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Chair for Communication Technology (ComTec), University of Kassel, Kassel, Germany
∗Computer Security and Privacy (CSP), University of Göttingen, Göttingen, Germany

Abstract—A promising approach to further increase the safety
of Vulnerable Road Users (VRUs) are cooperative collision avoid-
ance systems. Cooperative collision avoidance systems actively
integrate the VRUs in collision detection by using movement
data from a VRU’s mobile device. While in recent years great
attention was payed to solve technical challenges, e.g., regarding
communication and sensor accuracy, little attention was payed to
threats of privacy. However, the use and collection of such data
poses certain privacy risks to the VRU. These privacy risks cannot
be addressed by encryption alone. While some pseudonymisation
approaches are used to protect the identity and location of VRUs,
in this paper, we analyse to which extent the perturbation of
movement data, specifically the speed data, can prevent the
linkage of this data to a particular VRU, thus reducing the
probability that this specific VRU can be identified. At the
same time, we evaluate the trade-off between the probability of
User Identification and the probability of collision detection. The
evaluation is based on a standardised urban collision scenario
between pedestrians and vehicles from the European New Car
Assessment Programme. Our results show that privacy and
”survival” are not mutually exclusive.

Index Terms—privacy, data, collision avoidance, vulnerable
road user

I. INTRODUCTION

According to the “Global status report on road safety 2018”
by the World Health Organization (WHO), Vulnerable Road
Users (VRUs) represent more than half of all road traffic
deaths, while pedestrians and cyclists make up for 26% [1].
Currently available car-based collision avoidance systems are
already helpful to lower the risks of fatalities and severe
injuries, but have considerable limitations especially when
there is no ”line-of-sight” between the vehicle and a VRU
[2]. A promising approach to further increase the safety
of VRUs are cooperative collision avoidance systems. In a
cooperative collision avoidance system data from a VRU’s
personal mobile/wearable device, like their smartphone or
smartwatch, are exchanged with data from other road users,
such as cars, in order to determine the risk of an impending
collision. To calculate the collision risk, at least the current
linear movement information, such as position, speed, and
direction, is necessary which can be derived from Global
Navigation Satellite System (GNSS).

Simultaneously, such movement data can reveal information
about VRUs, including their current location and other per-
sonal characteristics, such as age, health conditions [3]–[6],
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routines [7], and behavior [8]–[10], resulting in an increased
risk for their privacy.

To prevent exploitation of confidential information about the
system users by external attackers during data exchange, the
use of data encryption is feasible. However, internal partici-
pants, such as other VRUs or a central server, have access to
this linear movement data to perform collision detection. Thus,
encryption alone is not sufficient to protect users’ privacy as
the data has to be accessible by the respective participants as
described in more detail in Section III.

As a result, protecting privacy is more than ensuring confi-
dentiality and covers different aspects such as the protection
of user information against honest-but-curious participants.

In this paper, we propose and evaluate a speed data per-
turbation approach for the protection of the system users’
privacy against honest-but-curious system participants. In this
approach we are adding a normal distributed error to the
speed values and explore whether the perturbed data can
still be linked to the original data. We focus on reducing
the exposure risk of private VRU information by perturbing
the measured speed before this information leaves the mobile
device. Following this approach, the risk of exposure of pri-
vate information is reduced against honest-but-curious system
providers in case of a client-server architecture and against
other VRUs in case of a peer-to-peer architecture.

In parallel we analyse the impact of speed data perturbation
on the probability of collision detection in terms of Missed
and False Alarms. By doing so, we investigate whether both,
privacy and ”survival” of VRUs, can be achieved using stan-
dardised scenarios based on the European New Car Assess-
ment Programme (Euro NCAP) [11].

