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Zusammenfassung
Diskrepanzen zwischen Daten- und Simulationsverteilungen werden auf Regionen mit ho-
her Jet- und b-Tag-Multiplizität extrapoliert, indem ein normalisierender Fluss als Kor-
rektur nur auf die tt̄H Hintergrundprozessdaten angewendet wird. Dadurch wird die syste-
matische Fehlmodellierung der Skalarsumme der transversalen Impulse der hadronischen
Jets und die Ausgabe eines tt̄H klassifiziererenden, tiefen neuronalen Netzes in Regionen,
die während des Trainings nicht gesehen wurden, wirksam reduziert. Es werden verschie-
dene Methoden für das Training des normalisierenden Fluss untersucht. Die endgültige
Methode bringt außer der statistischen Unsicherheit der simulierten Stichproben keine si-
gnifikanten systematischen Unsicherheiten mit sich und übertrifft eine maschinenlernfreie
Basismethode.

Stichworte : Datengesteuerte Hintergrundabschätzung, tt̄H, Normalisierende Flüsse

Abstract
Discrepancies between data and simulation distributions are extrapolated to regions of
high jet and b-tag multiplicity, by applying a normalising flow as correction to the tt̄H
background samples only. This effectively reduced the systematic mismodelling of the
scalar sum of the hadronic jet transverse momentum and the score of a deep neural
network tt̄H classifier in regions not seen during training. Different methods for training
the normalising flow are investigated. The final method does not introduce significant
systematic uncertainties other than the statistical uncertainty of the simulated samples
and outperforms a machine learning free baseline.

Keywords Data-driven background estimation, tt̄H, Normalising flows
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1 Introduction

From the profound reflections of ancient Greek philosophers who pondered the funda-
mental nature of matter and postulated the existence of indivisible particles known as
atoms, a journey through the ages has led humankind into the fascinating realm of par-
ticle physics. The story of the search for the indivisible building blocks of the universe
is a testament to humankind’s insatiable curiosity and relentless quest to understand the
fundamental nature of the universe.

Throughout history, the concept of the atom has evolved, with influential figures such as
John Dalton in the 19th century proposing the idea of atoms as distinct, indivisible entities
that combine to form compounds [1, 2]. However, it wasn’t until the turn of the 20th
century that the true nature of the atom began to be revealed. In 1897, J.J. Thomson’s
groundbreaking experiments with cathode rays led to the discovery of the electron, a
tiny negatively charged particle that makes up the shell of the atom. This revelation
paved the way for the development of the atomic model. Ernest Rutherford’s famous gold
foil experiment in 1909 provided a further insight [3]. It showed that atoms are mostly
empty space with a small, dense nucleus at their core. Rutherford’s model introduced the
concept of protons in the nucleus, while the subsequent discovery of neutrons by James
Chadwick completed the trinity of subatomic particles [4].

As scientific exploration continued, it became increasingly clear that even these sub-
atomic particles, once thought to be the ultimate building blocks of matter, were not
really fundamental. In the mid-20th century, the advent of high-energy particle accel-
erators allowed scientists to probe deeper into the subatomic realm. They discovered a
plethora of new particles, such as mesons and baryons [5–8], which challenged the sim-
plicity of the atomic structure. The Standard Model of particle physics, developed in the
second half of the 20th century, provided a comprehensive framework for describing the
interactions and properties of particles thought to be fundamental [9–26].
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1 Introduction

1.1 The Standard Model of Particle Physics

The Standard Model (SM) is currently the most successful theory in particle physics [9–
26], having made several successful predictions, including the discovery of the Higgs boson
by the Atlas and Cms collaborations in 2012 [27, 28] and for example the precision
measurement of the anomalous magnetic dipole moment of the muon [29]. It predicts
elementary particles in two categories: 12 fermions (f) and the 5 bosons, the photon,
gluon, the W ± and Z bosons, and the Higgs bosons. Fermions comprise the building blocks
of matter, while bosons mediate the fundamental forces. There are three generations of
fermions, with each generation being more massive than the one before it. All of them
have corresponding antiparticles (f̄) with opposite charge and are further categorized into
quarks (q) and leptons (ℓ). See Table 1.1 for an overview.

Quarks are further categorised according to their electric charge. The up (u), charm
(c) and top quarks (t), from lightest to heaviest, have an electric charge of +2/3e and are
called up-type quarks. Conversely, down-type quarks have an electric charge of −1/2e and
make up the down, strange and bottom quarks. In addition, each type of quark has three
versions with different colour charges: red, green and blue. The corresponding antiquarks
(q̄) have the corresponding anticolours: antired, antigreen and antiblue. Leptons come
in two varieties: electrically neutral or with electric charge −1e, where e stands for the
elementary electric charge. The second and third generation counterparts of the electron
are the muon and the tau. Each charged lepton corresponds to a type of neutrino, which
has no electric charge and rarely interact with matter. Any pair of fermions from the
same generation with a property called ‘left-handedness” form a weak isospin doublet.
‘Right-handed” fermions do not pair up, and form singlets instead.

In SM, interactions between any particles are mediated by bosons. The photon (γ) is
the force carrier of the electromagnetic force, which governs the interaction of electrically
charged particles. It is massless and its own antiparticle. The strong force is mediated
by gluons (g), which bind quarks together to form colour-neutral hadrons. There are
eight distinct gluon types for every possible combination of a quark color with a different
anti-quark color. The Z and W ± bosons are involved in the weak force, which is the only
force that may change the flavour of quarks. The Z boson is its own antiparticle and
therefore electrically neutral, while the W ± bosons have electric charge ±1e. The weak
force primarily acts on left handed fermions. The Higgs boson is responsible for giving
mass to the other bosons via the Higgs mechanism and to the fermions via the Yukawa
coupling [10–12]. It is noteworthy that the field underlying the Higgs boson is the only
one with a positive vacuum expectation value.
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1.2 The ATLAS Detector at the Large Hadron Collider

Type El. charge 1st Gen. 2nd Gen. 3rd Gen.

Leptons −1e electron e muon µ tau τ
0e electron neutrino νe muon neutrino νµ tau neutrino ντ

Quarks +2/3e up u charm c top t
−1/3e down d strange s bottom b

Table 1.1: Fermions of the Standard Model organised by generation and electric charge.

1.2 The ATLAS Detector at the Large Hadron
Collider

To test the properties of and discover the existence of the heavier particles within the
Standard Model, experiments at high energy levels are needed. Particle accelerators
are therefore essential. The Large Hadron Collider (Lhc), a large circular synchrotron
accelerator at Cern (the European Organisation for Nuclear Research) in Geneva, plays
a crucial role in these investigations [30]. The Lhc accelerates protons to almost the speed
of light and then collides them in the detectors of international collaborations, allowing
scientists to observe and analyse the results of these collisions. The Atlas detector is one
of the two general-purpose detectors in the Lhc [31]. It is made up of several different
layers and components, each serving a specific purpose in particle detection and analysis.
Some parts are illustrated in Fig. 1.1.

