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Abstract—Voice assistants, as provided by smart speakers,
have become ubiquitous. Current authentication methods in these
systems, however, rely on wake words, posing a risk due to the
susceptibility to replay attacks. Additionally, user data stored on
servers could expose sensitive information. This study suggests an
approach to improve user authentication and profile management
in smart speakers, reducing risks tied to external data processing
and storage. We propose a two-fold solution for continuous user
authentication and local user profiles. This approach prevents
unauthorized access to sensitive data and grants users access to
their local recordings. Our method differs from current practices
in two ways: (1) It authenticates users based on complete voice
commands, reducing the risk of replayed wake word attacks, and
(2) it operates locally, avoiding the transfer of sensitive data to
external servers. We offer a proof-of-concept with Alexa Voice
Service (AVS) integration and a thorough evaluation using voice
datasets and a study with 17 participants. We tested our approach
under various conditions, including accents, background noise,
and muffled speech. Legitimate users are identified with 93%
precision, 95% recall, 94% F1-score, and 99% accuracy, while
illegitimate users are recognized with 99% accuracy across these
metrics.

Index Terms—smart speakers, voice assistants, voice authenti-
cation, replay attacks, local profiles, privacy

I. INTRODUCTION

The widespread use of voice-controlled devices in both
personal and professional environments has been transfor-
mative. As the adoption of smart homes increases, people
are frequently using voice assistants on devices like smart
speakers, smartphones, and smartwatches. However, this con-
venience raises privacy concerns, as these assistants contin-
uously listen for activation commands (”wake words”) and
send subsequent audio to remote servers for processing, which
includes command interpretation through Natural Language
Processing (NLP) and speaker verification. Smart speakers
primarily authenticate users based on the wake word, a
method that poses significant security risks. This system is
vulnerable to replay attacks, where a malicious individual can
replay a recording of the legitimate user uttering the wake
word, followed by unauthorized commands. This could allow
unauthorized access to sensitive information such as personal
emails, calendar events, financial details, or shopping histories

Alexa, what is my account balance?

(a) Authentication falsely taking place on the wake word only

Alexa, what is my account balance?

(b) Authentication taking place on the full voice command

Fig. 1. Comparison of current and proposed authentication methods

(see Fig. 1a). To prevent replay attacks, different techniques
have been proposed to test the speaker’s liveness [1–7], i.e., if
a real and living user is actually saying the voice command.
These techniques, however, have several limitations: (1) they
require additional hardware, such as specialized sensors or
devices to measure oral airflow or ear canal pressure, making
them less accessible and more costly to implement [1, 3]; (2)
they may not effectively distinguish between a live speaker
and high-quality recorded audio in environments with variable
acoustic characteristics or when sophisticated spoofing tech-
niques are used [3, 6, 7]; and (3) they do not offer protection
if both the genuine user and the honest-but-curious user are
together, as these methods might not be able to differentiate
between simultaneous inputs from multiple users or prevent
unauthorized access when a legitimate user is coerced into
providing a voice command. In such cases, the latter user
can surprise the genuine one by interjecting and pronouncing
another command to get access to private content. While this
scenario requires the co-presence of both users and precise
timing by the honest-but-curious user, it remains a feasible
risk. To address these limitations, we therefore propose that
the whole voice command and not only the wake word should
be analyzed and authenticated in a text-independent manner, as
visualized in Fig. 1b. Moreover, using the traditional approach
of wake word detection for activation and subsequent data
transmission to service providers, a significant amount of
user data is collected by the service provider. Not only the
content of these data may reveal sensitive information about
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Fig. 2. System overview: Local voice checker and local profile creation