The remainder of this paper is structured as follows: In
Section II, the related work about privacy threats in cooperative
collision avoidance systems and existing privacy-preserving
solutions are reviewed. We then discuss the threat model
for different system architectures of a cooperative collision
avoidance system in Section III. In Section IV, we introduce
a data perturbation approach and three Key Performance In-
dicators (KPIs), namely the probability of User Identification,
the probability of a Missed and a False Alarm. The impact
of speed perturbation on the three KPIs is then evaluated and
discussed in Section V. Finally, in Section VI our conclusion
is given.
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II. RELATED WORK

Studies, such as [12]–[15], have revealed threats to pri-
vacy resulting from road safety applications and other daily
activities. Sensor data exploits have been found to reveal the
identity of drivers and pedestrians: In [16], drivers could be de-
anonymised by analysing how the driver depressed the brake
pedal using the pedal position sensor of the in-build controller-
area-network. A different publication by H. M. Thang et
al. [17] showed that pedestrians could be identified from their
gait by using the accelerometer data of their mobile device.

Location and acceleration data has further been used to
gather insights on the VRU’s routine, health status and be-
haviour [5], [7], [9]. While accelerometer data can also allow
to detect the decline of an elderly’s walking performance
and infer clinical regression [5], other privacy issues, such as
information about habits, routines and personal associations
(e.g. the child’s school, regular trips to the doctor), can be
revealed using location data [7].

To prevent honest-but-curious internal adversaries from
viewing decrypted data in order to perform certain com-
putations, homomorphic encryption could be used to allow
computations to be performed on the encrypted data. However,
homomorphic encryption is highly computational and might
therefore only support limited functionalities [18] and does
not fit to the requirements in terms of a real time collision
avoidance system [19].

Several pseudonymisation methods have been introduced
to protect privacy in collision avoidance systems [13], [14].
S. Lefèvre et al. [13] investigate different pseudonymisation
schemes in road intersection scenarios and their impact on
privacy by frequently changing drivers’ pseudonyms. I.B.
Jemaa et al. [14], on the other hand, investigate the impact
of such pseudonymisation approaches on safety applications.
Both have stated that the frequency of pseudonym changes
can be obtained by an attacker, which can then be exploited
to re-identify the drivers. To avoid it, silent periods, in which
no pseudonym is exchanged, can be introduced to reduce the
probability of tracking drivers over time.

In order to obfuscate the trajectory of people inside build-
ings and in road traffic, perturbation methods based on differ-
ential privacy were proposed [20], [21]. X. Zhao et al. [20]
proposed a clustering based differential privacy approach,
which adds noise to trajectory data. They investigated how
privacy is impacted using different attacker models. A privacy
platform for pedestrian dead reckoning was proposed by T.
Feng et al. [21]. To calculate trajectories, they used data from
Inertial Measurement Units (IMUs), such as accelerometer,
gyroscope and magnetometer, and used perturbation in order
to add noise and calculate pseudo-trajectories. While these
studies explore the potential of differential privacy by adding
noise to the movement data in indoor as well as in clustering
scenarios where data is aggregated and later on analysed
to obtain similarities and anomalies in datasets, the main
difference in our research is that we are explicitly exploring
the impact of differential privacy in a cooperative collision
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Fig. 1. Sketch of a hybrid cooperative VRU collision avoidance system for
an urban collision scenario

avoidance scenario focusing only on the perturbation of the
speed data.

To the best of our knowledge, the impact of data pertur-
bation on collision detection has not yet been investigated.
As a result, analysis of how data perturbation can impact the
performance of collision detection algorithms in cooperative
collision avoidance systems constitutes a new contribution to
this field.

III. SYSTEM ARCHITECTURES AND THREAT MODEL

As shown in Fig. 1, in a cooperative collision avoidance
system, the exchange of information can be direct (a), e.g.
via wireless local area network (WLAN) or device-to-device
(D2D) communication in 5G, or cellular-based (b) with an
optional server, e.g., a Multi-Access Edge Computing (MEC)
server (c). The algorithms for detecting collisions can be
used directly on devices, or at a server. Also a combination
of direct and cellular communication is possible allowing
to dynamically switch between the server or the devices
for collision detection calculation. Therefore, three types of
architectures can be identified in terms of data exchange:
client-server, peer-to-peer, and hybrid. The exchanged data can
be protected against external attackers in any of these architec-
tures by using encrypted communication. In any architecture,
however, internal participants could be interested in gaining
insights about other participants for purposes different from the
original collision detection [22], thus threatening their privacy.
In the following, we therefore adopt an honest-but-curious
threat model. These honest-but-curious participants, such as
the server and other VRUs, do not perform active attacks, but
only listen to information they legitimately obtain [23], [24].
In what follows, we describe the possible threats in different
architectures.

