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Abstract—Current mobile sensing applications typically anno-

tate the collected sensor readings with spatiotemporal informa-

tion before reporting them to a central server. Such information

can however endanger the users’ privacy, as it reveals insights

about their daily routines. Users must therefore trust the ap-

plication administrators not to misuse the reported information.

To diminish user dependence on administrators trustworthiness,

we propose a privacy-preserving collaborative scheme, in which

users exchange the collected sensor readings at opportunistic

encounters. We model malicious administrators attempting to

identify exchanged sensor readings based on spatial disparity by

applying four state-of-the-art outlier detection algorithms. We

thoroughly investigate the influence of different exchange pat-

terns and the parameters of the algorithms on their performance

based on a real-world dataset. The results for location traces of 20

users gathered during 14 days show that our algorithm achieves

a high level of privacy protection.

Index Terms—Mobile applications, security and privacy pro-

tection.

I. INTRODUCTION

Mobile sensing applications benefit from the ubiquity of
mobile phones and their integrated multimodal sensors to
gather information about the users and their environment
in unprecedented quality and quantity. For example, the
embedded microphones can be leveraged to measure noise
pollution [1], while accelerometers may serve to monitor
road conditions [2]. Commonly, the gathered sensor readings
are annotated together with the time and location of their
collection and reported to the application server. This puts
the user’s privacy at stake because application administrators
have direct access to the reported data. The users’ daily
motion paths can be easily tracked and information about
their homes and workplaces extracted [3]. Although there exist
some mechanisms to protect user’s privacy, they often rely
on trusted third parties. For example, spatial cloaking builds
groups of users sharing a common attribute (e.g., k users
located in the same district) to render them indistinguishable
from each other [4]. However, users need to report their exact
locations to this third party in order to compute this common
attribute. Users privacy protection hence primarily depends on
the trustworthiness of application administrators as well as
involved third parties.

In order to reduce this dependency, we proposed in [5]
a concept called path jumbling consisting of a collaborative
privacy-preserving mechanism. By using our scheme, users

can preserve their privacy in a decentralized fashion by ex-
changing their annotated sensor readings with those of other
users at opportunistic physical encounters. These exchanges
allow effectively swap users paths; the prior path of one
participant becomes that of another participant and vice versa,
thus breaking the link between users identities and collected
sensor readings. In our previous work, we analyzed the design
space and confirmed the viability of our scheme by means of
a thorough performance analysis, yet we did not quantify the
achievable degree of privacy protection in realistic settings.

In this paper, we therefore analyze the path jumbling con-
cept by determining its degree of privacy protection. To do so,
we assess the capability of curious administrators in inferring
the exchanged sensor readings from their spatial distribution
based on three so-called exchange strategies. These strategies
define how the sensor readings to be exchanged are selected.
The contributions of this paper are summarized as follows.

1) We apply the path jumbling concept in a participatory
sensing application based on a realistic dataset. For
the path jumbling scheme, we consider three different
exchange strategies differing in terms of number and
sequence of exchanged sensor readings.

2) We model the behavior of malicious application admin-
istrators, who attempt to distinguish exchanged sensor
readings from original ones based on their spatial distri-
bution. To this end, we implement four different state-
of-the-art outlier detection algorithms and tailor them to
the specificities of our model.

3) We thoroughly investigate the performance of the se-
lected algorithms in identifying exchanged sensor read-
ings by means of extensive simulations. We especially
examine the impact of the applied exchange strategy and
the parametrization of the algorithms on their overall
performance.

The remainder of this paper is structured as follows. We
present our assumptions and threat model in Section II. We
briefly revisit our concept of path jumbling in Section III and
present our problem statement in Section IV. Section V is de-
voted to our evaluation settings and results. After summarizing
existing work in Section VI, we make concluding remarks in
Section VII.
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II. ASSUMPTIONS AND THREAT MODEL

A. System Model
For our system, we assume participatory sensing applica-

tions without real-time constraints for data delivery. Examples
include monitoring noise pollution [1] and road conditions [2].
In these applications, the participants carry mobile phones
equipped with embedded sensors, wireless interfaces and
positioning systems. The mobile phones autonomously col-
lect sensor readings (e.g., sound samples and accelerometer
data). Each sensor reading is stamped with the collection
time and location information to form the following triplet
T =< t, l, s > where t is time, l is location, and s is
the corresponding sensor reading. Sensor readings can be
either vectors or scalar values. Additional processing may be
locally applied on the sensor readings for feature extraction
and/or prevent sensitive information from being disclosed. For
example, possibilities include extracting the noise level from
the collected sound samples in applications monitoring noise
pollution.