Inner Detector

The Inner Detector (ID) is the innermost part of the Atlas detector, closest to the
collision point, and is responsible for the precise tracking and identification of charged
particles [32]. It consists of three sub-detectors. The Pixel Detector is the innermost
component of the ID and is known for its exceptional spatial resolution. It is made up of
several layers of pixel sensors, which are incredibly fine detectors that can pinpoint exactly
where charged particles pass through, allowing scientists to reconstruct the paths of the
particles with micrometre accuracy. This information is vital for identifying the types
of particles being produced. For example, B hadrons, which contain a bottom quark,
have relatively long lifetimes compared to other particles produced in the collisions. As
a result, B hadrons can travel a macroscopic distance before decaying. The high spatial
resolution of the pixel detector makes it possible to identify the B hadrons by detecting the
secondary vertices they produce when they decay. This identification is called “b-tagging”.

Located just outside the pixel detector, the Semiconductor Tracker (SCT) extends the
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1 Introduction

Figure 1.1: Schematic slice of the Atlas detector, and visualisations of different particles
(© Cern). From the inside out: The inner detector in dark grey, then the electromagnetic
calorimeter in light blue, after that the hadronic calorimeter in brown and finally the muon
spectrometer in beige. The dark blue line stopping in the ECAL shows a electron starting
a electromagnetic jet. The photon in pink, also stops in the ECAL. Protons and neutrons
(shown in light teal) are both stopped in the HCAL, with the proton path bending slighly
becaus of its electric charge. Muons are only bent slightly and go through the whole
detector. Neutrinos, shown in the black dashed line, do not typically interact with the
detector.
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1.2 The ATLAS Detector at the Large Hadron Collider

tracking capabilities of the inner detector further outwards. It uses silicon strip sensors
arranged in a barrel-like structure and endcap discs. As charged particles pass through
these sensors, they leave traces of electrical signals that can be used to reconstruct the
particle’s trajectory. The SCT provides additional information on particle momentum
and charge, complementing the data from the Pixel Detector. The momentum can be
deduced because the paths of the charged particles are bent by a magnetic field passing
through the detector, and the radius of curvature is proportional to the momentum.

The Transition Radiation Tracker (TRT) is the outermost component of the Inner
Detector and uses a different tracking technology. It consists of straw tubes filled with a
gas mixture. As charged particles pass through these tubes, they ionise the gas, producing
electrical signals that can be detected. The TRT is particularly useful for identifying
electrons and distinguishing them from charged pions.

Electomagnetic Calorimeter

The next detector component is the Electromagnetic Calorimeter (ECAL) [33]. Its pri-
mary function is to accurately measure the energy of electrons and photons by detecting
the electromagnetic showers they produce when interacting with the lead absorber ma-
terial. When an energetic electron or photon enters the ECAL, it undergoes multiple
scatterings, creating a cascade of secondary particles. These secondary particles ionise
the liquid argon, producing electrical signals that are detected by sensitive electrodes in-
side the ECAL. The ECAL helps distinguish electrons and photons from charged hadrons,
which produce less localised clusters of energy deposits. The high energy resolution of
the ECAL played a crucial role in the discovery of the Higgs boson, where it helped to
identify rare events in which Higgs bosons decayed into pairs of photons [27, 28].

Hadronic Calorimeter

The Hadronic Calorimeter (HCAL) is designed to measure the energy of hadrons and is
located outside and around the ECAL [34]. The HCAL is constructed similarly to the
ECAL, with alternating layers of dense absorber material and active detector material.
The dense absorber material is typically made of steel or brass, while the active detector
material is scintillating plastic or tiles that emit flashes of light when charged particles
pass through them.

The energy of the hadrons is measured by stopping and absorbing them in the dense
absorber material. As the hadrons interact with the absorber material, they produce
secondary particles which deposit their energy in the active detector material as they pass
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through. The light flashes produced in the active medium are then detected and converted
into electrical signals. One of the key applications of the HCAL is the reconstruction
of hadronic jets, which are cones of particles produced when a high-energy quark or
gluon creates a cascade of hadrons in a process called hadronisation. The HCAL makes
it possible to measure the total energy of these jets, which helps to study processes
involving strong interactions. For the analysis of jets energy deposits are clustered by for
example the anti-kt algorithm [35]. Using particle flow algorithms the energy deposits of
reconstructed particles can be subtracted [36].

Other parts of the Atlas detector include the muon spectrometer [37], which measures
the trajectories and momenta of muons, the electronics and trigger system [38], which
process and select collision events for further analysis, and detectors for forward physics
[39], which specialise in measuring particles produced at small angles relative to the
beamline.

1.3 The tt̄H Process

The Yukawa coupling between the Higgs boson and the fermions is proportional to the
mass of the fermions [16]. Since the top quark is the heaviest known fermion, studying the
Higgs-top coupling is naturally a good test for the SM. This could be done by studying the
decay of a Higgs boson into a top-antitop pair. However, this decay mode is kinematically
very unlikely, since a top quark is already heavier than the Higgs boson. The interaction
vertex that produces a Higgs boson from a top-antitop quark pair, the time-reversed
version of the decay mentioned above, is therefore a better candidate for measuring the
Higgs-top coupling. This interaction typically occurs when a Higgs boson is produced in
association with a top quark pair, a process called tt̄H. This process was observed in
2018 by the Atlas and Cms collaborations [40, 41]. A possible Feynman diagram for this
process is shown on the left of Fig. 1.2. The tt̄ → H interaction is circled in blue. The
top quarks are produced by gluons coming from the protons accelerated at the Lhc.