the users, but also their voice [8], ranging from emotional
state to health issues [9]. Furthermore, voice recordings were
not only accessed without user consent in the past, but also
sold or publicly disclosed [10, 11]. Such unwanted disclosures
are not only limited to service providers. Indeed, they can also
happen in common multi-user environments. In this setting and
in absence of effective voice-based authentication, secondary
users can easily access sensitive information tied to the pri-
mary user’s account. Conversely, primary users can review the
secondary users’ interaction history; regardless if registered
or not. While many voice assistants offer voice authentica-
tion, their efficacy in safeguarding privacy varies significantly
among providers. Often, primary users who initially set up
the device retain the ability to access the interaction history
of other authenticated secondary users. This is the case for
popular voice assistant platforms, including those developed
by major technology companies like Amazon (Alexa). To
access their interaction history, secondary users must create
an online account, providing personal details like email and
residence. This process helps manufacturers build even more
detailed user profiles [12]. To prevent it, we propose a different
approach with which local user profiles are created based on
features extracted from complete voice commands. After their
creation, the respective users’ past interactions are linked to
them. By doing so, only the concerned user gets access to
her history and she does not need to register with the service
provider.

Combining both aspects, our goal is hence to investigate the
feasibility of performing continuous voice authentication and
profile creation, both locally on the smart speaker, as shown
in Fig. 2. By doing so, we aim to shift from existing systems
where all voice interactions are attributed to an online account,
to one where individual users’ interactions are locally pre-
filtered, managed, and identified on the device (i.e., a smart
speaker in our case) before being forwarded to the provider’s
cloud service (e.g., Alexa Voice Service (AVS)) for actual
voice assistance and other online-only features. Note that
additional local privacy-protecting measures could be applied
to, e.g., remove voice characteristics or sensitive words [8]
according to the individual users’ privacy preferences before
their further transmission. To reach our goal, we make the
following contributions.

1) Introduction of a continuous authentication method, ver-
ifying entire voice commands using an LSTM network
with MFCC features. Proof-of-concept integrated with

AVS on a Raspberry Pi.
2) Proposal of a novel approach for local user profiles and

interaction histories, eliminating manufacturer registra-
tion needs.

3) Evaluation of continuous authentication scheme, achiev-
ing over 90% for each metric precision, recall, F1-score,
and accuracy, ensuring high performance in recognizing
legitimate users.

4) Analysis of replay attack detection performance, achiev-
ing 99% precision, recall, F1-score, and accuracy.

5) Performance evaluation in realistic scenarios: analyzing
accents, background noise effects, and muffled voices.

6) Conducted user study to assess command duration,
languages, and multi-user environments. Results show
system’s ability to manage multiple users and languages
with decreased precision in larger groups.

7) Feasibility evaluation showing average verification time
and consistent system resource usage across speakers,
confirming practical viability without significant over-
head.

The remainder of this paper is structured as follows. In
Sec. II, we provide an overview of related work. We introduce
our concept in Sec. III and give insights about our system
model and the adopted scenario. We further discuss the design
of our local profiles and implementation of the continuous
authentication mechanisms in Sec. IV. Sec. V describes the
evaluation setup, including a discussion of the dataset and the
required preprocessing steps as well as the evaluation metrics.
In Sec. VI, we delve into our evaluation results. We discuss
these results and give an outlook in Sec. VII, before drawing
conclusions in Sec VIII.

II. RELATED WORK

The domain of voice processing and authentication is both
expansive and interdisciplinary. Our research spans multiple
areas, including privacy in voice data storage, local processing
for voice recognition, and continuous authentication beyond
wake words. Each of these areas presents its own set of chal-
lenges and opportunities, which we present in what follows.

A. Privacy Concerns in Voice Data Storage

One of the most pressing issues in modern voice recognition
systems is the storage and handling of voice data. Currently,
most commercial smart speakers store these data on cloud
servers owned by the manufacturer [13, 14]. This not only
poses a risk to user privacy, but also makes the system
vulnerable to data breaches [10, 11]. However, it has been
noted that there is a demand for a history of voice interactions
to be accessible, indicating a common desire among users
to revisit past requests or actions [15]. Our research aims to
shift this paradigm by storing voice recordings locally, thereby
giving users full control over their own data.

B. Local Processing for Speech and Voice Recognition

Voice recognition systems have traditionally relied on cloud-
based solutions [16]. However, there is a growing interest in



local processing to reduce latency and enhance privacy by
keeping sensitive voice data on the device itself [17, 18]. Re-
search in this area focuses on the feasibility and efficiency of
implementing speech and voice recognition algorithms locally.
We hence contribute to this line of research by presenting a
novel approach that centers on local authentication and profile
management, enabling the storage of user audio data directly
on the device.