A. Client-Server Architecture

Movement information that is shared by VRUs with a server
can be observed by the provider of the system. Despite the use



of this data to ensure collision detection, the provider may use
this data for further analysis to derive personal characteristics,
such as age or health status, associated with the respective
VRU [3]–[6].

B. Peer-to-Peer Architecture

In a peer-to-peer architecture, data is not sent to a central
server but shared directly with system participants in prox-
imity. Therefore, other participants obtain the speed data and
can leverage it to try to identify the participants over time in
case of multiple encounters and specific speeds, or derive other
insights about them, if they are not already able to visually
observe them.

C. Hybrid Architecture

Since a hybrid architecture is a mix of client-server and
peer-to-peer architectures, the threats posed by these archi-
tectures can also be found in a hybrid approach. This means
that a hybrid architecture potentially poses the highest risk to
privacy as data might be observable from different entities.

In summary, the roles played by the system participants
in endangering others’ privacy depends on the architectures
involved. In terms of privacy, we have identified system
providers and road users, such as drivers and VRUs, as poten-
tial attackers that gain information about others by design.

IV. IMPACT OF DATA PERTURBATION ON COLLISION
DETECTION PERFORMANCE

Based on Sec. III, we assume that honest-but-curious par-
ticipants have access to a VRU’s decrypted movement data.
Our goal is hence to investigate how perturbing the data before
leaving the device can preserve privacy, while maintaining the
collision detection performance. To this end, we introduce the
following three performance indicators. It should be noted that
for our investigation, we focus on perturbing the VRU speed
data in a client/server architecture.

A. Perturbation Approach

The idea of speed perturbation is to make it more difficult
for a system participant to identify an individual VRU based on
the VRU’s known walking speed. If this speed is characteristic
of an invidual VRU, it can help a system participant in linking
different data to the same VRU over time, thus opening the
door to the inference of additional insights about the VRU.
To evaluate the speed perturbation approach, we assume a
simple cooperative VRU collision avoidance system which
uses collision detection for a car (c) and a pedestrian (p) based
on the extrapolation of their linear movement as previously
published in [25]:

Assuming linear movement, the future position ri(t) =
(xti .yti)

T for the road users i ∈ {p, c}, depending on an
extrapolating time t is given by the linear movement equation

ri(t) = vi · t ·
(

sinφi
cosφi

)
+ r0i

(1)

where vi is the speed, φi is the direction, and r0i = (xi, yi)
T

is the current position.

Based on eq. (1), an impending collision is detected if there
is a time t for which the geometry of road user p intersects
with the geometry of the road user c. If there is such a t, then
t is the time-to-collision (TTC).

Since eq. (1) is completely defined by the parameters
r0i , φi, vi, a 3-tuple

mi = (r0i
, φi, vi) (2)

is used for referring to a specific linear movement equation in
the form of eq. (1). We call mi the movement vector of road
user i. Accordingly, a binary function col(mp,mc) is used
that evaluates if there is an impeding collision as follows:

col(mp,mc) =

{
1 , if TTC ≥ 0

0 , else
(3)

The idea of speed perturbation is to add a normally dis-
tributed random speed perturbation value ∆v ∼ N (0, σ2

per)
for the pedestrian:

mp = (rp, φp, (vp + ∆v)) (4)

We refer to the standard deviation σper of the normal distri-
bution as the perturbation rate.