The most important background for the tt̄H production with the Higgs boson decaying
into a bottom quark-antiquark pair is the tt̄bb̄ process, since it shares possible final states
and is kinematically very similar [42]. A Feynman diagram of the tt̄bb̄ process, similar to
the one for the tt̄H process, is shown in Fig. 1.2 on the right. From the Feynman diagrams
it can be deduced that for both processes, if only one W boson decays leptonically, at
least 6 jets are expected, of which at least 4 are b-tagged, since 6 quarks are in the final
state, of which 4 are defined as bottom flavour. More quarks can be produced by the
hadronic decay of the other W boson or by the radiation of a gluon by the strong force,
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1.3 The tt̄H Process
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Figure 1.2: A possible Feynman diagram for the tt̄H process is shown on the right. The
top quarks are predicted to decay with almost 100% probability into a W boson and a
bottom quark [43]. The W bosons can decay into a quark-antiquark pair or into a charged
lepton and its corresponding neutrino. Both decays are shown. The Higgs boson is most
likely to decay into a bottom quark-antiquark pair, with a probability of about 58% [44].
On the right is a Feynman diagram for the tt̄bb̄ process, the main background. It can
share the exact final states. Here, the bottom quark-antiquark pair is produced by the
strong force rather than by the decay of the Higgs boson.

which then decays into quarks. Other important background processes are the associated
production of a top quark-antiquark pair with only one b-jet, called tt̄b, or a tt̄bb̄ event
with very collinear b jets that cannot be resolved as two distinct b-jets, called tt̄B. The
production of tt̄ associated with a jet of lighter flavour, i.e. jets originating from a charm
quark, called tt̄c, or from lighter quarks, called tt̄ + light, are also a source of background
events.
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2 Machine Learning

In an era marked by an unprecedented influx of data across diverse scientific disciplines,
the need for innovative tools and techniques to extract meaningful insights has never been
more pressing. This chapter delves into the realm of Machine learning (ML), a powerful
and versatile approach that holds immense potential for accelerating scientific discovery.

ML algorithms circumvent the problem, that designing algorithms by hand is not fea-
sible for a large class of tasks, by explicitly searching for functions that solve a given
task. This process is often called “learning”. ML is particularly good at tasks where the
performance of a candidate can be evaluated over large amounts of data, for example by
comparing the output of the current candidate to a known solution [45].

2.1 Neural Networks

Artificial Neural Networks (NNs) are a way of specifying the space of functions to be
considered by a learning algorithm. A NN architecture converts a vector of parameters
θ⃗ ∈ R|θ⃗| into a possible solution, i.e. vector valued functions for some n, m ∈ N:

f : R|θ⃗| → (Rn → Rm) , θ⃗ 7→ fθ⃗. (2.1)

This makes it possible to represent the class of considered functions by their parameters
θ⃗ and to reformulate the learning problem as a search for suitable parameters θ⃗∗.

The simplest NN architecture is the perceptron [46], which takes the form a simple
linear function fw⃗(x⃗) = w⃗⊺x⃗. Stacking several perceptrons yields the multilayer perceptron
(MLP):

f(W⃗ (1),...,W⃗ (k))(x) = W⃗ (k)(σ(W⃗ (k−1)(. . . σ(W⃗ (1)(x))))), (2.2)

where W⃗ (i) denotes the ith layer’s weight matrix and σ is a non-linear activation function
that is applied element-wise [47]. The activation function allows a sufficiently wide MLP
to approximate any continuous function [48]. Commonly used activation functions are
shown in Figure 2.1.

9



2 Machine Learning
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Figure 2.1: Common activation functions for
neural networks: The most common activa-
tion function is the Rectified Linear Unit,
which is shown in blue with circle markers.
The sigmoid function, which was used dur-
ing the initial phase of machine learning with
neural networks, is shown in red with triangle
markers. The Exponential Linear Unit looks
similar to the ReLU function, but has a con-
tinous derivative and a negative asymptote.
It is shown in pruple with square markers.

2.2 Optimisation

The goal of a machine learning procedure is usually stated by defining a cost function,
also called loss function L : R|θ⃗| → R, where a lower loss indicates a better solution.
Loss functions for NNs are usually required to be differentiable because most neural
networks are trained by variants of gradient descent, which is an iterative optimisation
algorithm, that uses linear approximations to update the current parameter estimate θ⃗t

in the direction of the steepest descent of the loss function:

θ⃗t+1 = θ⃗t − η · ∇θ⃗t
L(θ⃗t), (2.3)

where η ∈ R+ is the update scale, also called the “learning rate”. Adam is the most widely
used variant of gradient descent for training neural networks [49], mainly due to its prac-
tical trade-off between memory between memory usage, convergence speed and stability.
It achieves this by keeping a running average of the first and second moments of the
gradient, which are then used to update the parameters with the additional information
from previous iterations.

2.3 Generalisation

In most practical applications, what would be the ideal/true loss function cannot be
calculated, but only an approximation of it, called the training loss. This is usually
due to the fact that the ideal loss function is defined as an expectation over the data
distribution, which is approximated by a finite set of training data points. A model
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2.3 Generalisation

whose training loss is close to the true loss is said to generalise well. If the training loss
is much smaller than the true loss, the model is said to overfit. Since the true loss may
not be accessible, the model is usually evaluated on a statistically independent set of data
points, called the validation set.

In many cases, a simple relationship between validation loss and model complexity,
called the bias-variance trade-off, can be observed. First, the validation loss decreases
with increasing model complexity because the model is able to fit the training data better.
Therefore, model capacity is sometimes deliberately reduced by adding a regularisation
term to the loss function that penalises large parameter values. If the model has less
capacity than optimal, it is said to be underfitting [45]. The trade-off is illustrated in
Figure 2.2.

Model capacity

Er
ro

r

Bias-Variance Tradeoff
Bias2

Variance
Total Figure 2.2: Illustration of the bias-variance

trade-off, the model complexity increases
from left to right, resulting in the bias
squared (blue circles) decreasing and the
variance (red triangles) increasing. The total
error (black squares) has a unique minimum
in the center.

A good illustration of this principle is the case of training a function f̂ to approximate
observations of a true function f with added zero mean, σ2 variance noise ε, the expected
mean squared error can be decomposed into three terms: the squared bias, the variance
and the irreducible error σ2:

E [L(x)] = E
[(

f(x) + ε − f̂(x)
)2

]
(2.4)

= E
[
f̂(x) − f(x)

]2
+ E

[(
E

[
f̂(x)

]
− f̂(x)

)2
]

+ E
[
ε2

]
(2.5)

= Bias
[
f̂(x)

]2
+ Var

[
f̂(x)

]
+ σ2, (2.6)

for some fixed x. A full derivation of Eq. 2.5 is done in Ref. [50]. The bias can be inter-
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2 Machine Learning

preted as the error due to the model’s inability to represent the true function, while the
variance is the error due to the model’s sensitivity to the training data’s noise. However,
there is some recent evidence against this simple relationship between model complexity
and validation performance [51].

2.4 Generative Models

As Richard Feynman aptly stated: “What I cannot create, I do not understand.”. Gen-
erative machine learning embodies this principle by applying ML techniques to the task
of generating new data. The typical goal of generative modelling is to infer a probability
distribution from a set of independent and identically distributed (i.i.d.) samples. This
can be done by explicitly modelling the distribution, or implicitly by searching for a func-
tion that takes in a random variable of a known distribution and outputs a sample from
the desired distribution.