C. Beyond Wake Words: Continuous Authentication
Traditional voice recognition systems often rely on a wake

word for initial authentication [19]. However, this approach is
limited to text-dependent speaker recognition [19]. The need
for more secure and continuous authentication has led to re-
search focusing on text-independent speaker recognition [20].
This involves analyzing various features of the speaker’s voice
in real-time, beyond just the wake word, to ensure ongoing
authentication and prevent replay attacks. Advancements in
liveness detection specifically address replay attacks, often tar-
geting full commands, by employing methods like sound field
dynamics, ear canal pressure, and oral airflow detection [1–
7]. These techniques ensure the presence of a live speaker,
enhancing security against such attacks. However, limitations
related to user acceptability, environmental variability, and the
need for additional hardware highlight the ongoing necessity
for a comprehensive solution that extends beyond wake word
authentication for a more secure, continuous, and adaptable
voice authentication.

D. Speaker Recognition
In recent years, the speaker recognition field has transi-

tioned from traditional methods like Gaussian Mixture Mod-
els (GMMs) to deep learning approaches, particularly Deep
Neural Networks (DNNs) [21]. These methods, including
Convolutional Neural Networks (CNNs), Long Short-Term
Memory (LSTM) networks, and advanced architectures like
BERT and Transformer, have become the current state of
the art, offering improved performance and robustness in
challenging environments [21]. LSTM networks, known for
their ability to capture temporal dependencies, align well with
tasks involving Mel-Frequency Cepstral Coefficients (MFCCs)
for speaker recognition, where understanding time-based voice
patterns is crucial for accurate identification and verification
[22, 23]. Given the ongoing technological advancements, we
utilize LSTM networks in our speaker recognition system for
their capability to capture temporal speech patterns.

III. CONCEPT

As discussed in Sec. I, reliable user authentication for voice
commands is crucial, especially in multi-user environments.
Our proposed solution addresses current system limitations
and enhances user privacy. We advocate for equal control
measures and data transparency for all users, aligning with the
European General Data Protection Regulation (GDPR) (Art.
15). This regulation emphasizes individuals’ rights to access
and control their personal data, underlining the need for equal
transparency and control for all device users.

A. Current State

The procedure for configuring a smart speaker is depicted
in Fig. 3a. Typically, the device owner is prompted to create
or log in to an account with the manufacturer. After setting
up the location and WiFi connection, users can optionally
enable voice recognition. However, this optional setup does
not adhere to the “privacy-by-default” principle outlined in
GDPR Art. 25, potentially leaving users unaware of its im-
plications. Additionally, traditional systems rely solely on a
single wake word for identification and authentication, mak-
ing them vulnerable to replay attacks. Our solution counters
this by authenticating the entire voice command, effectively
mitigating the risk of unauthorized access through replayed
wake words [19, 24].

B. Proposed Solution

For new users engaging with the smart speaker, the setup
process is illustrated in Fig. 3b. If unrecognized, users are
prompted to create a local account linked to their voice profile,
securely stored on the device using advanced encryption
algorithms. Continuous authentication occurs throughout the
entire voice command, not just the wake word, based on this
profile. All voice interactions and transcripts remain local,
stored exclusively in dedicated folders on the smart speaker for
authenticated users. No recordings or transcripts are stored on
remote servers, and recordings by unknown speakers are not
retained. Fig. 4 outlines the user interaction process and history
retrieval method. During initial setup, users use a companion
app to share WiFi credentials and initial audio recordings,
generating embeddings for the local profile. Subsequently,
issued voice commands undergo embedding comparison with
existing local profiles. If a match is found, the interaction is
stored locally; otherwise, it’s discarded. Audio is forwarded to
AVS for processing only after verification by our voice check
component. Through our companion app, users can access
their locally stored past voice interactions securely.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