The triplets are then autonomously reported to the applica-
tion server. The application server is able to establish a link
between the reported triplets and the participants who reported
them. The establishment of this link can be based on either
explicit identifiers, such as user ID and pseudonyms, or the
analysis of reporting metadata to, e.g., infer the location from
the used IP addresses. Ultimately, the application can analyze
the reported triplets to provide statistics or build summary
maps (e.g., illustrating the noise level or the road conditions
across the city) accessible to the public.

B. Adversary Model
Malicious application administrators are a common threat to

the privacy of the users in participatory sensing applications,
as they have direct access to the triplets reported by the users.
In absence of privacy-preserving mechanisms locally applied
on the mobile phones, the triplets contain information about
the locations visited by the users and may fully disclose the
followed paths. Given that the collected sensor readings are
reported and stored on a central application server, they might
be exposed to different privacy threats. For example, malicious
administrators may attempt to gain further information about
the participants by analyzing their sensor readings and/or in-
tentionally disclose or misuse the sensor readings and derived
information to untrusted parties. Additionally, external attacks
can be directed at the server to fraudulently access the stored
data.

In what follows, we assume an honest-but-curious adversary
model, in which administrators attempt to passively breach
the privacy of the participants, but run the system normally
and faithfully. This means that the application administrators
focus on the data reported by the participants to the application
server. They, however, do not launch active attacks to obtain
further information.

Users can also become adversaries as an artifact of the
collaborative nature of the path hiding mechanism. For ex-
ample, malicious users can drop exchanged triplets or create
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Fig. 1. Examples of paths jumbled using different exchange strategies

false triplets to be exchanged in order to alter the results
consolidated at the server side and perturb the function of
the collaborative path hiding mechanism. We have addressed
this particular adversary scenario in [6] and do not specifically
regard the impact of false contributions in this paper.

III. THE PATH JUMBLING CONCEPT

The objective of this concept we introduced in [5] is to
break the link between the spatiotemporal context (i.e., time
and location) at which the sensor readings were taken and
the identity of the participants (i.e., mobile devices) in order
to protect their privacy. The spatiotemporal context reveals
the visited locations and paths followed by the participants
during the sensing process, thus providing insights about them.
In our decentralized approach, the participants collaborate to
preserve their privacy. Since the triplets contain spatiotemporal
information, those triplets collected on user devices between
the participants in physical proximity are jumbled and thus
unlinked from their original collectors. In the following, we
investigate the influence of the following exchange strategies
on participants’ privacy protection. These exchange strategies
have been chosen based on their diversity in terms of number
of triplets involved and continuity. Figure 1 illustrates exam-
ples of paths jumbled using the following exchange strategies.

• Realistic strategy: Users exchange the entire set of col-
lected and/or exchanged triplets with a certain probabil-
ity at encounters. This strategy exchanges consecutive
triplets, which hence form realistic path segments as
illustrated in Fig. 1(b).

• Random-unfair strategy: Each user independently and
randomly determines the number of triplets to exchange.
Statistically, users exchange fewer triplets than with the
realistic strategy. Consequently, this requires a lower
degree of trust in other users, but may result in discon-
tinuous paths as shown in Fig. 1(c).

• Random-fair strategy: Users agree on a common number
of triplets to exchange at their meetings. Using this stra-
tegy, the participants fairly share the reporting overhead,



since they upload the same number of triplets as collected
to the application server. The jumbling degree is however
statistically lower than with the other strategies, because
it is based on the minimum of both parties’ offers.

As a result, each user uploads a combination of the sam-
ples received from encountered users and their own gathered
samples to the application server once every hour. Readings
collected since the last physical encounter are never uploaded
to the server directly, but always buffered locally until the next
exchange in order to maintain each user’s privacy.

IV. PROBLEM STATEMENT

Our path jumbling mechanism breaks the association be-
tween user identities and the collected sensor readings. As
a result, the reported sensor readings may not have been
collected by the users reporting them; the users may even
have visited entirely different locations at the time of the
data collection. Still, curious administrators can try to identify
whether the data transmitted to the application server has been
exchanged or locally collected by the participant based on
the spatiotemporal distribution of the sensor readings. This
identification of exchanged sensor readings might enable an
attacker to reconstruct the original paths and thus eventually to
identify the individual user trajectories. We specifically regard:

• Velocity disparities: Exchanged sensor readings can be
identified due to differences in velocity as illustrated in
Fig. 2. Those sensor readings gathered while moving at a
particular velocity are likely to belong to the same user.
However, administrators cannot accurately link sensor
readings to the corresponding users identity. Velocity dis-
parities can especially be observed when users exchange
large sets of consecutive triplets or apply the realistic
exchange strategy, since a mean velocity can easily be
computed.