2.4.1 Maximum Mean Discrepancy Optimisation

Maximum mean discrepancy optimisation is an implicit generative modelling technique
[52]. It involves minimising a distance between the target and the model distribution
based on i.i.d. samples from both of them. The distance function is called the maximum
mean discrepancy (MMD) [53]. The MMD is defined for probability measures p, q on a
measureable space X , with a characteristic kernel function k : X × X → R as

MMD2
k(p, q) = Ex,x′∼p [k(x, x′)] + Ey,y′∼q [k(y, y′)] − 2 · Ex∼p,y∼q [k(x, y)] . (2.7)

For training, the MMD2 is used as the loss function, where p is the target distribution and
q is the model distribution. Note that the MMD requires O(n2) operations to compute,
where n is the number of samples from each distribution.

2.4.2 Normalising Flows

Normalising flows search for a differentiable, bijective function fθ⃗, that transforms a ran-
dom variable z with a known probability distribution pz into a random variable x with a
desired probability distribution px. The change of variables formula allows the calculation
of the probability density function p of fθ⃗(z) [54]:

p(f(z)) = p(z)/
∣∣∣det(Jz fθ⃗(z))

∣∣∣ , (2.8)
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2.4 Generative Models

where Jz fθ⃗(z) denotes the Jacobian of fθ⃗ at z. An example is shown in Figure 2.3.
This makes it possible to calculate the likelihood of a given sample and therefore also to
maximise the log likelihood of the model distribution:

L(θ⃗) = Ez∼pz

[
log p(fθ⃗(z))

]
. (2.9)

Although computing the determinant of the Jacobian is computationally infeasible for
larger unstructured matrices. Therefore, f is usually decomposed into a series of invertible
transformations fi with tractable Jacobians: fθ⃗ = fn ◦ . . .◦f1, where the Jacobian is either
diagonal or triangular. The resulting model distribution can be calculated by applying
the variable change formula repeatedly:

log p(fθ⃗(z)) = log p(z) −
n∑

i=1
log |det(Jz fi(z))| . (2.10)
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Figure 2.3: Example of a randomly initialised sigmoidial flow with a 1D standard normal
distribution as prior [55]. The posterior density is calculated using the change of variables
formula.
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2.4.3 Autoregressive Models

Autoregressive models are a class of generative models that model a joint distribution by
decomposing it into a product of conditional probabilities [56]:

p(x1, . . . , xn) =
n∏

i=1
p(xi | x1, . . . , xi−1). (2.11)

Normalising flows can be used to model the conditional probabilities p(xi | x1, . . . , xi−1).
This needs each individual flow fi(xi | x1, . . . , xi−1) to be invertible only in xi, which sig-
nificantly reduces the complexity of the architecture, allows for parallelisation of training
and makes the Jacobian triangular or block triangular, depending on the whether xi is a
scalar or a vector [57].

The generative pre-trained transformer, widely used in natural language processing, is
another example of an autoregressive model [58] that benefits significantly from paral-
lelising the training process. The generation of new samples from the model distribution
is done by sampling from the first distribution p(x1) and then successively from the con-
ditional distributions p(xi | x1, . . . , xi−1) for i = 2, . . . , n.

2.4.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of implicit generative models that
are optimised by simulating a zero-sum, two-player game between a generator and a
discriminator [59]. The goal of the discriminator is to discriminate between samples
from the target distribution and samples from the generator distribution, while the goal
of the generator is to generate samples that the discriminator does not flag as false.
Gradient based updates are applied alternately to the discriminator and the generator,
while keeping the parameters of the other network fixed. It should be noted that the
training of GANs is often unstable and the resulting model often does not capture all
aspects of the target distribution [60].
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3 Data-Driven Background
Estimation

Data-driven background estimation methods use experimental data in subsets of the phase
space called control regions (CR) to predict the contribution of background events in
disjoint signal regions (SR). This is particularly useful in cases where the background is
not accurately modelled by simulations, which can occur due to approximations that must
be made in light of computational constraints (e.g. in Ref. [61]). Data-driven background
estimation has been successfully applied to many different high-energy particle physics
analyses, including the successful searches for the top quark [62] and the Higgs boson
[27, 28].

3.1 Background Yield Estimation

The simplest method for estimating the number of background events in a given region is
the ABCD method. Three orthogonal CRs (B, C, D) and one disjoint SR (A) are defined
by two binary variables x and y. If the variables are independent and the number of
signal events in the CRs is negligible, the number of background events in the SR can be
estimated by

NSR = NC

NB
· ND , (3.1)

The statistical uncertainty of this estimate can be calculated using the standard error
propagation formula. If at least one of the variables is defined by a cut on a continuous
observable, assumed without loss of generality to be x, the independence assumption can
be tested by introducing another cut on the same observable through the region D. The
ABCD method is then used with the newly introduced cut parallel to x and the other
variable y to predict the number of events in the region adjacent to the SR, also called the
validation region VR. This prediction is compared with the number of events observed
in (VR). If the prediction matches the observation, the independence assumption can be
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3 Data-Driven Background Estimation

x
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Background density
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Figure 3.1: A simple example dataset with two continuous variables and possible region
definitions for the ABCD method. The CRs are dominated by background events, while
the signal events are concentrated in the SR. Furthermore, the background events are
uncorrelated in x and y.

considered valid. An ideal example for the ABCD method is shown in Fig. 3.1.

3.2 Background Shape Estimation

Background shape estimation techniques extrapolate the distribution of the background
process in the CRs into the SR. Extrapolation of the distribution may be advantageous if
the simulation of the background process has large systematic uncertainties or is biased in
some way. This task is orthogonal to yield estimation as the distributions are normalised
to unity and the yield prediction can be applied by scaling the distribution by the predicted
distribution. Since the goal is to predict a distribution, a generative model is a natural
choice for this task.

The ABCDnn method uses autoregressive normalising flows conditioned on each region
to predict the shape of the background distribution in the SR [63]. First, similar to the
ABCD method, the phase space is divided into rows and columns along two observables,
where each bin is assigned to be a CR, VR or SR. Ideally, the background is well modelled
in the CRs. If there is systematic mismodelling in the SRs, this should be reflected in
the VRs. This method can also be used if the genertion of samples in the CRs is strongly
computationally favoured to the generation of samples in the SRs. Then the VRs should
be chosen such that their distributions closely match those of the SRs, but it is still
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3.2 Background Shape Estimation

possible to generate enough samples in them for an accurate evaluation of the trained
model.

An autoregressive normalisation flow is fitted to the observables whose shape is to be
predicted. The region information is given as a conditional input to the flow. The row and
column coordinate of the bin are encoded as a one-hot vector and concatenated, so that
the flow can extrapolate to regions that were not part of the fit, but share either the same
row or column with at least one of the CRs. The resulting model may be validated by
checking whether the agreement between the data and the simulation in the VRs improves
when the background samples are replaced by the predicted distributions in the VRs.

