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ABSTRACT
In this article, we propose a robust statistical approach to select
an appropriate error distribution, in a classical multiplicative het-
eroscedastic model. In a first step, unlike to the traditional approach,
we do not use any GARCH-type estimation of the conditional vari-
ance. Instead, we propose to use a recently developed nonparamet-
ric procedure [31]: the local adaptive volatility estimation. The moti-
vation for using this method is to avoid a possible model misspeci-
fication for the conditional variance. In a second step, we suggest a
set of estimation and model selection procedures (Berk–Jones tests,
kernel density-based selection, censored likelihood score, and cover-
age probability) based on the so-obtained residuals. These methods
enable to assess the global fit of a set of distributions as well as
to focus on their behaviour in the tails, giving us the capacity to
map the strengths and weaknesses of the candidate distributions. A
bootstrap procedure is provided to compute the rejection regions
in this semiparametric context. Finally, we illustrate our methodol-
ogy throughout a small simulation study and an application on three
time series of daily returns (UBS stock returns, BOVESPA returns and
EUR/USD exchange rates).
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1. Introduction

Since the 2008 financial crisis, the literature faces a renewed interest in the choice of an
adequate error distribution, able to capture the skewness and excess kurtosis of stochastic
processes (see, among others [8,12,35,37]). In this article, we propose a robust methodol-
ogy to select a distribution family in a classical multiplicative heteroscedastic model. This
model is defined by

rt = σtzt , (1)

σ 2
t = Var(rt |Ft−1), (2)

zt ∼ Fz(·), (3)
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where rt is the daily return, σ 2
t the conditional variance of rt and zt are i.i.d.

random variables distributed according to a cumulative distribution function Fz(·) with
E(zt |Ft−1) = 0 and E(z2t |Ft−1) = 1, Ft−1 being the information set of all returns up to
t−1.

In this context, Bollerslev [7] early emphasized the usefulness of nonnormal density
functions. Later, Bai et al. [1] also noticed that the error distribution needs to exhibit
strong excess kurtosis in GARCH models to ensure a theoretical unconditional kurtosis
coherent with empirical evidence. Other authors [19,22] highlighted the importance of
the distribution assumption for the quality of value-at-risk (VaR) and expected shortfall
(ES) forecasts. Meanwhile, when modelling conditional variance parametrically (e.g. with
a GARCHmodel or one of its variants – see [17] for a review), resulting estimators relying
on the normal law may suffer from weak efficiencies. For example, Engle and Gonzalez-
Rivera [15] showed that, for nonnormal data, the loss of efficiency can be up to 84% when
estimating parameters with a maximum likelihood (ML) procedure based on the normal
distribution.

These considerations lead researchers to propose alternative flexible probability density
functions with heavy tails for zt in model (1) to take these issues into account. The most
common distributions are the Student’s t-distribution and its generalization, the skewed-t
distribution [16]. Its use in GARCH or EGARCHmodels considerably improves forecasts
[7,22,28]. Another well-known family of functions is the generalized error distribution
(GED). Christoffersen et al. [12] show its nice fitting characteristics on daily stock returns
for different GARCH-type models. Some studies also focus on the Generalized Hyper-
bolic (GH) distributions, a five-parameter family of density functions, introduced first
by Barndorff-Nielsen [3]. Eberlein and Keller [14] and Bingham and Kiesel [6] note the
interesting goodness-of-fit (GOF) performance of these density functions for daily stock
returns. More recently, Stavroyiannis et al. [37] also propose to use the Pearson type-IV
distribution. Other flexible distributions not yet considered in the finance literature could
be also used (see, e.g. [26]).

Nevertheless, the coexistence of so many distributions reflects the fact that few articles
concentrate on the comparison and the selection of an adequate distribution, despite the
large number of available ones. Moreover, most of articles on the subject study this issue
in the framework of GARCH-type models. Basically, the traditional approach consists of
testing the fit of specific distribution families using GOF tests on the estimated innova-
tions (i.e. ẑt = rt/σ̂t) obtained using a GARCH-type estimator of the conditional variance
(see [30], for a detailed review). But the drawback of this approach is a possible misspec-
ification error due to the parametric variance assumption. Indeed, parametric variance
models often exhibit a lack of flexibility: among others, Lamoureux and Lastrapes [29]
show that GARCH models are extremely sensitive to misspecified structural breaks, Bali
and Guirguis [2] point out that variance model misspecifications can cause an overesti-
mation of the kurtosis in the estimated residuals and Jalal and Rockinger [24] emphasize
the negative impact of a variance misspecification on the estimation of tail-related risk
measures. Consequently, all specification and validation procedures based on these so-
estimated residuals are very sensitive to the type of variance model used. Besides, different
distributional assumptionsmight not be rejected by classical GOF tests. In these cases, AIC,
BIC or Hannan-Quinn information criterion can help identifying the best assumption, but
no formal procedure exists in our context.
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This study suggests another approach, based on a two-step methodology. First, follow-
ing the work of Heuchenne and Van Keilegom [23], we propose to use a nonparametric
estimation of the conditional variance, instead of a classical GARCH-type estimation. This
approach is a robust alternative that avoids the risk of a misspecified parametric variance.
More particularly, beyond standard regression technique [32,38], Mercurio and Spokoiny
[31] developed a local constant model for the estimation of the conditional volatility
(LAVE), consisting of amoving average of past squared returns over time intervals of vary-
ing lengths [25]. The advantages of this method are its ability to quickly react to jumps
occurrences and its interval selection procedure independent from the true distribution of
the error terms [8,25]. Chen et al. [8] successfully applied this technique in amultiplicative
model of type (1)–(3) and showed its good performance in one-day-ahead VaR forecasts.

Second, we suggest a set of estimation andmodel selection procedures for the error dis-
tribution, assessing both the global fit and the fit in the tails. Instead of relying on classical
GOF tests like Chi-squared and Kolmogorov–Smirnov (K-S) tests (known for their lack
of power), or any other single measure of the fit, we suggest to adapt four different statis-
tics to our situation: kernel density-based selection test and Berk and Jones [5] test for an
assessment of the global fit; Diks et al. [13] weighted likelihood scores and empirical risk
level (ERL) tests to focus on the behaviour in the tails. Indeed, as a model (especially in
Finance) is never true, one is most often interested in finding a model that correctly fits
the data rather than discovering the true model. With the proposed combination of tools,
we are able to map the strengths and weaknesses of the candidate distributions. It allows
researchers to decide which distribution should be preferably used in a heteroscedastic
multiplicative model, according to its objective. For example, if one is more interested in
ES forecasts, he could decide to favour a distribution that performs very well in the tail,
even though its global fit is not the best among all tested distributions. Moreover, using
several measures of the fit should allow to detect more easily possible differences between
distribution, compare to a single aggregated measure (like the Anderson–Darling (AD)
statistic) that averages the difference and lacks of power. The finite sample behaviour of
the proposed statistics is investigated in a simulation study.

Finally, we give an empirical illustration of our methodology on three daily returns
time series (EUR/USD exchange rate, BOVESPA index and UBS stock) where we com-
pare the Normal Inverse Gaussian (NIG), hyperbolic (HYP) and skewed-t distributions.
These three different distributions can account for leptokurtosis and asymmetries, which
make themnatural candidate in a financial model of type (1) where such features have been
observed.