• Spatial outliers: Exchanged sensor readings can be distin-
guished from collected ones, if they have been collected
in different geographical areas as depicted in Fig. 3.
A sensor reading collected in the vicinity of a group
of sensor readings reported by another user is likely to
belong to the same user. Again, user’s identity cannot be
inferred by curious administrators. Since users exchange
all sensor readings at each encounter when using the re-
alistic exchange strategy, this case can only happen when
users apply the random-unfair or random-fair strategies.

• Unreachable velocities: The spatiotemporal distribution
of the collected and exchanged triplets can reveal impos-
sible velocities between triplets appearing as consecutive.
This is particularly the case when users exchange sparse
triplets collected in remote locations and at short time
intervals. This effect is therefore more likely to happen
when either the random-fair or random-unfair strategies
are applied.

We thus examine to which extent curious application ad-
ministrators can leverage these issues to distinguish exchanged
sensor readings from the original ones and hence, measure the
privacy protection provided by our scheme.

 Sensor reading collected by user A 
 Sensor reading collected by user B 

(a) Original paths

 Sensor reading reported by user A 
 Sensor reading reported by user B 

(b) Jumbled paths

Fig. 2. Example of paths jumbled showing different velocities

 Sensor reading collected by user A 
 Sensor reading collected by user B 

(a) Original paths

 Sensor reading reported by user A 
 Sensor reading reported by user B 

(b) Jumbled paths

Fig. 3. Example of paths showing a spatial outlier

V. EVALUATION

In our evaluation, we model malicious application admin-
istrators who aim at distinguishing jumbled triplets from
the original ones based on their spatiotemporal information.
To this end, we apply four different state-of-the-art outlier
detection algorithms on a realistic dataset in order to evaluate
administrators performance in identifying jumbled triplets and
thus quantify the privacy protection provided by our approach.
We first present our simulation setup and method. In particular,
we describe the main principles of the selected outlier detec-
tion algorithms and highlight their key parameters. Next, we
describe our results and specially discuss how these algorithms
behave depending on the evaluated parameters.

A. Simulation Setup and Method

Our evaluation is based on the GPS traces from the GeoLife
project [7]. In this real-world deployment, the users carried
GPS-enabled devices to monitor their location. We extend the
initial scenario to a participatory sensing application by as-
suming that a triplet was collected at each monitored location.
From this dataset, we selected a period of 14 days and 20 users
having at least met one other user during this period. Figure 4
depicts the daily number of meetings during this period with
around 200 triplets per paths on average.

Next, we apply one of the following exchange strategies on
the triplets collected by the users during the chosen period:
(1) realistic with an exchange probability of 0.5, (2) random-
unfair, and (3) random-fair (see Section III). By doing so, we
artificially generate jumbled paths. These paths are similar to
those users would have obtained if they would have actually
exchanged these triplets at physical encounters.

1) Detection of Jumbled Triplets: In order to analyze the
efficacy of the path hiding approach, we assume that malicious
application administrators apply one of the following outlier
detection algorithms tailored to identify spatial outliers at the
end of the considered time period.
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Fig. 4. Distribution of daily number of meetings

a) Velocity-based outlier detection algorithm: With this
algorithm, we aim at identifying consecutive triplets that are
inconsistent with a realistic movement model. In other words,
our objective is to determine if the distance between two
triplets can be covered within the period of time defined by
their timestamps, i.e., if the user’s velocity is realistic. To this
end, we define different models based on a maximum velocity
v
max

that cover most users’ transportation modalities.
The algorithm computes the velocity v

i

between consecutive
triplets T

i

and T
i+1. If the computed velocity is higher than

v
max

, the triplet is considered as an outlier since its velocity
mismatches with the model.