A version of the ABCDnn method can be found in Ref. [64], where it was used to
extrapolate the shapes of tt̄ + QCD events in the high jet multiplicity regime for the
measurement of the tt̄tt̄ process at Cms. This was done by constructing a flow that
matches the simulation samples to the data, changing only the background samples. The
data and samples are quantised so that the data-driven background distribution can be
constructed by subtracting the signal samples from the data according to the simulation
ratio of signal to background events:

pdata-driven((bi, bi+1]) = Nsamples

Nbackground
· pdata((bi, bi+1]) − psignal((bi, bi+1]) , (3.2)

where (bi, bi+1] denotes bin i with bi being the lower and bi+1 the upper bin edge. The
quantisation is necessary to ensure that pdata-driven is non-negative. Note that this method
assumes that both the signal-to-background ratio and the signal shape are modelled cor-
rectly. The quantisation into bins also puts a strong limit on the number of dimensions,
since the number of bins scales exponentially in the number of dimensions and if there are
too many bins, the number of events decreases and therefore the likelihood of statistical
fluctuations creating bins, that would contain negative probability mass increases.

In Ref. [65] GANs are used to simulate background events in a SR by replacing an
object in an event from a CR with a generated object that would have been misidentified
and therefore placed in the SR. This shows that, in principle, any generative modelling
technique can be used for background shape estimation. However, normalising flows are
expected to be advantageous as they are comparatively easy to train [60].
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4 Shape Estimation for tt̄H
Background

This work applies data-driven background shape estimation to the measurement of the
tt̄H production process, i.e. distributions of observables for top-antitop processes with
associated jets are modelled. Two observables with systematic differences between simula-
tion and data were chosen: First, the sum of hadronic jet p⊺, called H⊺, where p⊺ describes
the transverse momentum of a jet measured in the plane orthogonal to the beam axis.
This variable is known to be systematically mismodelled [66], because it involves approxi-
mations in the production of the top quark pair production [61]. The jet radius setting of
the anti-kt jet reconstruction algorithm is set to r = 0.4 [35]. Only jets with p⊺ ≥ 25 GeV
and absolute pseudorapidity |η| = | − ln(tan(θ/2))| ≤ 2.5, where θ is the angle between
the 3D momentum vector of the particle and the beam axis, were retained. Second, the
score classifier trained to discriminate events of the tt̄H process from all other events,
using a transformer network trained for the on-going Run 2 legacy analysis also providing
the input samples 1. Similar systematic simulation data discrepancies were found in this
variable. Ratio plots of the data versus simulation are included in the figures 4.12 and
4.8.

To simplify the analysis and allow for later comparison with other background esti-
mation techniques, the semileptonic decay channel was chosen. This means only events
with exactly one reconstructed lepton are considered. Furthermore, events with jet mul-
tiplicity less than 4 are omitted, since they are dominated by tt̄c and tt̄ + light events,
which may not be representative of the most relevant background processes, where a top-
antitop quark pair are accompanied by one or more bottom quarks, i.e. tt̄b, tt̄B and tt̄bb̄,
producing bottom flavour jets.

1The development of this classifier and production of the simulated samples were not the focus of the
author
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4 Shape Estimation for tt̄H Background

4.1 Region Definitions and Preprocessing

Regions are defined by the jet multiplicity and the number of b-tagged jets using the DL1r
algorithm at a working 70% efficient [67], similar to Ref. [64]. The maximum number of
b-tags is chose to be 4, the same as the minimum number of jets, such that the defined
form a rectangle, see Fig. 4.1 for region definitions among other information. The number
of jet multiplicity bins is limited to 4 because regions with 8 or more jets would contain
too few events. To still be able to use events with more than 7 jets or more than 4 b-tags,
the region definitions at the edge are made inclusive, i.e. events with 7 or more jets, or in
the case of b-tags 4 or more, are included. The four regions with the highest jet and b-jet
multiplicity are chosen as SRs, since they are most sensitive to the tt̄H process. The two
regions with 2 b-tags, one fewer, than the two of the SRs, and 6 or greater than 7 jets
are chose as VRs, such that at least two CRs belong to each row and each column. The
event yields and tt̄H significance ratios of all regions are shown in Fig. 4.1.
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Figure 4.1: The number of data events in each of the regions is shown on the left, note
the log-scale. The significance ratio of the tt̄H signal process computed on simulation
data for each region is shown on the right. Note, that the signal regions have the highest
significance ratio. Statistical uncertainties are indicated by the hatched band around the
histogram.

Since both the H⊺ and the DNN score distributions have long tails and are non-negative,
instead of modelling them directly the natural logarithm is applied to them. The raw
distributions are shown in Fig. 4.2. As is common with machine learning algorithms,
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4.2 ABCDnn Shape Estimation

both features are separately normalised to zero mean and unit variance. The means
and variances are calculated from the simulated background. Normalisation can help
to make better use of finite numerical precision and make hyperparameter choices more
transferable between features.
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Figure 4.2: Histograms of the H⊺ (left) and the DNN tt̄H classifier score (right) are shown
with a logarithmic y-scale. Most of the events are concentrated to the far left of the value
range, while few events are observed with significantly larger H⊺ values or DNN scores.

4.2 ABCDnn Shape Estimation

The standard ABCDnn method was applied to a similar setup as described above2 [63].
Since the goal is to predict the background in the VRs and SRs means and variances are
not available in these regions. Therefore the mean and standard deviations were calcu-
lated for the background samples in all CRs together, but independently for each feature
variable and then the same normalisation was applied to each region. For the normalising
flow a standard normal prior was used, because the normalised features seemed already
close enough to a standard normally distributed. The density of the standard normal
can be efficiently calculated and differentiated in closed form, therefore maximum likeli-
hood training is the best available option. The maximum likelihood objective is directly
weighted by the simulation event weights.

2A dataset containing events with jet multiplicities ≥ 5
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4 Shape Estimation for tt̄H Background

The data points in the CRs were randomly assigned to either the training set or the
validation set, with a split of 80% and 20%, to allow generalisation to be tested on an
independently sampled set with exactly the same underlying distribution as the model
was trained on. The loss curves in Fig. 4.3 show that without regularisation, the model
generalises to the distribution of CRs but not to the VRs, as the overall loss on the
validation set decreases but the loss on the VRs increases over the course of training.
By adding a l2 penalty to the training process, the model generalises even better to the
training distributions, as the training set and validation set loss almost perfectly match.
Furthermore, the model generalises to the VRs, but still does not perform as well on
them, since the VRs loss is significantly higher than the other two losses. Replacing
the background samples with the predicted background distributions in the VRs does
not improve the simulation-data agreement, which is not very surprising since systematic
mismodelling is already present in the CRs to a similar extent as in the other regions:
Even with the perfect extrapolation algorithm, biased extrapolation is expected when
extrapolating from biased data points.