A. Data Preprocessing for Input

To create speaker embeddings and local profiles, essential
for our system’s functioning, we utilize a specialized model.
Before training this model, we preprocess the audio data.
This involves converting audio files to a uniform sample rate
and mono channel, resampling to 16 kHz, and extracting 40
MFCCs from each waveform, a common technique in voice
recognition systems [25]. These coefficients capture unique
audio characteristics crucial for speaker recognition. During
model training, we use triplets of audio samples: an anchor,
as well as a positive sample from the same speaker, and a
negative sample from a different speaker. These triplets are
trimmed to ensure uniformity and then used for MFCC feature
extraction. We trained our model using the “LibriSpeech ASR
Corpus” training set, consisting of 360 hours of clean speech,
and evaluated its performance on the test set containing 5.4
hours of speech data (see Tab. I). This initial performance
check was conducted within the broader training phase.
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B. Neural Network Architecture

To implement our continuous authentication framework,
we chose a DNN, specifically utilizing LSTM networks
within the PyTorch framework. The three-layer LSTM network
architecture (Fig. 5) processes audio features, particularly
MFCCs, with a hidden state size of 64 capturing tempo-
ral dependencies. During training, the LSTM network takes
batches of audio features with a batch size of eight and a
fixed input dimensionality of 40 MFCC features, structured
as [batch size, sequence length, feature dim]. We chose
a bidirectional model for this work due to its superior per-
formance in our experiments. For embedding creation, input
dimensions can vary but must align with the network’s input
dimensionality. The training process employs a triplet loss
function (Fig. 6), minimizing the distance between anchor
and positive samples while maximizing the distance between
anchor and negative samples to distinguish speakers. During
the usage of our speaker recognition system, a user’s voice
characteristics are captured in a speaker embedding, stored
as an array on our prototype. To authenticate new audio
recordings, we employ the cosine similarity function. This
function computes a score indicating the similarity between
the audio sample and the stored embedding. A score closer to
1.0 suggests a higher likelihood of both recordings originating
from the same speaker. As the cosine similarity produces a
numeric value, a threshold is necessary to differentiate between
replay attacks and legitimate commands. The selection and
discussion of this threshold are addressed in Sec. VI-A.

V. EVALUATION METHODOLOGY

The evaluation of our solution is multi-fold. It relies on dif-
ferent existing datasets and our own collected dataset for this

TABLE I
DATASETS USED FOR TRAINING AND TESTING
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LibriSpeech Train [26] 360 921 X IV-A English

LibriSpeech Test [26] 5.4 40 X IV-A English

Speech Accent Archive [27] ca. 4.3 709 X V-A English

Own collected dataset 0.9 17 X V-E German

purpose (see Tab. I). By using them, we analyze the following
dimensions: (1) detection of replay attacks (Sec. V-B), (2)
efficacy of replay detection for different accents (Sec. V-C), (3)
resilience to background noise and muffled speech (Sec. V-D),
and (4) application for another language and using specific
smart speakers voice commands (see Sec V-E). In addition
to the implementation itself, we validate the feasibility of
our solution in practice by measuring the incurred overheads:
(1) verification duration, (2) CPU usage, and (3) memory
usage (see Sec V-F). In this section, we present the applied
methodology, before presenting the results in Sec. VI.

A. Testing Data

Note that we are aware of the existence of the “MAS-
SIVE” [28] and “SLURP” [29] datasets, which include real
interactions with “Alexa”. However, the recordings are often
not provided with a wake word and are therefore not suitable
for our use case. As no datasets with real wake words and
voice commands are available, we have decided to test our
model on the “Speech Accent Archive” [30]. This dataset
contains recordings of the same English sentence pronounced
by speakers with different accents, resulting in ca. 4.3 hours of
speech (see Tab. I). We use 579 English native speakers for our
initial tests. The recordings were done in a lab environment
with professional microphones. The sentence reads as follows:

“Please call Stella. Ask her to bring these things
with her from the store: Six spoons of fresh snow
peas, five thick slabs of blue cheese, and maybe a
snack for her brother Bob. We also need a small
plastic snake and a big toy frog for the kids. She
can scoop these things into three red bags, and we
will go meet her Wednesday at the train station.”
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We segment the recordings by separating the wake word
“Please call Stella.” from the remainder of the statement. We
allocate the first 75% of the remaining portion of the sentence
to create the speaker embeddings and use the last 25% to
represent the rest of the voice command for validation, as
illustrated in Fig. 7.