b) Grubb-based Outlier Detection Algorithm: Inspired
from Grubb’s test [8], this algorithm shown in Algorithm 1 is
based on the spatial distance between neighboring triplets. In
particular, it compares the Euclidian distance of each triplet
T with the mean distance to its neighbors (see steps 3 to
7). Hence, it differs from the above algorithm in the metric
used and the number of considered triplets. In fact, it uses
the distance (instead of the velocity) and considers both direct
neighbors of each triplet as well as the neighbors of its direct
neighbors (instead of a unique neighbor like in the above
algorithm). The computed spatial distance is then compared
to the mean and the standard deviation obtained for all triplets
by computing Z

s

(see step 12). If Z
s

is greater than the
given confidence level c, the triplet is considered as outlier
(see steps 13 and 14). The algorithm identifies an outlier per
iteration and is hence iteratively applied when multiple outliers
are assumed. As a result, the algorithm can be parametrized
using the following parameters: (1) confidence level c and (2)
number of algorithm iterations n.

c) Distance-based Outlier Detection Algorithm: This al-
gorithm is based on the approach proposed in [9]. In this
approach, a triplet is regarded to be a DB(p, d

min

)-outlier if
at least a fraction p of the triplets show a distance greater than
the distance d

min

from the considered triplet [9]. Let T
i

be
the triplet of interest. The algorithm, shown in Algorithm 2,
first computes the Euclidian distance between T

i

and each
triplet on the same path (see step 3 in Algorithm 2). If the
computed distance is lower than d

min

, the triplet is added
to the neighborhood of T

i

(see step 5). This means that
the neighborhood of T

i

contains the set of triplets that are
within distance d

min

to T
i

. According to [9], p determines
the minimum fraction of triplets that must be outside the

Algorithm 1 Grubb-based outlier detection algorithm
Require: n: number of iterations, c: confidence level, N : total

number of triplets
1: for each iteration i with i 2 [1, n] do

2: for all triplets T
j

with j 2 [2, N ] do

3: compute mean distance between T
j�1 and its direct

neighbors: d
Tj�1 =

|Tj�2Tj�1|+|Tj�1Tj |
2

4: compute mean distance between T
j

and its direct neigh-
bors: d

Tj =
|Tj�1Tj |+|TjTj+1|

2
5: compute mean distance between T

j+1 and its direct
neighbors: d

Tj+1 =
|TjTj+1|+|Tj+1Tj+2|

2
6: compute mean distance of the direct neighbors of T

j

:

d
Tj�1Tj+1 =

dTj�1
+dTj+1

2
7: compute distance difference between T

j

and its direct
neighbors: s

Tj = |d
Tj�1Tj+1 � d

Tj |
8: end for

9: s
T

:= mean value of all s
Tj with j 2 [2, N ]

10: �
T

:= standard deviation of all s
Tj with j 2 [2, N ]

11: for all triplets T
j

with j 2 [2, N ] do

12: compute Z
s

(T
j

) = | s(Tj)�sT

�T
|

13: if Z
s

(T
j

) > c then

14: T
j

is categorized as outlier
15: break

16: end if

17: end for

18: end for

Algorithm 2 Distance-based outlier detection algorithm
Require: p: fraction of triplets, d

min

: distance
1: for all triplet T

i

do

2: for all triplet T
j

with T
j

6= T
i

do

3: compute d
TiTj = |T

i

T
j

|
4: if d

TiTj  d
min

then

5: add T
j

to the neighborhood of T
i

6: if neighborhood size of T
i

> M then

7: T
i

is categorized as non-outlier
8: break

9: end if

10: end if

11: end for

12: end for

neighborhood of an outlier. Consequently, the maximum num-
ber of triplets in the neighborhood of an outlier is equal to
M = N(1 � p), N being the total number of triplets of the
path. This implies that if there are at least M + 1 triplets
included in the neighborhood of T

i

, T
i

is identified as a non-
outlier and another triplet is examined (see steps 6 to 8).
As compared to the previous algorithms, the distance-based
outlier detection algorithm hence does not only compare the
distance of each triplet to its direct neighbors (i.e., its successor
and its predecessor), but compares the distance to any triplet
until the newly defined neighborhood contains more than
M +1 triplets. As a result, the algorithm can be parametrized
according to the following values: (1) fraction of triplets p and
(2) distance d

min

.
d) Density-based Outlier Detection Algorithm: The last

algorithm is adapted from [10]. It is based on the computation
of a Local Outlier Factor (LOF) that quantifies the likeliness



of a triplet to have been jumbled. Again, this method relies
on the distance between triplets and determines the density of
triplets around the triplet of interest. The density is defined
as the number of nearest neighbors within a certain distance
around a triplet. It hence measures how isolated a triplet is
from potential neighbors. The rationale behind this algorithm
is that outliers show lower density than non-outlier triplets. Al-
gorithm 3 summarizes the different steps necessary to identify
potential outliers. In particular, it requires the computation of
the following variables introduced in [10] and adopted herein.