Therefore, it makes more sense to directly train a model to remove the mismodelling in
the CRs by fitting the simulated background distribution to the data-driven background
(i.e. data minus simulated signal). The following sections investigate three different
approaches for this. Each of these methods must be able to solve the problem of translating
between two distributions that are only indirectly accessible via i.i.d. random samples
with weights. It is worth noting that a significant proportion of the weights in one of the
sample sets are negative.

4.3 Maximum Likelihood Training with Kernel
Density Estimation

The probability density function of neither the simulated background nor the data-driven
background is known, but for maximum likelihood training at least one of them must
be known. This can be mitigated by approximating the true density of the data minus
simulated signal using kernel density estimation. The requirement to handle (negatively)
weighted samples can be solved by weighting the kernel around each data point with the
weight associated with that data point. The bandwidth should be chosen high enough so
that the resulting density estimate is non-negative. This allows calculating region wise
means and variances from the background samples.

This approach was not able to closely match the ground truth correction in the CRs
for any of the hyperparameter choices tested. This is likely due to the fact that the true
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Figure 4.3: Losses on the training set, validation set and VRs over the course of training
are shown. For the setup on the right, no weight penalty was used. The model on the
left was trained with a l2 penalty of strength 10−5. For ease of comparison, both training
runs were run for 10000 iterations, although the loss of the CRs in the validation set for
the unpenalised model on the left starts to increase slightly after about 1000 iterations.

correction is very close to the identity function, as testing this approach on toy examples,
where a simple shift is added to one of the distributions, resulting in a ground truth
correction further away from the identity function, yielded positive results. Using the
maximum mean discrepancy training approach from Ref. [64] gives similar results for any
choice of hyperparameters, including kernel for the MMD, binning and batch size up to
1024 instances. It is likely that both of these approaches fail in the case where only small
corrections are needed, because even using relatively large batches the distribution(s) are
not described well enough for the loss to be informative. This hypothesis is supported by
the fact of the large fluctuations in the loss curves during training, which are shown in
Fig. 2.1).

4.4 Cumulative Distribution Function Matching

This section proposes a way to improve the informativeness of the loss by making more
effective use of the datasets for the background samples and the data minus the simu-
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Figure 4.4: The training loss during the binned MMD training using KDE for the data
minus simulated signal distribution is shown on the right. The decrease in loss is initially
large, but then small compared to the random fluctuations. The difference between the
ground truth transformation and the model to the identity function is exaggerated by a
factor of 5 (left). The ground truth transformation is a monotone function.

lated signal distribution, through a pre-processing step that approximates the underlying
cumulative distribution function (CDF). This approximation can then be used directly in
the loss function

LCDF(x, θ) :=
(
F̂data-signal(fθ(x)) − F̂background(x)

)2
, (4.1)

where F̂name denotes the approximations to the CDFs and fθ denotes the model. If
this loss is zero and F̂ = F is continuous, then by the probability integral transform
F̂background(x) with x ∼ pbackground is distributed according to a standard uniform, and
since LCDF(x, θ) = 0 ∀x ∈ R ⇒ F̂data-signal(fθ(x)) = F̂background(x) so is F̂data-signal(fθ(x)).
If F̂ = F is continuous, its proper inverse F −1 exists and applying it to F̂data-signal(fθ(x)),
a standard uniform distributed variable, yields fθ(x), which is then distributed according
to F̂data-signal by the inverse sampling transform. This is discussed more explicitly in
section 4.5.

Before discussing the construction of the CDF approximation, some definitions are
needed: Consider the case of a real-valued observable x modelled as a random variable.
Simulated data points and their associated weights (x, w) ∈ R2 come from a joint prob-
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4.4 Cumulative Distribution Function Matching

ability measure space (R2, µ) which satisfies the conditions of non-negativity and finite
yield:

∫
A×R

w dµ(x, w) ≥ 0 ∀A ∈ B(R) (4.2)

∧
∫
R2

w dµ(x, w) =: yield(µ) < ∞ . (4.3)

In the case of measured data points, µ can be decomposed into p⊗δyield. The background
sample distribution should satisfy these conditions, since predicting a negative yield in any
region of phase space would indicate an error in the simulation, and predicting an infinite
yield would be unphysical. The data minus the simulated signal distribution satisfies
these conditions if the predicted number of signal events does not exceed the measured
data at any point. Formally, with µsignal and µsignal normalised according to Eq. 3.2, this
gives

∫
A×R

w dµsignal(x, w) ≤
∫

A×R
w dµdata(x, w) ∀A ∈ B(R) . (4.4)

The normalised weighted distribution µ′ is defined as the push-forward measure of mu by
dividing the weights by the yield

µ′(A) := µ({(x, w · yield(µ) : (x, w) ∈ A}) (4.5)

⇒
∫

A
w dµ′(x, w) = 1

yield(µ) ·
∫

A
w dµ(x, w) , (4.6)

for any A ∈ B(R2). Then
∫

w dµ′ = 1. The CDF F : R → [0, 1] of the intended
distribution of the observable is then given by

F (t) :=
∫
R2

w · 1x≤t dµ′(x, w) , (4.7)

which is monotone because of the condition 4.2 and satisfies limt→−∞ F (t) = 0 ∧ limt→∞ F (t) =
1 because of the Eq. 4.3. Although the empirical estimate Fn : R → [0, 1]

Fn(t) := 1∑n
i=1 wi

n∑
i=1

wi · 1x≤t , (4.8)

from i.i.d. samples (x1, w1), (x2, w2), . . . (xn, wn) ∼ µ with ∑n
i=1 wi > 0 for some n ∈ N is

not guaranteed to be monotone because of possible negative weights, but has the same
bounds limt→−∞ Fn(t) = 0 ∧ limt→∞ Fn(t) = 1. Using Fn as an approximation for the
CDF in the loss does not work because its derivative is either 0 or undefined. This
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4 Shape Estimation for tt̄H Background

can be mitigated by using linear interpolation and using the one-sided derivative at the
interpolation points, which were previously discontinuity points.

