higher WP, are considered
here. The last bin serves as
overflow bin. The errorbars
indicate the statistical uncer-
tainties.
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A. Further Plots

Figure A.10.: Results for the 77% WP in
the 5-8 Jet region for the
4th highest pT truth charm
jet. Also jets, that are
tagged at a higher WP, are
considered here. The last
bin serves as overflow bin.
The errorbars indicate the
statistical uncertainties.

Figure A.11.: Results for the 70% WP in
the 5-8 Jet region for the
4th highest pT truth charm
jet. Also jets, that are
tagged at a higher WP, are
considered here. The last
bin serves as overflow bin.
The errorbars indicate the
statistical uncertainties.
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A.4. Results for different working points for charm jets

Figure A.12.: Results for the 60% WP in the 5-8 Jet region for the 4th highest pT truth
charm jet. Also jets, that are tagged at a higher WP, are considered here.
The last bin serves as overflow bin. The errorbars indicate the statistical
uncertainties.
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A. Further Plots

A.5. Results for different jet regions for charm jets

Figure A.13.: Results for the prediction of
4th highest pT truth charm
jets in the 5 Jet region for a
70%WP. The last bin serves
as overflow bin. The error-
bars indicate the statistical
uncertainty.

Figure A.14.: Results for the prediction of
4th highest pT truth charm
jets in the 6 Jet region for a
70%WP. The last bin serves
as overflow bin. The error-
bars indicate the statistical
uncertainty.
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A.5. Results for different jet regions for charm jets

Figure A.15.: Results for the prediction of
4th highest pT truth charm
jets in the 7 Jet region for a
70%WP. The last bin serves
as overflow bin. The error-
bars indicate the statistical
uncertainty.

Figure A.16.: Results for the prediction of
4th highest pT truth charm
jets in the 8 Jet region for a
70%WP. The last bin serves
as overflow bin. The error-
bars indicate the statistical
uncertainty.

Figure A.17.: Results for the prediction of 4th highest pT truth charm jets in the 5-8 Jet
region for a 70%WP. The last bin serves as overflow bin. The errorbars
indicate the statistical uncertainty.
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A. Further Plots

A.6. B-jet multiplicity for other working points

Figure A.18.: B-jets multiplicity with a
∆R cut at ∆R=0.3 and a
cut for the hadron pT at
pT =5GeV. The chosen WP
is "no Tag". The error-
bars indicate the statistical
uncertainty. The y-axis is
scaled logarithmic.

Figure A.19.: B-jets multiplicity with a
∆R cut at ∆R=0.4 and
without an cut for the
hadron pT . The chosen WP
is "no Tag". The error-
bars indicate the statistical
uncertainty. The y-axis is
scaled logarithmic.
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A.6. B-jet multiplicity for other working points

Figure A.20.: B-jets multiplicity with a
∆R cut at ∆R=0.3 and a
cut for the hadron pT at
pT =5GeV. The chosen WP
is 85%. The errorbars in-
dicate the statistical uncer-
tainty. The y-axis is scaled
logarithmic.

Figure A.21.: B-jets multiplicity with a
∆R cut at ∆R=0.4 and
without an cut for the
hadron pT . The chosen WP
is 85%. The errorbars in-
dicate the statistical uncer-
tainty. The y-axis is scaled
logarithmic.
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A. Further Plots

Figure A.22.: B-jets multiplicity with a
∆R cut at ∆R=0.3 and a
cut for the hadron pT at
pT =5GeV. The chosen WP
is 77%. The errorbars in-
dicate the statistical uncer-
tainty. The y-axis is scaled
logarithmic.

Figure A.23.: B-jets multiplicity with a
∆R cut at ∆R=0.4 and
without an cut for the
hadron pT . The chosen WP
is 77%. The errorbars in-
dicate the statistical uncer-
tainty. The y-axis is scaled
logarithmic.
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A.6. B-jet multiplicity for other working points

Figure A.24.: B-jets multiplicity with a
∆R cut at ∆R=0.3 and a
cut for the hadron pT at
pT =5GeV. The chosen WP
is 60%. The errorbars in-
dicate the statistical uncer-
tainty. The y-axis is scaled
logarithmic.

Figure A.25.: B-jets multiplicity with a
∆R cut at ∆R=0.4 and
without an cut for the
hadron pT . The chosen WP
is 60%. The errorbars in-
dicate the statistical uncer-
tainty. The y-axis is scaled
logarithmic.

61





B. List of GNN input variables

Variable Description Name in the code

Jet variables

pT Momentum of the jet jet_pt
η Pseudorapidity of the jet jet_eta
ϕ Azimuthal angle of the jet jet_phi
Flavour Truth flavour of the jet jet_truthflav

Hadron variables

pT Momentum of the hadron jet_hadron_dRmatch_pt
η Pseudorapidity of the hadron jet_hadron_dRmatch_eta
ϕ Azimuthal angle of the hadron jet_hadron_dRmatch_phi
Energy Energy of the hadron jet_hadron_dRmatch_e
Mass Mass of the hadron jet_hadron_dRmatch_m
∆R Angular distance between jet and assigned hadron jet_hadron_dRmatch_dR
Flavour Truth flavour of the hadron jet_hadron_dRmatch_flav

Event variables

∆R Angular distance ∆R between jets deltaR

Table B.1.: Table of variables, which are used for the training of the GNN.
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