The rest of the paper is organized as follows: in Section 2, we present the LAVE standard-
ization technique and the differentGOF indicators used. In Section 3, we present the results
of the simulation study,while Section 4 is devoted to the presentation of the empirical study.
We conclude and discuss in Section 5.

2. Method

2.1. Local adaptive volatility estimation

To estimate the conditional variance (σ̂t) without any risk of misspecification, we suggest
to use the nonparametric LAVE technique [25,31]. For all rt , t = 1, . . . , n, we compute σ̂t
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using It previous squared returns r2t−1, . . . , r
2
t−It :

σ̂t = (1/It)
It∑
i=1

r2t−i, (4)

with It being the local window length at time t. To select It , defined as an interval of homo-
geneity, we follow the step-by-step procedure detailed in [25], based on a power transform
of rt and a simple t-test (we have implemented this procedure inMatLab, files are available
upon request to the authors). Starting from model (1)–(3), we consider that some γ > 0
exists such that,

|rt|γ = σ
γ
t |zt|γ = E|zt|γ σ

γ
t + σ

γ
t (|zt|γ − E|zt|γ ) = θt + σ

γ
t (|zt|γ − E|zt|γ ), (5)

where θt = E|zt|γ σ
γ
t [25]. The null hypothesis of a constant variance on It implies a con-

stant trend θt = θIt for all t ∈ It . This trend can be approximated by the average of |rt|γ
over It :

θ̂It = (1/It)
It∑
i=1

|rt−i|γ ,

This estimation is used in a sequence of t-tests to select It as the largest interval of homo-
geneity. The related asymptotic theory and the detailed hypothesis tests used can be found
in [25].

As explained previously, using nonparametric estimators also makes sense, since it is
impossible to know the exact structure of the volatility process. Moreover, Chen et al. [8]
show throughout simulations that GARCH model and the LAVE provide estimations of
similar quality for various kinds of variances and nonnormal innovations. This question is
beyond the scope of this paper but additional simulations are available upon demand.

2.2. Estimation andmodel selection procedures

We use the LAVE to obtain estimated innovations (ẑt). Then, we use both estimation and
model selection procedures, to assess the quality of a single distribution and to compare
two competing kind of distributions.

2.2.1. GOF of the whole distribution
First, we propose to use a GOF test that assesses the global fit of different density func-
tions candidates: the Berk–Jones test ([5] and more recently, [39]), based on the empirical
cumulative distribution function of the estimated innovations. We compute the likelihood
of each estimated innovation Ẑ = {ẑ1, ẑ2, . . . , ẑn}, both under a tested parametric hypoth-
esis Fθ (an assumed parametric family under H0) and using the empirical cdf Fn built on
Ẑ. In the present situation, the B-J statistic is defined by

Rn,Fθ = sup
x

n−1 log

[(
Fn(x)
F

θ̂
(x)

)nFn(x) (1 − Fn(x))
1 − F

θ̂
(x)

)n(1−Fn(x))
]
, (6)

where θ̂ is the maximum likelihood estimator (MLE) of θ under the assumed family Fθ .
We reject the parametric hypothesis (i.e. the null hypothesisH0 that F = Fθ ) if this statistic
is too large.
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This GOF test provides an interesting assessment of the quality of the fit, as it does
not use any bandwidth parameter. Nevertheless, the limit distribution of this statistic is
only known for directly observable data. In our case, the innovations are not observable
and we work with estimated residuals obtained after a nonparametric standardization. As
explained by Heuchenne and Van Keilegom [23], the bootstrap is a good solution to derive
the bounds of the critical region for a statistic of interest and to build hypothesis tests
accordingly. Consequently, we apply the following parametric bootstrap procedure to find
the critical bound of the statistic, under the null hypothesis that the innovations are Fθ

distributed:
For i = 1, . . . ,N,

(1) Generate randomly n i.i.d. innovations Z∗
i = {z∗

i,1, . . . , z
∗
i,n} from the parametric

distribution F
θ̂
.

(2) Multiply each resampled innovation by the corresponding estimated volatility σ̂t , t =
1, . . . , n.

(3) We obtain R∗
i = {r∗i,1, . . . , r∗i,n}, a particular realization of the returns sample in the

bootstrap world.
(4) Estimate the conditional volatilities σ̂ ∗

i,t by LAVE, t = 1, . . . , n.
(5) We obtain Ẑ∗

i = {ẑ∗
i,1, . . . , ẑ

∗
i,n}.

For each hypothesis to test, we obtain N resamples for each dataset leading to N real-
izations of Rn,Fθ . The null hypothesis is rejected if the statistic computed on the original
sample is higher than the quantile 1 − α of these realizations (one-sided test).

Second, we propose to use a statistic relying on the kernel density estimator f̂ (x) of the
estimated residuals to determine which distribution displays the best fit. We compute the
bandwidth using the normal rule [36]. Based on that estimated density, we compute an
estimator (KIMSEf

θ̂
hereunder) of the integrated mean-squared error between the true

and the parametrically estimated (f
θ̂
) densities, defined by

IMSEf
θ̂

= E
[∫ ∞

−∞
(f

θ̂
(x) − f (x))2 dx

]
. (7)

This time, we use a nonparametric bootstrap procedure to compute KIMSEf
θ̂
:

For i = 1, . . . ,N,

(1) Generate randomly n i.i.d. innovations from the historical distribution of the esti-
mated innovations Ẑ = {ẑ1, ẑ2, . . . , ẑn}.

(2) Multiply each resampled innovation by the corresponding estimated volatility σ̂t .
(3) We obtain R∗

i = {r∗i,1, . . . , r∗i,n}, a particular realization of the returns sample in the
bootstrap world.

(4) Estimate the conditional volatilities σ̂ ∗
i,t by LAVE, t = 1, . . . , n.

(5) We obtain Ẑ∗
i = {ẑ∗

i,1, . . . , ẑ
∗
i,n}.

Once again, we obtain N resamples for each dataset to compute KIMSEf
θ̂
defined by

KIMSEf
θ̂

= 1
N

N∑
i=1

∫ +∞

−∞
(f

θ̂∗
i
(x) − f̂ (x))2 dx = 1

N

N∑
i=1

KISEif
θ̂
, (8)
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where f̂ (x) is the kernel density estimation built on the initial estimated innovations Ẑ, f
θ̂∗
i

is the parametric estimation of the error distribution and θ̂∗
i are the MLE based on Ẑ∗

i , i =
1, . . . ,N. ForN sufficiently large, this quantity is approximately normally distributed, given
the initial sample Ẑ. Indeed, the bootstrap procedure ensures the conditional independence
between the KISEif

θ̂
for i = 1, . . . ,N. If now the goal is to compare two IMSEf

θ̂j
, j = 1, 2,

(i.e. E[
∫∞
−∞(f

θ̂j
(x) − f (x))2 dx]) we can simply use the following statistic D̄ for paired data:

D̄ = 1
N

N∑
i=1

[KISEif
θ̂1

− KISEif
θ̂2
] = 1

N

N∑
i=1

Di, (9)

Indeed, taking differences makes now the Di, i = 1, . . . ,N, are i.i.d. given Ẑ and conse-
quently: √

ND̄ → N(0, σ 2
D), (10)

under the null hypothesis that IMSEfθ1 = IMSEfθ2 . Using the empirical bootstrap variance
of Di, σ̂ 2

D, as an estimate of σ 2
D, a simple standardization gives us

� = D̄/

√
σ̂ 2
D/N → N(0, 1), (11)

given Ẑ and if the observed |�| ≥ �−1(1 − α/2), the null hypothesis can be rejected with
a test level α.