• The k-distance of a triplet T
i

(k 2 N) is defined in
Algorithm 3 as the distance d

TiTj between T
i

and a triplet
T
j

of the same path such that:
1) for at least k triplets T

k

with T
k

6= T
i

,

d
TiTk  d

TiTj (1)

2) for at most k � 1 triplets T
k

,

d
TiTk < d

TiTj (2)

• The k-distance neighborhood of a triplet T
i

denoted
N

k

(T
i

) contains every triplet whose distance from T
i

is
not greater than the k-distance of T

i

. The triplets con-
tained in the k-distance neighborhood of T

i

are referred
to as the k-nearest neighbors of T

i

.
• The reachability distance of triplet T

i

with respect to
triplet T

j

is defined as:

rd
k

(T
i

, T
j

) = max{k � distance(T
j

), d
TiTj} (3)

• The local reachability density of triplet T
i

is defined as:

lrd
k

(T
i

) =
|N

k

(T
i

)|P
Tj2Nk(Ti)

rd
k

(T
i

, T
j

)
(4)

• The local outlier factor of triplet T
i

is defined as:

LOF
k

(T
i

) =

P
Tj2Nk(Ti)

lrdk(Tj)

lrdk(Ti)

|N
k

(T
i

)| (5)

As a result, the clustering of the triplets is based on both
the minimum number of triplets k and the reachability distance
rd

k

[10]. Both metrics define a density threshold denoted t
d

.
Triplets are considered as outliers when their LOF is below
t
d

, while they are considered as non-outliers for higher LOF
values (see step 9 in Algorithm 3). In our evaluation, we
therefore investigate the impact of the following parameters
on the performance of malicious administrators in identify-
ing jumbled triplets: (1) minimum number of neighborhood
triplets k and (2) density threshold t

d

.

B. Evaluation Metric

In the next step, we apply each of the presented outlier
detection algorithms on the generated jumbled paths and vary
their respective parameters. As a measure of the algorithm
performance in identifying exchanged triplets, we use the
Matthews Correlation Coefficient (MCC) computed as fol-
lows. True positives (TP) represents the number of exchanged
triplets identified as exchanged ones. True negatives (TN)
represents the number of original triplets identified as such.

Algorithm 3 Density-based outlier detection algorithm
Require: k: minimum number of triplets, t

d

: density threshold
1: for all triplets T

i

do

2: compute k-distance for T
i

based on Eq. 1 and 2
3: end for

4: for all triplets T
i

do

5: determine the k-distance neighborhood of T
i

6: compute rd for T
i

and all other triplets according to Eq. 3
7: compute lrd for T

i

according to Eq. 4
8: compute LOF for T

i

according to Eq. 5
9: if LOF  t

d

then

10: T
i

is categorized as outlier
11: end if

12: end for

TABLE I
EXAMPLES OF MCC VALUES FOR DIFFERENT TP AND TN VALUES (WITH

TP = 1� FP AND TN = 1� FN )

TP
0.05 0.25 0.50 0.75 0.95

TN

0.05 -0.90 -0.71 -0.50 -0.28 0.00
0.25 -0.71 -0.50 -0.25 0.00 0.28
0.50 -0.50 -0.25 0.00 0.26 0.50
0.75 -0.28 0.00 0.26 0.50 0.71
0.95 0.00 0.28 0.50 0.71 0.90

TABLE II
CHOSEN CLASSIFICATION OF THE PERFORMANCE OF THE ALGORITHMS

BASED ON THEIR MCC VALUES AND ASSOCIATED COLOR SCHEME

MCC value Protection performance Color
MCC  0.00 Poor

0.00 < MCC < 0.30 Fair
0.30  MCC < 0.60 Good
0.60  MCC < 0.90 Very good
0.90  MCC < 1.00 Excellent

MCC = 1.00 Perfect

False positives (FP) refer to the number of original triplets
identified as exchanged, and False negatives (FN) to the
number of exchanged triplets identified as original.

MCC =
TP · TN � FP · FN

p
(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

(6)

Table I illustrates examples of MCC values obtained for
different values of TP and TN. The MCC values range between
-1 and +1. A value of +1 indicates a perfect identification
of both exchanged and original triplets, while a value of -
1 indicates a total failure in identifying both categories. In
what follows, the performance of the algorithms is evaluated
by means of the computed MCC values and is categorized
according to the classification presented in Table II. We have
repeated each simulation ten times and present the averaged
results.

