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Abstract: 

Learning useful internal representations of the external world is an important goal for 
both artificial and biological intelligent systems, but how to do it “right” remains a 
largely open question. We investigate this question in Deep Generative Models (DGM), 
which can be conceived as Latent Variable Models (LVM) that learn to map a latent 
representation to the data using a feedforward deep neural network. 

 

While DGM have become remarkably efficient at learning to synthesize samples of 
complex data (e.g. images) that “look” realistic, it is often less clear to which extent they 
can learn meaningful representations that can be useful beyond imitating the training 
data. One mathematically precise formulation of this problem is the question of 
identifiability of LVMs. Broadly construed, it addresses whether one can unambiguously 
learn the properties of a ground truth LVM, based only on the distribution of the data it 
generates. 

 

It turns out that DGMs are not identifiable without additional assumptions about the 
data generative process, i.e. identification requires inductive biases. I will go over sets 
of assumptions that guaranty such identifiability by leveraging (1) constraints on the 
LVM’s function space; (2) constraints on the causal structure of the generative process, 
which decomposes it into mechanisms that can be selectively intervened on. I will 
moreover illustrate how these inductive biases are implicitly leveraged in two popular 
approaches, variational autoencoders and self-supervised learning, therefore providing 
justifications for their empirical success. 

While these results provide insights into the conditions for learning faithful 
representations of the external world, they do not explicitly enforce a simplification of 
reality, key to human understanding. I will introduce ongoing work on causal model 
reduction that address this issue by mapping a high-dimensional model to a low-
dimensional one with an interpretable causal structure. Finally, I will elaborate on the 
potential of these identifiable and simplified representations to assist humans in solving 
complex real-world problems. 
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