Notice that the spirit of this bootstrap procedure is different from the previous one.
Indeed, here we replicate the observed data to get an estimator of IMSEf

θ̂
. For the B-J test,

we generate data from a given parametric null hypothesis to get estimators of the critical
bound of a statistic, under this hypothesis.

2.2.2. GOF in the tail of the distribution
As mentioned in the previous subsection, KIMSEf

θ̂
and the B-J test both take into account

the fit of the whole distribution. In VaR modelling, we need to focus on a specific quantile
of the innovations distribution (let us say of order p) and on the fit in the tail. To measure
the quality of the quantile estimation provided by the parametric method, we first define
qθ (p), as the quantile function of the density fθ (i.e. if a r.v.X ∼ fθ , P(X ≤ qθ (p)) = p). The
idea is to estimate the difference between p and so-named ERL p

θ̂
given by

p
θ̂

= 1
n

n∑
t=1

1(ẑt ≤ q
θ̂
(p)), (12)

where θ̂ is the MLE obtained from the initial sample Ẑ.
Again, we use the same bootstrap procedure as in the B-J test to obtain a bootstrap

estimation of the critical bounds (α level two-sided test) for the corresponding statistic
(p

θ̂
− p). Then, we are able to test if the quantile of order p of the true innovations dis-

tribution (F−1
z (p)) is significantly different from the quantile of the same order for the

assumed parametric distribution. In the latter case, the assumed parametric assumption
can be rejected. Conceptually, this test can be related to the coverage test of Christoffersen
[11], but applied in-sample on robust estimated innovations.
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The weakness of this test is that it compares the quality of the fit of a particular distri-
bution with respect to the true (unknown) distribution, using only a specific point of the
estimated distribution. To compare the fit in the tail provided by different candidates, we
need a selection test (i.e. comparing two fits) that gives a particular weight to the left tail of
the distribution. Following that idea, we propose to use the selection test of Diks et al. [13],
based on a weighted Kullback–Leibler divergence (KLD). As explained in [13], we can test
the relative accuracy of two candidate conditional distribution of the returns, g1t and g2t ,
by taking the difference of their weighted KLD, at each observable rt . This quantity can be
estimated by the empirical mean d̄wl of the weighted scores differences dwlt , t = 1, . . . , n:

d̄wl = 1
n

n∑
t=1

dwlt = 1
n

n∑
t=1

(Swl(ĝ1t ; rt) − Swl(ĝ2t ; rt)), (13)

with

Swl(ĝjt ; rt) = 1(rt ∈ A) log(ĝjt(rt)) + 1(rt ∈ Ac) log
(∫

Ac
ĝjt(s) ds

)
, j = 1, 2, (14)

where ĝjt is an estimator of gjt ,j = 1, 2, A is the region of interest for the fit and Ac its com-
plement. In the empirical application, we use two different regions of interest: the 5% first
observations and the 1% first observations (which are the classical test levels for VaR). The
assumed conditional distributions of the returns gjt are linked to the distributions of the
innovations fθj through the following relationship:

gjt(rt) = 1
σt
fθj(rt/σt), j = 1, 2. (15)

Parameters estimators for fθj are the same as the ones used in the previous tests (thus, MLE
obtained on the whole sample of estimated innovations) and σ̂t are computed using the
LAVE. The set of dwlt is not i.i.d. but using the following statistic:

T = d̄wl√
σ̂ 2
n/n

, (16)

with σ̂ 2
n being a heteroscedasticity and autocorrelation-consistent (HAC) estimator of the

variance of
√
nd̄wl, we can test if d̄wl = 0. Indeed, Giacomini and White [18] demonstrate

that the statistic given by Equation (16) is asymptotically normally distributed assuming
d̄wl = 0 and under very weak conditions (see this article and Wooldrige and White, [40],
for more details). In particular, it allows using both para- and nonparametric estimators in
the computation of ĝjt . For σ̂ 2

n , we use the same HAC estimator as in [13,18]:

σ̂ 2
n = γ̂0 + 2

G−1∑
k=1

akγ̂k, (17)

where γ̂k is the lag-k sample autocovariance of the sequence of dwlt , ak = 1 − k/G, k =
1, . . . ,G − 1, are the Bartlett weights and G = 
n1/4� (where 
x� denotes the integer part
of x). Given Ẑ, we test that d̄wl = 0 (i.e. the null hypothesis of an equal quality of the fits)
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and we reject this hypothesis if |T| ≥ �−1(1 − α/2) with a test level α. Moreover, if |T| ≥
�−1(1 − α/2) and T<0 (respectively T>0), then we conclude that fθ1 (respectively fθ2 )
better fits the data.

The statistic in Equation (16) has some interesting properties. First, it is a relative mea-
sure of the fit between two distributions, such that we do not need the true unknown
distribution or a proxy of it. Second, this weighting scheme allows assessing the fit in the tail
by controlling the impact of the central observations on the statistic: the censoring of the
returns outside A allows ignoring the shape of the density function in this region. More-
over, the second term of the censored score in Equation (14) avoids a possible selection
bias if the tails’ thickness of the compared density functions are different [13].

To summarize our approach, after the LAVE standardization, we propose to compute
the four different measures of the fit presented in this section. B-J and p

θ̂
statistics are used

in GOF tests to assess individually the correctness of the tested distributions while we use
KIMSE and d̄wl statistics in pairwise comparative tests to determine if some distributions
have a significantly higher GOF performance than the others. In the pairwise comparison
tests, we assess if one of the two distributions fits better the data than the other (if we reject
the null hypothesis, we conclude that one distributions is better), using the � and T test
statistics. Moreover, we assess both the global fit (with the B-J and � statistics) and the fit
in the tail (with the p

θ̂
and d̄wl statistics).

3. Practical implementation and simulations

In this section, we study the finite sample behaviour of the proposed methodology. Due
to the large number of observations needed and the bootstrap procedure, the computa-
tion time is quite extensive. Therefore, we only focus on three different data-generating
processes (DGP), combining either GARCH(1,1) or GJR-GARCH(1,1,1) [20] conditional
variances with innovations distributed according to some usual parametric distributions
(we avoid the case of nested distributions, that is beyond the scope of this paper).