C. Results

We discuss the results presented in Table III and obtained
for each of the aforementioned outlier detection algorithms.
We specially analyze the influence of the applied exchange
strategies on the performance of the chosen algorithms.



TABLE III
MCC VALUES OF THE SELECTED OUTLIER DETECTION ALGORITHMS FOR DIFFERENT PARAMETER VALUES AND EXCHANGE STRATEGIES

MCC values
Realistic strategy Random-unfair strategy Random-fair strategy

Min Q1 Q2 Q3 Max Min Q1 Q2 Q3 Max Min Q1 Q2 Q3 Max

Ve
lo

ci
ty

-b
as

ed

v
max

1 -0.36 -0.02 0.11 0.22 0.39 -0.36 0.00 0.11 0.23 0.46 -0.79 0.16 0.37 0.59 0.99
5 -0.72 0.04 0.26 0.39 0.95 -0.36 0.16 0.30 0.51 0.95 -0.79 0.11 0.29 0.52 0.99

10 -0.79 0.02 0.28 0.44 0.99 -0.89 0.10 0.38 0.50 0.98 -0.73 0.20 0.41 0.62 0.98
20 -0.91 -0.06 0.27 0.45 0.99 -0.90 0.22 0.36 0.61 0.99 -0.76 0.22 0.46 0.69 0.99
30 -0.95 -0.11 0.27 0.46 0.99 -0.90 0.20 0.38 0.61 0.99 -0.79 0.26 0.46 0.73 0.99

G
ru

bb
-b

as
ed

c
0.70 -0.06 0.12 0.24 0.51 0.98 -0.07 0.15 0.26 0.64 0.91 0.06 0.22 0.43 0.71 0.98
0.95 -0.06 0.12 0.20 0.45 0.98 -0.04 0.12 0.36 0.64 0.99 0.05 0.13 0.36 0.68 0.99
0.99 -0.08 0.11 0.19 0.59 0.98 -0.04 0.12 0.30 0.62 0.99 -0.14 0.12 0.35 0.65 0.99

n

1 -0.22 -0.10 0.04 0.14 0.33 -0.22 0.01 0.05 0.13 0.29 -0.17 0.04 0.09 0.17 0.58
25 -0.13 0.10 0.17 0.40 0.99 -0.10 0.12 0.26 0.50 0.96 -0.04 0.12 0.29 0.56 0.99
50 -0.06 0.12 0.20 0.45 0.98 -0.04 0.12 0.36 0.64 0.99 0.05 0.13 0.36 0.68 0.99
75 -0.19 0.11 0.23 0.51 0.97 -0.01 0.12 0.36 0.64 0.98 -0.01 0.14 0.43 0.70 0.98

100 -0.13 0.15 0.24 0.49 0.95 -0.13 0.13 0.34 0.70 0.98 -0.13 0.15 0.41 0.72 0.98

D
is

ta
nc

e-
ba

se
d p

0.01 -0.19 -0.06 0.05 0.14 0.75 -0.17 0.07 0.13 0.21 0.75 -0.15 0.09 0.14 0.30 0.99
0.05 -0.22 -0.06 0.05 0.14 0.75 -0.17 0.07 0.13 0.21 0.75 -0.15 0.09 0.14 0.30 0.99
0.50 -0.19 -0.06 0.05 0.14 0.75 -0.17 0.05 0.12 0.21 0.75 -0.15 0.09 0.14 0.30 0.99
0.75 -0.22 -0.03 0.05 0.13 0.75 -0.21 0.04 0.12 0.20 0.75 -0.15 0.09 0.14 0.30 0.99
1.00 -0.22 -0.08 0.05 0.14 0.75 -0.17 0.04 0.13 0.21 0.75 -0.15 0.09 0.14 0.30 0.99

d
min

1 -0.15 0.06 0.38 0.80 0.98 -0.15 0.06 0.38 0.80 0.98 -0.17 0.18 0.52 0.83 0.97
25 -0.18 0.00 0.14 0.20 0.91 -0.16 0.11 0.18 0.31 0.91 -0.12 0.14 0.22 0.40 0.99
50 -0.19 -0.06 0.05 0.14 0.75 -0.17 0.05 0.12 0.21 0.75 -0.15 0.09 0.14 0.30 0.99
75 -0.20 -0.02 0.09 0.16 0.75 -0.18 0.05 0.12 0.18 0.75 -0.15 0.06 0.14 0.26 0.99