B. Probability of User Identification

To explore the impact of the perturbation on VRU privacy,
we consider the probability for identifying a pedestrian among
others based on his/her walking speed. In our simulation, this
is done by creating a set of ground truth pedestrian speed
values (Vgt) of n different pedestrians with random normal
distributed walking speeds S ∼ N (µs, σ

2
s) with µs = 1.4m/s

and σs = 1m/s, shown in eq. (5).

Vgt = {Si}, 1 ≤ i ≤ n, i ∈ N (5)

Our approach for perturbation is to add an additional error to
the speed measurement of the pedestrian’s movement. Since
it was shown that measurement errors in recognising VRU
movement on mobile devices can be approximated by normal
distributions [25], we use normal distributed random values
P ∼ N (0, σ2

per) to perturb each speed value which results in
the set Vper, see eq. (6).

Vper = {vperi |vperi = (vi + Pi), vi ∈ Vgt} (6)

To determine the results of the perturbation effect on speed
data, we compare the ground truth speed data set (Vgt) for all
pedestrians with the perturbed speed data (Vper) by calculating
the difference between all elements of Vgt and Vper. In detail,
we iterate over every element vper ∈ Vper and compare it with
every element vgt ∈ Vgt. By obtaining the minimum difference
(∆min) we find the most similar pair of elements, shown in
eq. (7).

∆min = arg min{v|v = |vgti − vperi |, vgti ∈ Vgt,
vperi ∈ Vper}, 1 ≤ i ≤ n, i ∈ N

(7)



Thus, the probability of User Identification (PUI ) is defined
as the percentage of false identified pedestrians of the total
pedestrian count, see eq. (8),

PUI = 1− m

n
(8)

where m is the number of falsely identified pedestrians and
n is the total number of pedestrians. The calculation of the
number of falsely identified pedestrians (m) and PUI is given
in Algorithm 1. We assume that the higher we set the perturba-

Algorithm 1 Evaluation of PUI for n pedestrians
Input Perturbation rate (σper), Number of pedestrians (n)
Output PUI

1: vgt[n] // Array of ground truth pedestrians’ speeds
2: vper[n] // Array of perturbed pedestrians’ speeds
3: for i := 1, . . . , n do
4: vgt[i] := rand.normal(1.4, 1)
5: vper[i] := vgt[i] + rand.normal(0, σ2

per)

6: m := 0 // Number of falsely identified pedestrians
7: for i := 1, . . . , n do
8: ∆min :=∞
9: for j := 1, . . . , n do

10: ∆ = |vper[i]− vgt[j]|
11: if ∆ < ∆min then
12: ∆min := ∆
13: identifiedPedestrian := j

14: if identifiedPedestrian 6= i then
15: m++ // Wrong pedestrian identified
16: return (1− (m/n))

tion rate, the higher the number of falsely identified pedestrians
(m), since more and more perturbed speed values are different
from their ground truth value. In order to observe not only one
sample, we repeat the process and compute expected values
by performing multiple calculations with randomised walking
speeds.

C. Probability of Missed and False Alarms

When inaccurate movement data is used, caused by random
measurement errors or random perturbation values, there is a
certain probability that an impending collision might not be de-
tected depending on the magnitude of the random inaccuracy.
In the context of collision detection probability, perturbation
of movement data is equivalent to an additional measurement
error. An additional perturbation of speed applied on a mea-
sured movement vector mp, see eq. (2), of the pedestrian can
therefore be expressed as eq. (9),

mp = mpgt
+ mpe

+ ((0 , 0), 0,∆v) (9)

where mpgt
= (rpgt

, φpgt
, vpgt

) is the ground truth,
i.e. the real, movement vector of the pedestrian, mpe

=(
(xe, ye)

T , φe, ve)
)

is the physical measurement error and
∆mp is the total inaccuracy due to measurement errors and
additional speed perturbation.