B. Replay Attack Detection

We evaluate various wake word and voice command com-
binations from different users using the test utterance in
Fig. 7. With English native speakers from the “Speech Ac-
cent Archive”, as mentioned in Sec. V-A, each run involves
randomly selecting 20 speaker IDs. Among these, ten have
pre-stored speaker embeddings, marking them as legitimate
users. Pairing these wake words with the second segment of
voice commands from the remaining 20 speakers yields 200
combinations per run. Evaluation metrics including precision,
recall, F1-score, accuracy, False Acceptance Rate (FAR), and
False Rejection Rate (FRR) assess system performance in dis-
tinguishing between replay attacks and legitimate commands.

C. Impact of Accents

We evaluate the impact of accents by testing our approach
on speakers with French and German accents, in addition to
native English speakers. Using the “Speech Accent Archive”
dataset [27], we include 85 French accent and 45 German
accent speakers. This broader evaluation ensures the system’s
adaptability to diverse linguistic environments beyond its ini-
tial training on native English speakers.

D. Impact of Background Noise and Muffled Speech

To further test the robustness of our system, we consider
both background noise and muffled speech. The types of
noise introduced include dog barks, traffic sounds, and rainfall.
Using Python and the Librosa library, we have included

these noise elements into the individual recordings of 579
English native speakers from “The Speech Accent Archive”
dataset [27]. The noise data is either looped or truncated to
match the length of each audio clip, to simulate real-world
noisy environments. For simulating muffled speech, we have
applied a low-pass filter to the recording of the same speakers,
with a cutoff frequency set at 1000 Hz. Applying the filter aims
at simulating voice commands from users behind a closed door
or window.

E. Impact of Command Duration, Language, and Simulated
Multi-user Environment with Real-world Participants

The objectives of our user study is to verify if the spoken
language and the command duration have an impact on the
performance and investigate the performance in a simulated
multi-user environment. Approved by our Data Protection
Officer, the study involved 17 German-speaking participants.
Note that our institution does not have a formal IRB process.
However, we took steps to minimize potential harms from
our study by adhering to our institution’s code of ethics
and standards of good scientific practice. Our participants
were recruited in the circle of friends, family, and colleagues,
as social relationships are not expected to introduce biases.
Participants were first asked to complete an online question-
naire to gather their demographics. For capturing their voice
commands, we have developed a tool that displays voice
commands and wake words to be read aloud. Each participant
made recordings for three different wake words, “Alexa”, “Ok
Google”, and “Hey Siri”. For each wake word, each participant
recorded 10 distinct commands twice: Once with the wake
word and once without it, additionally the three wake words
have been recorded separately. This resulted in a total of 63
recordings per participant. We have selected these commands
based on potential real-world interactions with smart speakers.
For example, “What’s on my calendar for tomorrow?” and
“Turn on the light!”. The duration for completing the study
was about 25 minutes. Following the user study, we analyzed
the dataset and identified key differences compared to existing
datasets. Our recordings are shorter (two to four seconds)
with occasional silent segments and varying volume levels,
resulting in ca. 0.9 hours of total speech (see Tab. I). To
standardize the data, we preprocessed the audio by removing
silent segments and normalizing volume levels. Subsequently,
we categorized the recordings into three groups: (1) wake word
only, (2) wake word combined with a voice command, and (3)



Please call Stella. Ask her to bring these things with her from the store... things into three red bags, and we will go meet her Wednesday at the train station.

1st part of voice
command

2nd part of voice
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Fig. 7. Visualization on how the utterance of the dataset is separated

voice command only (see Sec.V-B and Sec.IV-A). We simulate
a multi-user scenario with up to five participants interacting
with the same smart speaker. While the average household size
in developed countries is typically two to three people [31, 32],
we expanded it to five to account for guests, reflecting real-
world conditions. Using a permutation-based approach, we
generate embeddings for each participant based on their voice
commands, including randomly chosen wake words. Then, we
compare all participants using 20 unique utterances for each
wake word. This process is repeated 100 times, resulting in
150,000 comparisons, with a threshold set at 85% for user
verification (see Sec. VI-A). Speaker embeddings are created
from recordings combining wake words and voice commands,
compared with voice commands alone.