100 -0.20 -0.11 0.05 0.13 0.24 -0.18 -0.02 0.08 0.11 0.14 -0.15 0.02 0.06 0.12 0.23

D
en

si
ty

-b
as

ed

k

1 -0.16 -0.07 0.01 0.17 0.29 -0.10 0.06 0.15 0.49 0.99 -0.16 -0.11 0.00 0.14 0.29
25 -0.16 -0.06 0.27 0.45 0.99 -0.15 0.07 0.18 0.33 0.95 -0.08 0.14 0.30 0.35 0.99
50 -0.16 -0.11 0.27 0.49 0.99 -0.12 0.01 0.20 0.36 0.93 -0.07 0.14 0.26 0.47 0.99
75 -0.16 -0.05 0.26 0.48 0.99 -0.13 0.15 0.34 0.59 0.98 -0.06 0.20 0.35 0.87 0.99

100 -0.17 -0.05 0.16 0.44 0.93 -0.13 0.15 0.35 0.67 0.98 -0.07 0.19 0.42 0.83 0.99

t
d

1 0.01 0.10 0.18 0.18 0.18 0.01 0.07 0.16 0.20 0.25 0.01 0.10 0.13 0.18 0.25
5 -0.07 0.03 0.17 0.38 0.92 -0.10 0.17 0.30 0.43 0.89 -0.09 0.20 0.30 0.46 0.89

10 -0.16 -0.11 0.27 0.46 0.99 -0.12 0.01 0.20 0.36 0.93 -0.07 0.14 0.26 0.47 0.99
15 -0.07 0.00 0.13 0.36 0.93 -0.14 0.10 0.22 0.34 0.94 -0.09 0.10 0.19 0.36 0.93
20 -0.03 0.01 0.16 0.37 0.80 -0.13 0.02 0.22 0.35 0.94 -0.10 0.08 0.22 0.37 0.94

1) Velocity-based Outlier Detection: The first row of Ta-
ble III illustrates the minimum, maximum, and quartiles (Q1,
Q2, and Q3) of the MCC values computed for the 20 users of
the dataset and different maximum velocity values v

max

. We
vary v

max

between 1 and 30 m/s in order to model pedestrians,
cyclists, and vehicle passengers and drivers. The first column
corresponds to the application of the realistic strategy, while
the second and third columns correspond to the random-unfair
and random-fair strategies, respectively.

The medians (Q2) show that the performance of the
velocity-based algorithm in identifying exchanged triplets
when users apply the realistic exchange strategy is considered
as fair to good on average, according to our classification
introduced in Table II. In other words, only few paths can
be correctly identified. In comparison, the random-unfair ex-
change strategy identification accuracy is higher than that of
the realistic strategy and can be regarded as good. Algorithm
performance improves ever further in the case of the random-
fair strategy.

The algorithm is, however, capable of identifying almost
all jumbled triplets for one particular user the data set, in-
dependently of the applied exchange strategy. This result can
be explained by the distribution of the velocity in his/her set
of triplets. In fact, this user shows particularly low velocity

between his/her own triplets and thus, a high v
max

setting
allows the algorithm to better filter exchanged triplets.

In summary, the velocity-based algorithm overall can iden-
tify most exchanged triplets when clients apply the random-
fair exchange strategy. In contrast, it performs worse when
the realistic exchange strategy is applied. This allows us to
conclude that the privacy of the users moving at different
velocities is best protected when they apply the realistic
strategy in order to exchange their data.

2) Grubb-based Outlier Detection: The second row of
Table III depicts the MCC values for different confidence
levels (c) and number of iterations (n). Recall that the con-
fidence level determines the threshold above which a triplet
is considered to be an outlier using the computed value of
Z
s

. We have selected high values for the confidence level
in order to consider only those triplets identified as being
exchanged and thus reduce the number of false positives. For
different confidence levels, the performance of the Grubb-
based algorithm in identifying jumbled triplets is regarded as
fair to good in most cases. The performance of the Grubb-
based detection algorithm even reaches a very good level
for the random-unfair and random-fair strategies. Overall, this
means that the algorithms performs at its the best when the



random-fair exchange strategy is applied, as compared to the
random-unfair and realistic strategies.