TABLE I
ERROR MODEL FOR THE COOPERATIVE SYSTEM

Position error XY e ∼ N
(
0,

(
0.44m 0m

0m 0.44m

))
Direction error Φe ∼ N (0, 8.6 ◦)

Total speed error V̄ ∼ N (0, (σ2
Ve

+ σ2
per))

∆mp = mp −mpgt =
(
(xe, ye)

T , φe, ve + ∆v
)

(10)

Thus, to determine the probability that an impending colli-
sion is not detected due to movement recognition errors in a
crash scenario depending on perturbed movement data, we use
the ”Probability of a Missed Alarm” (PMA) which is specified
in eq. (11).

PMA = 1−
∑

mp∈Mcol

P (mp) (11)

Likewise, to determine the probability that a collision is
falsely detected in a non-crash scenario, we use the ”Proba-
bility of a False Alarm” (PFA) which is specified in eq. (12).
Both calculations for PMA and PFA were introduced in [26].

PFA =
∑

mp∈Mcol

P (mp) (12)

In both calculations, Mcol is the set of all movement
vectors mp for which col(mp,mc) = 1 (eq. (3)). P (mp)
is determined by eq. (13),

P (mp) = pXYe
(xe, ye) · pΦe

(φe) · pV̄ (ve + ∆v) (13)

where XYe ∼ N (0, σ2
XYe

) and Φe ∼ N (0, σ2
Φe

) are
normal distributed random variables to model the measurement
error for position and direction, respectively. In this context
Ve ∼ N (0, σVe

) is the normal distributed random variable for
the speed measurement error. But since the distributions of
the physical speed measurement error and speed perturbation
are independent, the probability of the total speed inaccuracy
(ve+∆v) can directly be modeled as V̄ ∼ N (0, (σ2

Ve
+σ2

per)).
We will therefore use eq. (14)

σV̄ =
√
σ2
Ve

+ σ2
per (14)

as the measure for the total speed inaccuracy comprising
physical speed measurement error and speed perturbation.

V. RESULTS

To find the impact of speed perturbation on PUI and PMA,
we conducted simulations for the crash scenarios ”Crash Sce-
nario 25%” (CRASH-25), ”Crash Scenario 50%” (CRASH-50)
and ”Crash Scenario 75%” (CRASH-75). These scenarios are
based on a standardised, representative urban collision sce-
nario called ”Car-to-Pedestrian Nearside Child 50%” (CPNC-
50) from the European New Car Assessment Programme (Euro
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NCAP) [11]. A sketch of the CRASH-50 scenario is shown
in Fig. 1, in which a pedestrian is walking on a side walk and
turns left to cross the street at a right angle. While walking,
data is collected via a mobile device. The number in the
scenario name, i.e., 50, refers to the impact position at the
percentage of the vehicle’s frontal structure width that will
strike the VRU when no braking action is applied.

The Missed Alarm Probability for the 25%, 50%, and
75% collision scenarios are referred as PMA25, PMA50, and
PMA75, respectively. For convenience the following notation
P{MA∗} will be used to refer to all of the three collision
scenarios.

For PFA, the simulations were conducted based on a non-
crash scenario during which the pedestrian reaches a minimum
distance of 1.5m to the vehicle’s frontal left structure without
having a collision with the vehicle.

One simulation consists of one pedestrian represented by
a circle geometry with a radius of 0.5m and a car with a
rectangle geometry with a width of 2m and a length of 4m,
and lasts for 10 seconds. During the simulation, the speed
data of the walking pedestrian’s smartphone were gathered
with a sampling rate of 1Hz. For each sample, this process
was repeated 100 times in order to obtain the pedestrian’s
expected speed value. The values of P{MA∗} or PFA were
calculated when the pedestrians were at the evaluation point,
as shown in Fig. 1.

The simulations were repeated for n = 100 pedestrians sep-
arately, each with its own specific speed, randomly generated
according to the normal distributed variable S ∼ N (1.4, 1)
and rounded to four decimal places, to calculate PUI . In
that way each pedestrian could easily be identified when its
speed would be measured exactly. This represents the worst
case scenario in terms of privacy protection, as equal speeds
between participants would add additional protection.