3.1. Simulation set-up

We make use of MatLab 2013a for all implementations. We use Equations (1)–(3) to
generate the data, with Equation (2) being either a GARCH(1,1) process:

σ 2
t = ω + αr2t−1 + βσ 2

t−1 (18)

or a GJR-GARCH(1,1,1) process:

σ 2
t = ω + αr2t−1 + 1(rt−1 ≤ 0)φr2t−1 + βσ 2

t−1. (19)

We assumed three different distributions for zt :

zt
iid∼ T(ν), (20)

zt
iid∼ skewed − t(λ, ν), (21)

zt
iid∼ hyperbolic(θ1, θ2, θ3, θ4), (22)
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with their two first moments equal to 0 and 1, respectively.We consider the three following
DGP:

DGP1: GARCH(1,1) withω = 10−4,α = .05 and β = .92 combinedwith T-distributed
zt where ν = 5.4.

DGP2:GJR-GARCH(1,1,1) withω = 10−4,α = .05,φ = .1 andβ = .8, combinedwith
skewed-t-distributed zt where λ = 0.9 and ν = 7.

DGP3: GARCH(1,1) with ω = 10−4,α = .20 and β = .75 combined with hyperbolic
(HYP) distributed zt where θ = [4.5329, 3.4371, 0.3263,−1.05].

Notice that all distributions parameters are chosen to exhibit leptokurtosis, and even
asymmetries for the skewed-t and hyperbolic cases. Also, the sum of the variance param-
eters is close to unity to ‘mimic’ typical GARCH parameters found on empirical data (see,
e.g. [10]).

For each DGP, we generate B=1000 samples of size n=600. For the computation of
the LAVE, we set in Equation (4), m0 = 5 and γ = .5 [25] . In addition, in [25], the level
of the multiple test in the LAVE computation is 0.05 (at iteration k - (k + 1)m0 data under
study – it is divided by k to obtain the level of each separate test). We use the same pro-
cedure. To improve the computing time, It is bounded to a size of 200 observations. Data
from time t=1 to t=200 are used as initial training set. We compare the true distribution
(Student, skewed-t or hyperbolic) to an alternative distribution having the same number of
unknown parameters (i.e. Student to GED distributions, skewed-t and hyperbolic distri-
butions toNIG distributions). Parameters estimates are obtained viaMLE on the estimated
residuals rt/σ̂t . Based on these estimators, we compute the four differentmeasures of the fit
(Berk–Jones statistic, KIMSE, p

θ̂
and Swl) for each sample and for each parametric hypoth-

esis, using Equations (6), (8), (12) and (14) proposed in Section 2. Using the Berk–Jones
statistic and p

θ̂
, we perform GOF tests for each tested distribution. With the KIMSE statis-

tic and Swl, we build the test statistics � and ¯dwl (standardized to give our statistic T) and
performpairwise comparisons between the true distribution and the tested alternative one.
When the bootstrap is needed, we generate N=200 resamples. Notice also that due to the
small size of our samples, we compute the ERL statistics with levels of p equal to 30%, 20%,
15% and 10%. In the KLD tests, we use a region of interest A that contains respectively
20%, 10%, 5% and 1% of the data (it corresponds to censoring of 80%, 90%, 95% and 99%
of the sample). We also repeat the corresponding selection tests with samples of size 1000,
2000 and 3000. The test level of all tests is set at 5%.

3.2. Simulation results

We observe that, for DGP 2 and DGP 3, the Berk–Jones tests exhibit low but satisfactory
powers (Table 1). The tests seem a bit conservative, though, probably due to the small size
of our samples (the type-I error is too low). For DGP1, the tests are not very powerful
against the alternative considered. It is not surprising, as Student’s t-distributions can be
well approximated byGEDdistributions. This low level of rejections indicates that theGED
distribution fits quite well the true Student’s t-distribution. Overall, GOF tests based on
the whole distribution can hardly reject wrong parametric hypotheses because the tested
alternative distributions are very flexible. Thus, they approximate very well the true dis-
tribution.The Berk–Jones test suffers from similar drawbacks. It is one of the reasons that
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Table 1. Estimated type-I errors and powers of the Berk–Jones tests and the ERL tests at four different
levels (30%,20%, 15% and 10%).

DGP1 HT0 HF0 Test Rejection of HT0 Rejection of HF0

T GED p
θ̂
(0.1) 6.7 8.2

p
θ̂
(0.15) 5.6 6.7

p
θ̂
(0.2) 5.1 6.2

p
θ̂
(0.3) 5.7 5.8
BJ 4.6 3

DGP2 HT0 HF0 Test Rejection of HT0 Rejection of HF0
SKT NIG p

θ̂
(0.1) 4.7 12.6

p
θ̂
(0.15) 3 20.6

p
θ̂
(0.2) 2.9 38.3

p
θ̂
(0.3) 1.6 13.9
BJ 2.5 14

DGP3 HT0 HF0 Test Rejection of HT0 Rejection of HF0
HYP NIG p

θ̂
(0.1) 6.4 9.4

p
θ̂
(0.15) 6.3 11.7

p
θ̂
(0.2) 6.1 13.5

p
θ̂
(0.3) 5.3 15.8
BJ 4 9.6

Note: The computed powers are associated with the wrong alternative distributions (i.e. HF0) specified for each DGP (e.g. for
DGP1, it is the power associated with the wrong null hypothesis ‘fθ is a GED distribution’).

makes the traditional approach (based on a single GOF test) ineffective and it illustrates
that combining different measures of the fit is essential.

Concerning the ERL tests (Table 1), the performance is mixed. For the second DGP, we
reject the alternative hypothesis quite often for all values of p tested. However, the type-I
errors are a bit too high for DGP1 and DGP3. It illustrates a weakness of this test: because
we use a single point of the distribution to reject or not a parametric hypothesis, the test
tends to over-reject and to not be powerful. Especially, in the case of the third DGP, these
results could be attributed to the parameters estimation of the hyperbolic distribution.
Indeed, as noted by Barndorff-Nielsen and Blaesild [4], the likelihood functions of hyper-
bolic distributions are quite flat. It could cause to provide parameters estimates that fits very
well the centre of the distribution at the expense of the tails. In our case, this effect could
be also reinforced by the filtering process of the variance and the bootstrap procedure. The
results for both the ERL and the BJ tests are displayed in Figures 1 and 2.

Using the KIMSE statistic (Table 2), we are able to detect significant differences between
the true distributions and the alternative ones in all DGP, in proportions ranging from
14.4% to 31.2%. Once again, for the first DGP, we detect a difference in favour of the true
distribution only 14.4% of the time. These values are obviously affected by the alternative
tested. Nevertheless, these tests are quite useful to detect the distribution that best fits the
whole distribution of the data (obviously, the true one). Especially, it prevents us to select
a wrong distribution, the proportion of times the alternative distribution is selected being
always very close to 0 (Figure 3).

The tests based on the censored likelihood score (Table 3–5) bring a different perspec-
tive to the analysis. Using an uncensored statistic, this test selects quite adequately the true
distribution (column d̄wl < 0), especially when the size of the sample increases (by going
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Figure 1. Rejection rates of the true distribution (type-I error rates) for the BJ and ERL tests. For the ERL
tests, the level of p is indicated on the horizontal axis. Grey: results related to DGP1. Dark grey: results
related to DGP2. Black: results related to DGP3. These results can be found in Table 8.