F. Incurred Overheads

To evaluate performance metrics (latency, CPU, and mem-
ory overheads), we implemented our solution on a Raspberry
Pi 4B with a ReSpeaker 4-Mic Array for input and a portable
3.5 mm music box for output. The Raspberry Pi OS (64-
bit ARM version) was used, along with Python, PyTorch,
and Node.js for data processing, model deployment, server
operations, and BLE communications. As part of our hardware
setup, we developed a companion app using React Native on
an iPhone 12 Pro, enabling BLE connection setup, WiFi con-
figuration, embedding creation, and recording access with the
Raspberry Pi server. Performance evaluation utilized Python
and the psutil library to monitor CPU and memory usage,
recording verification times, and AVS response times. Analysis
was based on 60 recordings per participant from our user
study, focusing on verification times, CPU and memory usage,
and latency variations with different recording lengths and
times of day. Experiments were conducted hourly from noon
to midnight on January 26th, 2024, with minimal recordings
sent to AVS, emphasizing local verification on the Raspberry
Pi. This setup provided insights into model efficiency and
scalability under diverse conditions, using standard statistical
methods to assess system performance.

VI. RESULTS

In this section, we present the findings garnered from our
series of experiments, which encompass the following key
aspects: (1) the efficacy of replay attack detection, (2) the
influence of various accents, (3) the impact of background
noise and muffled speech, and (4) application for another
language and using specific smart speakers voice commands
(see Sec V-E). In addition to the implementation itself, we
validate the feasibility of our solution in practice by measuring
the incurred overheads: (1) verification duration, (2) CPU
usage, and (3) memory usage (see Sec V-F).

A. Replay Attack Detection

To find the optimal threshold for detecting both replay
attacks and legitimate commands, we conducted 2,000 runs of
our detection mechanism across thresholds from 60% to 95%.
The results, depicted in Fig. 8, indicate an optimal threshold
range between 85% and 86%. With a lower threshold, false
positives increase due to replayed recordings being mistaken
as legitimate commands. Conversely, higher thresholds lead
to more false negatives for legitimate commands. Notably,
the recall score for legitimate commands decreases when
thresholds exceed 90%. Moreover, detecting replay attacks is
more stable than detecting legitimate commands. This might
be the case because, in each run of our detection mechanism,
we have 200 comparisons, of which 190 are replay attacks
and only 10 are legitimate commands. In other words, there is
an imbalance in the dataset, with more instances originating
from unauthorized users. We have, however, chosen this style
of comparison to test and stress our detection system by con-
fronting a single verified speaker embedding with a multitude
of different embeddings.

B. Impact of Accents

Results from the same dataset as in Sec. VI-A, but with
users having French or German accents, are shown in Fig. 9.
English native speakers serve as a baseline for comparison.
Using a threshold of 85%, consistent with Sec. VI-A, we
observe consistent performance in detecting replay attacks
across all accents (f1-score 99%). However, the accuracy in
identifying legitimate commands varies with the accent, with
the highest performance for French and the lowest for German
speakers. Overall, our solution achieves a minimum f1-score
of 90%. Tab. II displays FARs and FRRs for legitimate
speakers, showing low FARs across all accents, indicating
robust security. FRRs are highest for speakers with a German
accent.

C. Impact of Background Noises and Muffled Speech

The results in Fig. 9 reveal a decrease in accurate identi-
fication of legitimate commands when exposed to traffic and
rain noises. This decline may be due to these noises masking
vocal features crucial for verification. Conversely, the impact
of sporadic dog barks is minimal, likely because they do not
consistently overlap with vital vocal patterns. Additionally,
simulating muffled speech (as discussed in Sec. V-D) leads to
a similar decline in accurate verification, suggesting challenges
for malicious users attempting replay attacks using recordings
made behind obstacles.
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Fig. 10. Confusion matrix of 17 participants with threshold set to 85%

TABLE II
FAR AND FRR VALUES FOR SPEAKERS WITH DIFFERENT ACCENTS.