However, when optimising this loss with a CDF approximation that is not monotone,
a gradient based algorithm may get stuck at a local extreme value, because the value of
Fn(fθ(x)) should be higher, but fθ(x) is a local maximum of Fn, and vice versa for a
lower desired value and a minimum of Fn. So an approximation that is guaranteed to be
monotone is needed. This is done by constructing the highest monotone function that is
lower at all points than the pointwise constant empirical approximation Fn, called F +

n ,
and the lowest monotone function that is greater than Fn, called F −

n :

F +
n (t) = min{f(t) : f monotone ∧ f(x) ≥ Fn(x) ∀x ∈ R} (4.9)

= max
x≤t

min
x′≤x

Fn(x′) (4.10)

F −
n (t) = max{f(t) : f monotone ∧ f(x) ≤ Fn(x) ∀x ∈ R} (4.11)

= min
x≥t

max
x′≥x

Fn(x′) . (4.12)

The minima and maxima exist because the image of Fn is finite. The boundary conditions
of the CDFs are applied to the envelope functions F +

n and F −
n by shifting and scaling them,

and The final approximation of the CDF is then simply defined as the midpoint between
these two approximations F̂ (t) := (F +′

n + F −′
n )/2 and is therefore also guaranteed to be

monotonic. The prime indicates the applied boundary conditions. The construction of F̂

is illustrated in Fig. 4.5. For training in more than one dimension, the conditional CDF
can be estimated by integrating the KDE, although the use of the KDE imposes a tight
upper bound on the number of dimensions.

4.4.1 Results

A conditional sigmoidial flow is trained on the CRs [55], using Eq. 4.1 as the loss function
with an additional l2 weight penalty term. The hyperparameters are slightly tuned using
the loss in the VRs. The final model with the optimised hyperparameters is trained on the
CRs and VRs together. All regions are given the same weight during training, regardless
of their number of samples or their yield. This procedure was done independently for
the H⊺ and the DNN score, as training a joint correction did not improve the results in
the VRs and therefore no improvement was expected in the SRs. The loss curves for the
three different region types during training on the CRs only of the model with optimised
hyperparameters are shown in Fig. 4.6. The model seems to generalise well to both the
VRs and the CRs.
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Figure 4.5: Construction of the monotone CDF approximation from data points with
weights, some of which may be negative. The shaded band is given by the two maximally
close monotone functions F +

n from above and F −
n from below. The influence of negative

weights is shown in the inset plot. As the blue line, i.e. the empirical CDF, decreases,
the red line, i.e. the monotone CDF approximation, simply stops increasing around this
point.

Extrapolation results for the final model in the SRs are shown in Fig. 4.12 for the H⊺

and Fig. 4.8 for the DNN score. The quality of the extrapolation can be evaluated by
comparing the discrepancy between the data minus the simulated signal distribution and
the background samples before and after applying the model to the background samples.
The Hellinger distance of the histograms was chosen as a measure of this discrepancy,
as opposed to the χ2 statistic, because it does not depend on the number of samples in
the bins. The distance was also chosen to be binned, rather than using the underlying
structure of the metrically scaled variables, as would be the case with the earthmover
distance or the Kolmogorov-Smirnov statistic, because this structure is unlikely to be
used for further analysis of the signal process that this background estimation allows. For
example, a binned likelihood fit could be performed to measure the cross section of the
signal process [68]. The formula for the Hellinger distance between two histograms P and
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Q with the same bin definitions and bin probabilities pi and qi for i = 1, . . . , n is given by

H(P, Q) = 1√
2

√√√√ n∑
i=1

(√pi − √
qi)2. (4.13)

The ratios of the model improvements of the H⊺ shapes are ≥ 2 for all SRs except the 6
jets 4 b-tags region, where the model background distribution fits the data minus signal
distribution worse than the simulated distribution with a ratio of 0.75. It is noteworthy
that this region has the lowest yield of all SRs and also the worst extrapolation perfor-
mance for the DNN score with a ratio of 1.13. A possible explanation for this could be
that there are relatively few events in the CRs with 4 b-tags, which is the row correspond-
ing to this region. Furthermore, the range of the fraction of jets with b-tags in this row
is relatively large, as it reaches one in the 4 jets 4 b-tags region, which is also the region
with the fewest events. However, this hypothesis does not explain why the H⊺ model
performs so well in the 7 jets 4 b-tags region. The remaining DNN score extrapolations
do not improve as much as the H⊺, but are still significant with values of {1.18, 1.29, 1.4}.
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Figure 4.6: Training the tuned models only on the CRs using the CDF loss results in the
loss curves above. The losses of each region type are normalised by the number of regions,
so that the loss values can be compared between regions. The penalty is not included in
the loss values shown. The loss decreases rapidly and then converges for all region types,
although the VRs take longer to reach diminishing returns.
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Figure 4.7: Extrapolation results for the H⊺ in the SRs. The black histogram is the data
minus the simulated signal distribution, the blue histogram is the background samples
and the red histogram is the extrapolated background samples generated by applying the
learned model to the simulated background samples in the same region. All histograms are
normalised to area one and the number of bins depends on the number of data events. The
hatched band around the extrapolated histogram includes all the systematic uncertainties
of the method, the MC statistical uncertainties, but not the systematic uncertainties of
the simulated samples themselves. The improvement ratio shown in the legend is the
ratio of how much the Hellinger distance between the data Mius signal histogram and the
background histogram is reduced by extrapolating the background.
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Figure 4.8: Extrapolation results for the DNN score in the SRs. Plot details are the same
as in Fig. 4.12. All extrapolations improve the agreement between data and simulation, as
all improvement ratios are greater than 1. It is noteworthy that the overall discrepancies
are smaller than for H⊺, so there may be less room for improvement.
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4.4.2 Systematic Uncertainties