Figure 2. Rejection rates of the alternative distribution (type-I error rates) for the BJ and ERL tests. For
the ERL test, the level of p is indicated on the horizontal axis. Grey: results related to DGP1. Dark grey:
results related to DGP2. Black: results related to DGP3. These results can be found in Table 8.

from 600 observations to 1000, we almost double the proportion where the correct dis-
tribution is picked up by the test, for the two first DGP). Using the censored statistics, we
observe for all DGP that in the case of small-size samples (i.e. 600 observations), we select
more often the true distribution compared to the test with the uncensored statistic. Thus,
the censoring procedure seems to improve the detection of differences for these sample
sizes. However, we select also more often the alternative distribution (column d̄wl > 0),
compared to the test with the uncensored statistic (and that holds for all regions of inter-
est and sample sizes tested). In fact, even if these results seem counter-intuitive at first,
they are not that surprising, as nothing guarantees that the true distribution has the high-
est censored likelihood score: indeed, we obtain estimations of the parameters using ML
techniques based on the whole sample. Therefore, if we use the true distribution, it tends
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Table 2. Results for the KIMSE tests (based on the � statistic). � < 0 (respectively > 0) indicates the
proportion of rejection where the true distribution is selected (respectively where the alternative is
selected).

KIMSE Sample size DGP � < 0 � > 0 No difference

600 DGP1 14.4 0 85.6
600 DGP2 31.2 0.1 68.7
600 DGP3 21.2 0 78.8

Figure 3. Rejection rates in favour of the alternative distribution (column d̄wl > 0 in Tables 3– 5) for
DGP1 (top), DGP2 (middle) and DGP3 (bottom), as a function of the regions of interest(that correspond,
respectively, to 80%, 90%, 95% and 99% censoring on the right). White: sample size of 600. Light grey:
sample size of 1000. Grey: sample size of 2000. Black: sample size of 3000.

to guarantee an estimated distribution with the lowest possible KLD, but not one with the
highest censored likelihood score. When the alternative is selected, it means that, due to
the parameters estimation, this alternative has a significantly higher likelihood score in the
selected tail than the true distribution with estimated parameters. A possibility to avoid
these feature would have been to estimate the parameters using censored MLE. We would
have had presumably lower selection ratios of the alternative, but also a less good estimation
of the parameters. Figure 1 consists of the columns d̄wl > 0 for each DGP, arranged by the
proportion of observation in the region of interest (A). It gives us an idea of how close the
alternative distribution is from the true distribution, and in which region: for DGP1, GED
appears relatively close to the Student’s t-distribution for large regions of interest (e.g. 20%)
but becomes less close when we go further in the tail. For DGP2, we observe the opposite
effect, whereas the relative closeness between the considered distributions inDGP3 appears
constant across censoring level. All this highlights that, due to the estimation of the param-
eters (based on a full ML procedure), the true distribution is not necessarily the one that
fit best the tail of the data.
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Table 3. Rejection proportions of the KLD tests (based on T) for DGP1, using 80%, 90%, 95% and 99%
censoring on the right.

DGP fθ1 fθ2 Size Censoring level d̄wl < 0 d̄wl > 0 No difference

DGP1 T GED 600 No censoring 19.7 0.3 80
80% 29.5 21 49.5
90% 13.7 17.7 68.6
95% 19.2 11.6 69.2
99% 36.9 8.6 54.5

1000 No censoring 36.7 0.2 63.1
80% 38.6 22.5 38.9
90% 26.2 17.7 56.1
95% 29.5 13.1 57.4
99% 49.1 8.7 42.2

2000 No censoring 70.9 0.1 29
80% 48.8 23.9 27.3
90% 46.2 21.6 32.2
95% 51.2 16.9 31.9
99% 61.3 7.1 31.6

3000 No censoring 86.8 0 13.2
80% 51.2 25.9 22.9
90% 55.2 22 22.8
95% 57.7 15.4 26.9
99% 63.3 8.7 28

Notes: Column d̄wl < 0 indicates the proportion of samples where the true distribution (fθ1 with unknown θ1) has a signif-
icantly higher censored likelihood score, whereas column d̄wl > 0 indicates the proportion of samples where the wrong
alternative distribution (fθ2 with unknown θ2) has a significantly higher likelihood score. We use samples of size 600, 1000,
2000 and 3000.

Table 4. Rejection proportions of the KLD tests (based on T) for DGP2, using 80%, 90%, 95% and 99%
censoring on the right.

DGP fθ1 fθ2 Size Censoring level d̄wl < 0 d̄wl > 0 No difference

DGP2 SKT NIG 600 No censoring 40.3 0.3 59.4
80% 49.8 5.2 45
90% 55.7 13 31.3
95% 65 14.6 20.4
99% 65.9 24.7 9.4

1000 No censoring 76.8 0.1 23.1
80% 57.8 6.9 35.3
90% 67.6 14.6 17.8
95% 71.1 17.6 11.3
99% 69.9 25.7 4.4

2000 No censoring 97.2 0 2.8
80% 64.7 7.2 28.1
90% 73 16 11
95% 75.8 18.8 5.4
99% 73 23.2 3.8

3000 No censoring 99.8 0 0.2
80% 69 8.8 22.2
90% 76.1 16.8 7.1
95% 77.2 17.3 5.5
99% 74.1 23.4 2.5

Notes: Column d̄wl < 0 indicate the proportion of samples where the true distribution (fθ1 with unknown θ1) has a signif-
icantly higher censored likelihood score, whereas column d̄wl > 0 indicates the proportion of samples where the wrong
alternative distribution (fθ2 with unknown θ2) has a significantly higher likelihood score. We use samples of size 600, 1000,
2000 and 3000.
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Table 5. Rejection proportions of the KLD tests (based on T) for DGP2, using 80%, 90%, 95% and 99%
censoring on the right.

DGP fθ1 fθ2 Size Censoring level d̄wl < 0 d̄wl > 0 No difference

DGP3 HYP NIG 600 No censoring 11 0.1 88.9
80% 44 23.1 32.9
90% 41.9 21.9 36.2
95% 47 24.3 28.7
99% 53 25.4 21.6

1000 No censoring 18.5 0.3 81.2
80% 57.8 23.6 18.6
90% 55.5 23.4 21.1
95% 56.3 23.6 20.1
99% 54.7 25.1 20.2

2000 No censoring 29 0.3 70.7
80% 60.2 28 11.8
90% 60.8 24.9 14.3
95% 61.7 23.3 15
99% 59.9 27.2 12.9

3000 No censoring 37.5 0.1 62.4
80% 66.2 25.4 8.4
90% 66.3 22.9 10.8
95% 65.3 21.9 12.8
99% 60.2 28.9 10.9

Notes: Column d̄wl < 0 indicates the proportion of samples where the true distribution (fθ1 with unknown θ1) has a signif-
icantly higher censored likelihood score, whereas column d̄wl > 0 indicates the proportion of samples where the wrong
alternative distribution (fθ2 with unknown θ2) has a significantly higher likelihood score. We use samples of size 600, 1000,
2000 and 3000.