Since it has to be assumed that any movement measurement
will have a certain amount of inaccuracy, we evaluated the
impact of speed perturbation in terms of the total speed
inaccuracy σV̄ which is an arbitrary combination of physical

TABLE II
CHANGE IN THE PROBABILITY OF USER IDENTIFICATION (∆PUI ),

PROBABILITY OF A MISSED ALARM (∆PMA{25,50,75}) AND
PROBABILITY OF A FALSE ALARM (∆PFA) WITHIN DIFFERENT

INTERVALS OF THE TOTAL SPEED INACCURACY σV̄

σV̄
m
s

∆
PU

I

∆
PM

A
50

∆
PF

A

∆
PM

A
25

∆
PM

A
75

[0.0,0.1] −0.823 +0.003 +0.016 +0.004 +0.025

[0.0, 0.2] −0.900 +0.028 +0.091 +0.027 +0.094

[0.0, 0.5] −0.950 +0.283 +0.245 +0.237 +0.355

[0.0, 1.0] −0.967 +0.610 +0.190 +0.528 +0.643

speed measurement accuracy (σVe
) and an additional speed

perturbation rate (σper).
As error models to calculate the P{MA∗} and PFA values

for the cooperative collision avoidance system in accordance
to eq. (13), we assumed zero-mean normal distributions, as
shown in in Table I. We choose these accuracy values based on
the findings for the minimum required movement recognition
accuracy for cooperative VRU collision avoidance system from
[25].

The probability of User Identification (PUI ), the Missed
Alarm probabilities for the 25%, 50%, and 75% scenarios
(P{MA∗}) and the probability of a False Alarm (PFA) were
calculated for values of the total speed inaccuracy σV̄ in the
interval of [0.0 m

s , 2.0
m
s ].

The resulting values for P{MA∗} and PFA are shown in Fig.
2 and the resulting values for PUI are shown in Fig. 3. In
Table II, it can be seen that within the interval σV̄ ∈ [0.0, 0.1]
the P{MA∗} only slightly increases by at most 0.025. The
PFA in the non-crash scenario remains below 0.02 in the
this interval. On the contrary, within this interval, the PUI

decreases significantly by ≈ 0.82 and then decreases further
continuously, as shown in Fig. 3. However, increasing σV̄
also effects P{MA∗} to continuously increases towards 1.0,
since the amount of pedestrian movement trajectories, which



lead to a collision with the car, becomes increasingly smaller
compared to those which do not lead to a collision.

VI. CONCLUSION

In this paper, we have presented and evaluated an approach
for protecting the privacy of vulnerable road users (VRUs)
in cooperative collision avoidance systems. In this approach,
the speed measured on the VRUs’ mobile device is perturbed
before leaving the device. We show that this approach makes
it more difficult for an honest-but-curious system participant,
e.g., system providers and other VRUs to be able to identify
another VRU, which could obviously not be prevented by only
encrypting the communication link.

We argued that in terms of collision detection the perturba-
tion of speed can be interpreted and handled as an additional
sensor error for speed recognition. Thus we evaluated the
impact of speed perturbation in terms of total speed inaccuracy
(σV̄ ) as a combination of physical speed measurement error
and additional speed perturbation.

Based on the simulations of collision and non-collision
scenarios from Euro NCAP [11], it was shown, that within
the interval σV̄ ∈ [0.0, 0.1] of the total speed inaccuracy, the
probability of User Identification can be considerably reduced
by 0.82, while the probability of a Missed and False Alarm
only slightly increases at most by 0.025 in the crash scenarios
and by 0.016 in the non-crash scenario, respectively.

Therefore we conclude that privacy and ”survival” of VRUs
are not mutually exclusive. In fact, in terms of privacy protec-
tion, with the given parameters in the investigated scenarios,
having a certain amount of movement data inaccuracy is
advantageous due to the tolerance regarding the total speed
inaccuracy for collision detection which is composed from
physical measurement errors and further perturbation. The
amount of additional perturbation depends on the inaccuracy
due to physical measurement errors. From a privacy perspec-
tive, if this inaccuracy is low, additional perturbation should
be added.
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