Accent FAR FRR
German Accent 0.57% 8.97%
English Native 0.43% 5.11%
French Accent 0.20% 2.12%

D. Impact of Language, Command Duration, and Simulated
Multi-user Environment

Despite our participants using German commands, unlike
the English commands in “The Speech Accent Archive” [27],

TABLE III
PERFORMANCE METRICS FOR DIFFERENT NUMBERS OF SPEAKERS.

Speakers Accuracy Precision Recall F1 Score
2 Speakers 0.89 0.94 0.88 0.90
3 Speakers 0.89 0.83 0.90 0.85
4 Speakers 0.89 0.77 0.90 0.82
5 Speakers 0.89 0.69 0.90 0.77

and despite shorter recordings (approximately two to four
seconds compared to about 24 seconds), we demonstrate the
feasibility of speaker recognition with German commands,
albeit with reduced performance compared to English com-
mands. Tab. III displays the results for simulated multi-user
environments, as described in Sec.V-E. As expected, perfor-
mance weakens with more users. While high recall ensures
accurate storage of nearly all authenticated interactions, low
precision indicates potential access for unverified users to
sensitive information or controls. Results for groups of two,
three, four, and five speakers are provided in Tab. III. The
confusion matrix in Fig. 10 illustrates system performance for
our 17 participants’. While the system exhibits high recall for
correct identifications, it also shows some misidentifications,
leading to lower precision. These errors often correlate with
speakers’ genders: male voices are more frequently mistaken
for other male voices, and likewise for female voices.

E. Verification and Communication Time, CPU and Memory
Usage

Tab. IV presents key performance metrics and system
resource usage obtained from the prototype described in
Sec. V-F, based on data from the 17 participants in our
study. Each participant contributed 60 utterances for testing.
The initial higher standard deviation in verification time for
the first speaker (489 ms) is likely due to the computational
overhead of initializing the PyTorch model and its libraries.
Despite variations across speakers possibly influenced by
individual characteristics, accents, or background noise, the
consistent patterns in verification times and resource usage
demonstrate the reliability of our approach. To validate the
consistency of our previously obtained results, we replicated



TABLE IV
PERFORMANCE METRICS FOR SPEAKER VERIFICATION AND SYSTEM RESOURCE USAGE: AVT (AVERAGE VERIFICATION TIME), SDVT (STANDARD
DEVIATION OF VERIFICATION TIME), ACU (AVERAGE CPU USAGE), SDCU (STANDARD DEVIATION OF CPU USAGE), AMU (AVERAGE MEMORY

USAGE), SDMU (STANDARD DEVIATION OF MEMORY USAGE)

Speaker AVT (ms) SDVT (ms) ACU (%) SDCU (%) AMU (%) SDMU (%)
1 226 489 49.24 3.12 21.54 0.192
2 175 22 48.96 1.03 21.88 0.057
3 164 9 49.27 1.11 21.61 0.393
4 184 22 48.45 1.12 21.29 0.125
5 176 16 48.80 1.15 21.43 0.045
6 190 82 49.07 2.60 21.91 0.207
7 175 19 48.22 1.38 21.85 0.200
8 175 17 48.39 1.51 21.69 0.031
9 170 13 48.89 0.91 21.67 0.043
10 208 36 48.07 1.18 22.19 0.253
11 189 20 48.29 1.08 22.50 0.042
12 180 18 48.43 1.09 22.49 0.026
13 242 144 51.40 6.93 23.14 0.320
14 213 100 50.54 5.78 23.34 0.069
15 218 141 50.48 5.46 23.33 0.092
16 211 124 51.41 6.47 22.99 0.306
17 213 134 50.72 5.64 23.21 0.201
Avg: 195 83 49.33 2.80 22.24 0.153
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Fig. 11. AVS (Amazon Voice Service) response times

the experiments at various times of the day to account for
potential variations in AVS availability. Fig. 11 illustrates the
average response times recorded on January 26th, 2024, from
noon to midnight. It is important to note that both CPU and
memory usage are independent of AVS availability and, as
such, were not included in this evaluation. We tested three
distinct lengths of audio recordings as detailed in Sec. V-F:
short (about 2 s), medium (about 4 s), and long (about 8
s). The standard deviations observed were 32 milliseconds
for short audio recordings, 37 milliseconds for medium ones,
and 46 milliseconds for long ones, confirming that response
time differences remain marginal throughout different times
of the day (see Tab.V). The results indicate that response
time is proportionate to the length of the voice recordings.
In conclusion, our proof-of-concept implementation and its
thorough evaluation underscore the viability of our approach
in real-world conditions.