For a given region of interest, if we increase the sample size (i.e. to 2000 and 3000
observations), the selection ratios of the true distribution tend to increase (at all censor-
ing levels). It is clearly less obvious for the alternative distribution. We also notice that
for the second and third DGP, the selection ratios of the true distribution stay above
the ones of the alternative, for all levels tested and all sample sizes. For the first DGP,
for a region of interest consisting in 10% of the data, the selection ratio of the alterna-
tive is higher for a sample size of 600 but this effect disappears when the sample size
increases.

Some could argue that working with sample sizes of 2000 or 3000 observations is unre-
alistic, but because we use the LAVE instead of parametric estimators of the conditional
variances, we do not dread a possible parameter instability. Therefore, we can make a full
use of the available data (e.g. for stock returns, 10 years of data are not unusual).

Hence, in the perspective of selecting the distributions that best fit someparts of the data,
these tests seem to exhibit interesting properties. In particular, this simulation study reveals
the necessity to combine different measures of the fits to detect the various differences
among the hypotheses tested. For instance, if the Berk–Jones tests and the ERL tests lack
of power to reject the GED hypothesis, the KIMSE statistics and the censored likelihood
scores could prove useful. Also, it shows that the censored likelihood scores (especially
if we are far in the tail) often improve the selection of the true distribution compared to
the uncensored ones. Therefore, according to the objectives pursued by the modeller (e.g.
VaR, ES or full density forecast), it might be interesting to map the strengths and weak-
nesses of the considered distribution with the different tests and then to favour the one
that best fulfil our goals. Eventually, the simulations highlight the need for large samples,
too.
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Table 6. P-values for the KS , AD test and m-test of Lejeune [30], for the three time series considered.

UBS NIG HYP SKT

BS p-value KS 0.969 0.846 0.769
AD 0.846 0.459 0.945

m-test 0.711 0.368 0.805
as. p-value KS 0.99 0.9521 0.972

AD – – –
m-test 0.649 0.746 0.882

BOVESPA NIG HYP SKT
BS p-value KS 0.752 0.874 0.769

AD 0.756 0.805 0.945
m-test 0.875 0.961 0.389

as. p-value KS 0.837 0.956 0.972
AD – – –

m-test 0.888 0.999 0.428
EUR/USD NIG HYP SKT
BS p-value KS 0.532 0.491 0.294

AD 0.366 0.275 0.297
m-test 0.046 0.131 0.013

as. p-value KS 0.565 0.669 0.431
AD – – –

m-test 0.046 0.471 0.0129

Notes: We compute the p-value of the KS and AD tests with a usual parametric bootstrap procedure (lines ‘BS p-value’),
involving a GARCH standardization. We also provide the p-value of the KS test and m-test based on asymptotic results
(line ‘as. p-value’). For the KS tests, we assume that the residuals are i.i.d. data. P-values of the m-tests are obtained from
the asymptotic result presented in [30].

Table 7. Descriptive statistics for the residuals after LAVE filtering.

Descriptive statistics UBS BOVESPA EUR/USD

Skewness −0.7861 −0.6057 −0.1216
Kurtosis 10.6246 6.2410 9.3898

Note: All series exhibit negative skewness and excess kurtosis.

4. Empirical illustration

In this section,we illustrate the proposedmethodology on three different time series, where
we test three different distributions for the innovations. Indeed, recent works emphasize
the flexibility of GH subfamilies [8,9,34] and skewed-t distributions [22,28]. Therefore,
we will compare the NIG, the HYP (i.e. subfamilies of the GH distributions for λ equal,
respectively, to −1/2 and 1) and the skewed-t [21]. We do not consider the Student-t and
GED distributions, as these distributions are special cases of the other distributions (see,
among others [22]).Moreover, because the filtered returns exhibit consequent asymmetries
(see Table 7), it seems inadequate to consider symmetric distributions. Details concerning
the GH and the skewed-t distributions can be found in Appendix 2.

The goal here is to identify the most adequate distribution(s) to model the stochastic
behaviour of the considered data, without bearing the risk of a misspecified parametric
volatility. As it is very likely than none of the considered distribution is the true error dis-
tribution, we focus on finding the one that display the best fit, taking into account the
estimation of the parameters and along the four dimensions described in the Methodol-
ogy section. We compare the results of our approach with those obtained with three other
measures of the fit, computed after a GARCH filtering of the data (thus, bearing the risk of
a misspecification): the Kolmogorov–Smirnov statistic and the AD statistic (as in [27]), as
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well as the m-statistic proposed by Lejeune [30]. The distributions of the two first statistics
under the null hypothesis that the residuals stem from a particular distribution Fθ are com-
puted with a bootstrap procedure. For the m-statistic, we use the same asymptotic result
as in [30].

4.1. Data

We applied the proposed methodology on three different time series:

(1) Stock returns data : UBS daily returns for the period 10 June 2003–7 June 2013,
(2) Stock index data : BOVESPA daily returns for the period 4 January 1999–12 April

2012,
(3) Exchange rate data : EUR/USD daily returns for the period 15 June 2000–10 October

2012.

The prices have been extracted, respectively, from www.nasdaq.com, www.finance.
yahoo.com and www.federalreserve.gov. We compute the daily log-returns from these
prices (rt = log(Pt/Pt−1)). Samples have, respectively, 2517, 3282 and 3215 observations.
Notice also that UBS prices have been adjusted for the 2:1 stock split of 10 July 2006. A first
exploratory analysis reveals also that an AR(1) (with no significant intercept) is suitable
to model the conditional mean of UBS stock returns. Thus, before applying the proposed
methodology, we correct this series by removing its conditional mean using the estimated
AR(1) parameters. For the other time series, autocorrelations and partial autocorrelations
are not significantly different from 0. We also test for mean nonstationarity using aug-
mented Dickey–Fuller tests with 21 lags. The unit-root hypothesis is rejected at the 99%
level for all series. Finally, a graphical analysis indicates that we have series exhibiting het-
eroscedasticity (Figure 4) and high significant autocorrelations of the squared returns at
multiple lags, indicating that Equation (1) is suitable to model these returns. Graphs and
detailed results of the tests can be found in Appendix 1.

4.2. Results

4.2.1. Kolmogorov–Smirnov, AD andm-tests
For each sample, we remove the conditional volatility using a GARCH(1,1) model. Then,
we estimate the parameters of the four parametric hypotheses and compute the various test
statistics on the residuals. We use a parametric bootstrap based on the estimated param-
eters of the tested distributions and on the estimated GARCH(1,1) parameters to obtain
the distributions of the statistics under the various null hypotheses (the details of this pro-
cedure are available upon demand to the authors). The results of the three GOF tests can
be found in Table 6. We observe that a rejection occurs at the 5% test level only for three
tests out of the 27 performed. When we have the asymptotic distribution of the test statis-
tic, we also compute robust bootstrap p-values, but results stay alike. High p-values of the
Kolmogorov–Smirnov (KS) and the AD statistics suggest that the tested distributions fit
correctly both the tail and the entire distribution of the random part. The more elaborate
m-tests reject both NIG and skewed-t distributions for EUR/USD data. However, we do
not specifically know for which reason (i.e. if it is due to asymmetry, kurtosis, etc.). We are



JOURNAL OF APPLIED STATISTICS 153

Figure 4. Daily stock returns of the AR(1) UBS residuals, the BOVESPA and the EUR/USD time series.
Notice that y axis have different scales.

now stuck with a set of distributions identified as equally good. We could use the p-values
of the test to ‘rank’ the distributions, but it is not possible to know if there are significant dif-
ferences.Moreover, these results are subject to the correct specification of theGARCH(1,1)
model. To try to circumvent these issues, we apply our approach.