Well-calibrated predictions can only be made if good estimates of uncertainties can be
calculated. This includes the uncertainties introduced by the methods themselves. To
estimate the systematic uncertainties of the results presented, different choices of hyper-
parameters are considered. For each hyperparameter, two models are trained, one with
the hyperparameter at a reasonable upper bound and one at a lower bound, with all
other hyperparameters remaining the same, i.e. at their nominal values. The systematic
uncertainty for each hyperparameter is then given by the range of the prediction. The
uncertainties are assumed to be independent, so that a quadratic addition can be used to
obtain the total uncertainty. What constitutes reasonable bounds for a hyperparameter
is a difficult and, in the general case, unresolved question, as it may strongly depend on
the given problem. In this case, it is worth noting that many hyperparameter configura-
tions can already be disqualified because it is clear that they do not allow the model to
generalise to the VRs. For all variations of the hyperparameters, the loss in the VRs was
checked not to diverge. All approximately continuous hyperparameters such as network
width, l2 penalty strength, batch size, learning rate and number of optimisation steps
were halved for the lower bound and doubled for the upper bound. For the activation
function, sigmoid, relu, elu and leaky relu were tried, but the model using the sigmoid
activation function was largely ineffective on the VRs and was therefore not considered in
the uncertainty calculation. The number of layers in the encoder and decoder was varied
from 1 in the encoder and decoder each to 3 in the encoder and 2 in the decoder. The
random initialisation of the neural network and the random shuffling of the dataset are
also considered as a source of uncertainty, since the training process is otherwise com-
pletely deterministic. The full results of the systematic uncertainty calculation are shown
in Fig. 4.9 for H⊺ and Fig. 4.10 for the DNN score. It can be seen that the statistical
uncertainties of the number of simulated samples largely dominate all other sources of
systematic uncertainties. The most sensitive hyperparameters are the penalty strength,
width and depth, which are all closely related to the model capacity. The choice of ac-
tivation function, number of training iterations, network initialisation and data shuffling
are almost negligible sources of uncertainty. The addition of an encoding for the fraction
of b-tagged jets was also included in the systematic uncertainties, but turned out to be
negligible.
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Figure 4.9: The individual relative systematic uncertainties for the H⊺ extrapolation in
the SRs. Note the log scale. The uncertainties due to initialisation, activation function
and number of optimisation steps are not shown because they do not exceed 10−5 in any
bin, but are included in the calculation of the total systematic uncertainty. The total
uncertainty is everywhere dominated by the systematic uncertainty from the number of
simulated samples.
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Figure 4.10: The individual relative systematic uncertainties for the DNN score extrap-
olation in the SRs. Plot details are the same as in Fig. 4.9. The results are also very
similar, although the neural network width seems to be a bit less important.
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4.5 Machine Learning Free Shape Correction

A ML-free alternative to the above approach for one-dimensional data is discussed in this
section. This method will be used as a baseline to test whether ML is needed for the task
of extrapolating the H⊺ and DNN score. To do this, the monotone CDF approximation
for the background sample distribution and the data minus signal distribution from above
is used to construct functions that directly transform one into the other in each region:

First, the F̂background functions are applied to the background samples in each of the
CRs to transform them to be approximately uniformly distributed. Doing this with a
known CDF is called a probability integral transform. Second, the right inverse F̂ −1

data-signal

of the CDF approximations for the data minus the simulated signal distributions are con-
structed in each CR. This is possible because F̂ is guaranteed to be monotone. Applying
F̂ −1

data-signal to the approximately standard uniformly distributed F̂background(x), where x is a
background sample, yields samples that are close in distribution to the data minus signal
distribution. For known quantile functions, this part is also known as inverse transform
sampling. By combining these functions, which transform the background samples in the
CRs to have a shape similar to the data minus simulated signal distribution in the same
CR, the shapes of the background samples in the VRs and SRs can be corrected. A com-
bination similar to the ABCD method is most natural here: All transformations of CRs
with either the same row or column number are averaged. Applying the transformations
from the CRs and VRs to the SRs for the H⊺ results in worse improvement ratios on aver-
age, although the ML-based approach only performs better in one region. A similar effect
can be observed for the DNN score, where the ML-free approach significantly decreases
the data versus simulation agreement in the SRs with 7 jets, but performs slightly better
than the normalising flow in the SR with 6 jets and 4 b-tags.

The overall tendency for the ML-based approach to extrapolate better is likely due to
the fact that the ML-based approach can use data points from CRs that are not in the
same row or column. In addition, the normalisation flow with, trained with a weight
penalty, introduces a bias towards smoother transformations, which could be helpful for
generalisation. As the method using normalised flows does not appear to increase uncer-
tainties significantly, the only reason for using the ML-free approach is that it may be
simpler and therefore quicker and easier to implement.
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Figure 4.11: ML free extrapolation results for the H⊺ in the SRs. Plot details are the
same as in Fig. 4.12. The data versus simulation agreement is improved by the applied
transformation in all SRs except the 6 jets 4 b-tags region. This is similar to the ML-based
results.
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Figure 4.12: ML free extrapolation results for the DNN score in the SRs. Plot details
are the same as in Fig. 4.12. The data versus simulation agreement only increases in the
regions with 6 jets. This is not the case not eh ML-based approach, where the agreement
of the DNN score increases in all regions.
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5 Conclusion

Data-driven background shape estimation has been successfully applied to reduce the sys-
tematic data versus simulation discrepancy of the scalar sum of the hadronic jet transverse
momentum H⊺ and the score of a deep neural network tt̄H classifier distribution for events
with more than 6 jets and more than 3 b-tags. For this, only the background samples were
transformed with a normalising flow. Training a normalisation flow to correct for small
discrepancies between datasets with possible negatively weighted samples was the main
difficulty. Several approaches were investigated. Constructing a monotone approximation
to the cumulative distribution function of the data minus the simulated signal and the
simulated background distributions for the loss function proved successful. The discrep-
ancy between data and simulation was reduced by {0.75, 2.75, 2.04, 2.46} times in different
regions for the H⊺ and {1.13, 1.18, 1.40, 1.29} for the DNN score, which outperforms the
machine learning free baseline. Systematic uncertainties were quantified by variations of
the hyperparameters and found to be dominated by the statistical uncertainties of the
simulation samples.

5.1 Limitations

The main limitation of the method is that it does not appear to scale to correct more than
one variable at a time. Although in Ref. [64] MMD-based training was successfully applied
to two variables. Furthermore, it is unclear whether or in what situations a reduction in
loss on the VRs is a robust predictor of generalisation to the SRs. This is likely to be
highly dependent on the definition of the regions, so guidelines on how to select regions
could be of great benefit. In addition, it is not clear to what extent the method is able
to improve our ability to distinguish theories with good predictions from those with poor
predictions. Assuming that the model is able to perfectly extrapolate the systematic
differences for samples from very different simulations, this would make it possible to
make accurate predictions, but not necessarily to learn humanly understandable laws of
particle physics, since the predictions of neural networks are usually difficult to interpret.
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5.2 Outlook

The requirement to translate only part of one distribution, i.e. the background sample,
to match another distribution, where both distributions are specified only by data points,
possibly with negative weights, precludes most standard generative modelling techniques.
It may be possible to adapt methods from the unpaired domain translation literature to
work with negative weights, which could address the poor performance on higher dimen-
sional data. A concrete possibility would be to combine the simple method of Ref. [69]
for domain translation with a diffusion based decoder [70]. The inherent composability of
diffusion models can then be used to model the data minus the simulated signal distribu-
tion [71]. A more direct approach to the task of correcting only the background samples
would be to condition the generator of a CycleGAN on whether a given sample is from
a signal or background process and add a term that minimises corrections to the signal
events [72].

To find recommendations for region definitions, systematic tests on a wider range of
datasets are needed. The full hadronic decay of tt̄H(bb) would be one good candidate for
this, as it provides additional jets and therefore more possible regions, similar to Ref. [64].
Finally, the sensitivity of the neural network training to the number of data points could
be tested experimentally and added to the systematic uncertainties.
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