VII. SUMMARY, DISCUSSION, AND FUTURE WORK

Considering all findings, we have demonstrated successful
speaker authentication beyond the wake word. Unlike cur-

TABLE V
AVERAGE AVS RESPONSE TIMES (ARP) AND STANDARD DEVIATION OF

RESPONSE TIME (SRT) FOR DIFFERENT AUDIO FILE LENGTHS

Audio File Length ARP (s) SRT (ms)
Short (about 2 seconds) 1.10 32
Medium (about 4 seconds) 1.29 37
Long (about 8 seconds) 1.83 46

rent text-dependent systems relying solely on a fixed wake
word, our proposed text-independent and offline approach is
versatile. Even English speakers with various accents can be
authenticated, leveraging a neural network trained solely on
native English speakers’ utterances. Though recordings with
added background noise reduce verification performance, addi-
tional preprocessing to filter out noise could yield comparable
results to clean recordings. Muffled recordings, simulating
closed-door scenarios, are not verified by our system, making
it harder to trick authentication. We further evaluated our
authentication scheme using real-world voice commands from
a user study, testing its robustness with speakers of different
languages. With an f1-score of 77%, our results suggest room
for improvement. The shorter duration of recordings (2–4 sec-
onds) and the language difference contribute to the suboptimal
performance. Additionally, our local verification introduces a
slight delay to AVS interactions. However, considering average
response times, this delay is not expected to significantly
impact the user experience. Despite its effectiveness against
honest-but-curious users and wake word impersonation, our
system still faces limitations. Replay attacks using full com-
mand recordings remain possible. Additionally, advancements
in voice cloning pose a potential threat [33]. Studying its
impact on our authentication scheme and assessing our sys-
tem’s resilience to such attacks would be valuable. Finally,
users may have varying preferences regarding data sharing and



sensitivity. Hence, allowing users to control the accessibility
of information, especially to guests or unauthenticated indi-
viduals, is crucial. Exploring privacy configuration interfaces
tailored to these needs is an area for future research.

VIII. CONCLUSION

We have developed a speaker recognition system focused on
detecting replayed wake word attacks and providing continu-
ous authentication during voice commands. Through experi-
ments with three datasets, we optimized f1-score, FAR, and
FRR. Our system achieves high precision, recall, f1-score, and
accuracy rates of 93%, 95%, 94%, and 99%, respectively, for
authenticating native English speakers. Furthermore, we report
a FAR of 0.43% and a FRR of 5.11%. Overall, considering
the response delays observed for short, medium, and long
audio files, the additional delay introduced by our local
verification system does not significantly impact the overall
user experience. Completing our continuous authentication
approach, we propose the implementation of a local profile-
based voice authentication platform as an initial filtering layer
that could be integrated ahead of the core voice assistant
ecosystem. Using it, the mandatory online account registration
with device manufacturers would be prevented. By storing and
managing user data locally on the smart speaker, our proposed
system hence enhances user privacy and control over their
data, particularly in multi-user settings.

REFERENCES

[1] Y. Wang, W. Cai, T. Gu, W. Shao, Y. Li, and Y. Yu, “Secure Your
Voice: An Oral Airflow-Based Continuous Liveness Detection for Voice
Assistants,” Proc. of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2019.

[2] S. Pradhan, W. Sun, G. Baig, and L. Qiu, “Combating Replay Attacks
Against Voice Assistants,” Proc. of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2019.

[3] Y. Meng, J. Li, H. Zhu, Y. Tian, and J. Chen, “Privacy-Preserving Live-
ness Detection for Securing Smart Voice Interfaces,” IEEE Transactions
on Dependable and Secure Computing, 2023.

[4] M. Sahidullah, D. A. L. Thomsen, R. G. Hautamäki, T. Kinnunen, Z.-H.
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