4.2.2. LAVE standardization
In the LAVE computation, we setm0 = 5, and γ = 0.5, as recommended in [8,25]. Figure 5
shows the estimated conditional standard deviations with this method and Figure 6 the
residuals obtained after standardization. Descriptive statistics of the residuals are presented
in Table 7. As expected, the kurtosis coefficients are higher than 3 and the skewness coeffi-
cients are lower than 0, indicating leptokurtosis and negative skewness. The interval where
the estimated innovations take their values seems rather constant along the time, suggest-
ing a correct standardization. Estimated parameters for all time series and for the four
distributions are listed in Appendix 2.

4.2.3. Fits comparisons
We use the estimated residuals to perform the tests described in Section 2.When the boot-
strap is needed, we run 1000 resamples. The Berk–Jones tests do not reject any of the tested
distributions (Table 8). It is not very surprising, because all distributions tested are quite
flexible (they can all model asymmetries and leptokurtosis). If we stop our analysis here, it
is not easy to determine if some distributions could best fit the data and we are stuck in the
same situation as with the classical GOF tests. Therefore, we compute the KIMSE statistic
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Figure 5. Conditional standard deviation estimations of the three time series using the LAVE technique
withm0 = 5, γ = .5 and the 200 first observations as training set.

Figure 6. Scatter plots of the daily returns after standardization of the same time series (scales of the y
axis are different).

Table 8. Bootstrap p-values for the B-J test statistics
for the fits with NIG, HYP and skewed-t (SKT) distribu-
tions. No rejection occurs.

Rn,f UBS BOVESPA EUR/USD

NIG 0.745 0.451 0.459
HYP 0.99 0.465 0.828
SKT 0.81 0.618 0.344

(Table 9) and performed pairwise comparisons with the � statistic (Table 10). We observe
that

• the skewed-t distribution has the lowest statistic for the three series,
• significant differences are detected between NIG and skewed-t distributions, as well as

between HYP and skewed-t, in favour of the skewed-t distribution (Table 10),
• no difference is detected between NIG and HYP distributions.

Hence, it seems that skewed-t distributions provide the best fits for these datasets. At
the contrary, the HYP appears to have the worst fit (in term of absolute value of the KIMSE
statistic).
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Table 9. Values of the KIMSE statistic for the fits with
NIG, HYP and skewed-t distributions.

KIMSE UBS BOVESPA EUR/USD

NIG 0.0145 0.0080 0.0060
HYP 0.0132 0.0083 0.0075
SKT 0.0088 0.0056 0.0037

Note: These quantities are used to compute the� statistics.

Table 10. P-values of the� statistics for the three time series. In bold, rejection at the 5% test level.

� UBS BOVESPA EUR/USD

HYP - NIG 0.219 – 0.3334 – 0.2507 –
HYP - SKT 0.0029 (SK) 0.0039 (SK) 0.0720 –
NIG - SKT 0.0002 (SK) 0.0007 (SK) 0.0034 (SK)

Note: When a rejection occurs, superscripts (H), (N) or (SK) indicate which distribution has the lowest KIMSE.

Table 11. Values of the ERL statistic at the 5% and 1% level. In parenthesis, bootstrap p-values of the
test statistic.

p UBS BOVESPA EUR/USD

5% NIG 0.0567 (0.31) 0.0607 (0.002) 0.0632 (0.001)
HYP 0.0562 (0.224) 0.059 (0.007) 0.0615 (0.003)
SKT 0.0609 (0.016) 0.0621 (0.003) 0.0664 (0.002)

1% NIG 0.0132 (0.24) 0.0094 (0.003) 0.0142 (0.054)
HYP 0.0151 (0.022) 0.0094 (0.001) 0.0139 (0.103)
SKT 0.0161 (0.001) 0.0108 (0.031) 0.0143 (0.089)

Note: In bold, rejection at the 5% test level (two-sided test).

Nevertheless, until now we only focused on the GOF of the whole distribution. Can
we also detect differences between the GOFs in the tails? The results of the tests based
on the ERL statistic (p

θ̂
) with 5% and 1% quantiles (typical quantiles used for VaR com-

putations), are displayed in Table 11. Globally, the three considered distributions do not
performed well. For UBS time series and p = 5%, we identify the HYP and the NIG dis-
tribution as being the best ones. For p = 1%, NIG is also found to be the best distribution.
For the BOVESPA, all distributions are rejected. However, the HYP (for the 5% quantile),
and both the NIG and HYP (for p = 1%) are found to be the closest to p. For EUR/USD,
all distributions are rejected for p = 5% (HYP is the closest one) and none are rejected
for p = 1% (but once again, HYP is the closest to p. Hence, it appears that both the NIG
and the HYP seem to be the most adequate distributions for the 1% quantile of the UBS,
BOVESPA and EUR/USD time series, respectively.

The results of the tests based on the censored likelihood scores are displayed in Table 12.
If we compute the scores without censoring, results are similar to the ones deduced from
the KIMSE statistics (the skewed-t distribution provides the best fits). With the region of
interest being the 5% tail (95% censoring), we can conclude for the UBS series that the NIG
distribution provides a significantly higher score (hyperbolic and skewed-t distributions
have significantly lower scores). With the region of interest being the 1% tail (99% censor-
ing), skewed-t and NIG both appear better than the HYP distributions. For the BOVESPA
time series, we can conclude that with the region of interest being the 1% tail, the skewed-t
provides significant higher scores. Not enough significant differences can be detected for
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Table 12. d̄wl statistic between HYP, NIG and skewed-t (SKT) density functions using no censored
likelihood scores (first line) and censored regions up to the 5% and 1% empirical quantiles.

d̄wl Censoring level UBS BOVESPA EUR/USD

HYP-NIG No censoring −0.0040 (0.0033) −0.0008 (0.0282) −0.0007 (0.1831)
95% −0.0049 (0.000) −0.0002 (0.3470) −0.0006 (0.1295)
99% −0.0050 (0.000) −0.0003 (0.1191) −0.0007 (0.1086)

HYP-SKT No censoring −0.0078 (0.004) −0.0016 (0.0426) −0.002 (0.1863)
95% −0.0009 (0.2938) −0.0009 (0.0679) −0.0021 (0.1123)
99% −0.0049 (0.000) −0.0014 (0.0018) −0.0023 (0.0891)

NIG-SKT No censoring −0.0038 (0.0097) −0.0008 (0.0892) −0.0013 (0.1923)
95% 0.0040 (0.000) −0.0009 (0.0159) −0.0015 (0.1061)
99% 0.0001 (0.386) −0.0012 (0.000) −0.0017 (0.0813)

Notes: A positive sign indicates that the first distribution of the label is the closest to the true distribution. In parenthesis,
p-value of the associated test statistic T. In bold: rejection at the 5% test level (two-sided test).

the scores of the EUR/USD time series, indicating that all the distributions tested provide
similar GOFs.

These results differ in several ways to the ones obtained with the KS and AD statistics.
While the KS and AD tests suggest that all distributions are more or less equivalent, our
set of tests detects significant differences for the global fit but also for the fit in the (left)
tail. The m-tests lead to different conclusions as well: they reject the skewed-t and the NIG
distributions for the EUR/USD data, while our tests suggest that the skewed-t fits better
the whole distribution of the data than the NIG and HYP distribution.

5. Conclusion

In this article, we contribute in two ways to the existing literature. First, we develop a sta-
tistical approach to compare the GOF of different density functions independently from a
parametric variancemodel.We propose amethod to identify and select themost appropri-
ate error distributions in the framework of a classical multiplicative heteroscedastic model.
This methodology enables a GOF analysis robust to a model misspecification, unlike tra-
ditional approaches relying on GARCH-type filtering. It also allows to use large samples
without being restricted by some parameters stationarity hypothesis. Moreover, we adapt
estimation and model selection tests to this context by providing a suitable bootstrap
algorithm. We also pay attention to assess not only the global fit of candidate distribu-
tions but also the fit in the (left) tail. Indeed, some of the proposed selection tests focus
specifically on the left tail of the distribution and can be useful to choose an adequate dis-
tribution in the perspective of VaR or ES modelling. It would be possible to use a single
statistic (like the AD statistic) combining both perspectives, but the risk is to be stuck with
a statistic neither good to assess the global fit nor the fit in the tail. Therefore, we prefer
to use a two-step procedure to distinguish the global fit from the fit in the tail. A simula-
tion study indicates good powers of the selection tests based on the KIMSE statistic and
the censored likelihood score but also highlights the need of large samples, a requirement
easily met with financial time series.

Second, we illustrate our methodology in an empirical study where we compare the
GOF of three different distributions (skewed-t, NIG and HYP distributions). We show, on
financial time series of various kinds (stock returns, emerging market index returns and
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exchange rate returns), that the skewed-t distribution seems to be the best error distribu-
tion at the global level for all series. Regarding the fit in the tail, skewed-t appears very good
in the 1% and 5% tails for the BOVESPA (but not for the associated quantile). However,
the NIG and the HYP distributions could be more suitable if we focus respectively on the
left tail or a quantile far in the tail for UBS.

More generally, both the simulations and the empirical study emphasize the necessity to
combine different measures of the fit to detect possible differences between distributions.
The use of the proposed tests would be a first step in selecting more properly an error
distribution, that could be use later in parametric models or forecasts. Last, as interestingly
pointed out by one of the reviewers, an extension of this paperwould be to use the proposed
statistics to combine the candidate distribution into a new piecewise function. Usingmodel
combination technique, like ensemble modelling, we could potentially combine together
the various distributions in an efficient way to improve the final fit.
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Appendix 1. Preliminary analysis

We check for a possible unit root in the mean of our data, that would reject the stationarity
hypothesis. See the results in Table A1.

We also check for a possible conditional mean of the ARMA kind. An AR(1) model with no
intercept and α = 0.1077 seems suitable for the UBS time series. Sample autocorrelation functions
(ACF) for various lags are not significant for the other time series (see Figure A1).

The presence of heteroscedasticity is confirmed by significant ACF of the squared returns at
various lag (indicating a time dependency in the variance), as shown in Figure A2.

After the filtering of the conditional variance with the LAVE, we also check if the sample autocor-
relations of the squared estimated innovations have been correctly removed. Some autocorrelations
for the lags between 2 and 10 remain significantly different from zero as shown on the follow-
ing graphs. Nevertheless, most of the second order time dependencies have been removed (see
Figure A3).

Appendix 2. Distributions references

A.1 Generalized Hyperbolic distribution

The pdf of a GH function is given by [33]:

fGH(x; λ,α,β , δ,μ) = a(λ,α,β , δ)(δ2 + (x − μ)2)(λ−1/2)/2Gλ−1/2(x), (A1)

Gλ− 1
2
(x) = Kλ−1/2(α

√
δ2 + (x − μ)2) exp(β(x − μ)) (A2)

a(λ,α,β , δ) = (α2 − β2)λ/2
√
2πα(λ−1/2)δλKλ(δ

√
α2 − β2)

, (A3)

where Kν(x) is the modified Bessel function, δ > 0, α > |β| and x ∈ R. For λ = 1, we obtain HYP
functions, while for λ = −1/2, we obtain NIG functions (see [3] for more details on these density
functions).

A.2 Skewed-t distribution

Following the notation of Hansen [21], the pdf of a standardized skewed-t distribution is given by

fSK(x; λ, ν) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bc

(
1 + 1

ν − 2

(
bx + a
1 − λ

)2
)−(ν+1)/2

x < −a/b,

bc

(
1 + 1

ν − 2

(
bx + a
1 + λ

)2
)−(ν+1)/2

x ≥ −a/b,

(A4)

Table A1. Results of the Augmented Dickey–Fuller test
with 21 lags. In bold rejection of the null hypothesis of a
unit root at the 1% test level.

Time series Augmented DF stat p-value

UBS −10.2611 0.000
BOVESPA −11.6946 0.000
EUR/USD −11.4139 0.000
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where 2 < ν < ∞ is the scale parameter and−1 < λ < 1 is the skewness parameter, for x ∈ R. The
constant a,b and c are given by

a = 4λc
(

ν − 2
ν − 1

)
,

b2 = 1 + 3λ2 − a2,

c = �
(

ν+1
2
)

√
π(ν − 2)�

(
ν
2
) .

A.3 Parameters of the fitted distributions

See Tables A2 to A4 for the estimated parameters of the fitted distributions.

Table A2. Estimated parameters of the NIG distributions for the three time series.

NIG parameters α β δ μ

UBS 1.1569 −0.0943 1.1453 0.0937
BOVESPA 1.6042 −0.2607 1.5411 0.2538
EUR/USD 1.2788 0.0114 1.2787 −0.0114

Table A3. Estimated parameters of the HYP distributions for the three time series.

HYP parameters α β δ μ

UBS 1.6770 −0.1048 0.6535 0.1041
BOVESPA 1.9999 −0.2684 1.1132 0.2615
EUR/USD 1.7099 0.0096 0.73 −0.0096

Table A4. Estimated parameters of the skewed-
t distributions for the three time series. α is the
asymmetry parameters and ν the df.

Skewed-t parameters λ ν

UBS −0.0418 5.4567
BOVESPA −0.0950 7.8023
EUR/USD 0.0053 6.4310
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Figure A1. Plot of the ACFwith robust standard errors for AR(1) UBS errors, BOVESPA and EUR/USD time
series.

Figure A2. Plot of the ACF with robust standard errors for squared AR(1) UBS errors, BOVESPA and
EUR/USD time series.

Figure A3. Sample autocorrelations for the squared estimated innovations for the five time series tested
up to lag 50. If the bar is up to the dotted line, the autocorrelation at the corresponding lag is significantly
different from 0 (with a level of confidence of 95%).
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