We next vary the number of iterations n. The number
of iterations determines how many times the algorithm runs
and how many outliers are identified, as only one outlier is
identified per algorithm iteration. We have varied the number
of interactions between one and 100, what approximately cor-
responds to a jumbling degree of 50%. Overall, the algorithm
performance improves globally with the number of iterations
for all exchange strategies until stabilization. For the realistic
strategy, the algorithm performance is considered as poor to
fair for n = 1, while it is fair to good from n = 25. For the
random-unfair and random-fair strategies, the performance is
slightly better and is categorized as fair to very good based
on the values of the quartiles. However, the minimum MCC
value is lower for n = 100 than for n = 75 for both the
random-unfair and random-fair strategies. This means that the
algorithm is about to reach the threshold above in which
the number of false positives increases. If all outliers have
already been identified, additional runs of the algorithm lead
to the identification of original triplets as outliers and cause
the decline of the algorithm in performance. The medians
comparison shows that the algorithm performs globally better
when users apply the random-fair exchange strategy compared
to the random-unfair strategy. This means that the algorithm is
able to better distinguish original triplets from jumbled ones.
In summary, the best privacy protection is again offered by the
realistic strategy, while the worst protection is provided by the
random-fair strategy.

3) Distance-based Outlier Detection: In this algorithm, a
triplet is considered to be an outlier if at least a fraction p of
the triplets show a distance greater than the distance d

min

from
the considered triplet. Note that the lower the value of p, the
more outliers are assumed. We therefore study the impact of
(1) the fraction of triplets p and (2) the distance d

min

on the
performance of the algorithm in identifying jumbled triplets
and present the results in the third row of Table III. The values
of the parameters are chosen based on the distribution of the
triplets and the recommendations of [9].

We first vary the fraction of triplets p. For all exchange
strategies, the variation of p does not influence the perfor-
mance of the algorithm. Similar to the two previous algo-
rithms, the outcome is slightly better for the random-fair
strategy compared to the realistic and random-unfair strategies
when scrutinizing the quartiles. However, this algorithm glob-
ally performs worse than both the aforementioned velocity-
based and Grubb-based outlier detection algorithms showing
only a fair performance.

In the second step, we vary d
min

. The results highlight
that the algorithm performs best for d

min

= 1 and for all
exchange strategies. In this case, the algorithm performance is
regarded as fair to very good for all exchange strategies. For
the remaining d

min

values, the behavior it exhibits is mainly
fair with the exception of d

min

= 25 for both the random-
unfair and random-fair strategies. For these strategies, the per-
formance is classified as fair to good. These results, however,

highly depend on the spatial distribution of the dataset. Indeed,
the best performance is reached for short distances, which
represent the majority of triplets collected in nearby areas.
The larger the distance, the worse the performance, as only
few triplets have been collected in more remote locations.
Therefore, these results cannot be easily generalized to other
datasets. Again, the realistic strategy provides overall the best
protection against malicious administrators, seconded by the
random-unfair and random-fair strategies when comparing the
quartiles.

In summary, these results show that the distance-based out-
lier detection algorithm performs worse in identifying jumbled
triplets when users apply the realistic exchange strategy.

4) Density-based Outlier Detection: We finally analyze the
impact of the main parameters, i.e., the minimum number of
triplets k and the density threshold t

d

, of this algorithm on its
performance in distinguishing jumbled triplets from original
ones. Recall that k is the minimum number of triplets that are
required to be in the neighborhood of the triplet of interest
and t

d

serves as threshold to determine whether a triplet is
identified as outlier based on the computed LOF. The fourth
row of Table III presents the results for different values of k
and t

d

, respectively.
For the realistic strategy, the performance of the density-

based outlier detection algorithm is considered as poor to
fair for k = 1 and then improves to good from k = 25. In
comparison, the outcome is fair to good from k = 1 to k = 50
and fair to very good from k = 75 for the random-unfair
strategy. For the random-fair strategy, the algorithm shows
poor to fair performance for k = 1, fair to good performance
for k = 25 and k = 50, and fair to very good performance
from k = 75. Again, the algorithm shows the same behavior
as the previous studied algorithms concerning the impact of
the applied exchange strategies: the application of the random-
fair strategy enables the algorithm to correctly identify more
jumbled triplets than with the other strategies.

Finally, we vary the density threshold t
d

. The performance
of the algorithm in identifying exchanged triplets is considered
as fair to good for all exchange strategies, with the exception
of t

d

= 10 for the realistic strategy where the first quartile is
below zero. As previously determined, the random-fair strategy
allows a better identification of the jumbled triplets compared
to the other strategies.

In summary, as for all studied outlier detection algorithms,
the density-based algorithm performs worst when users apply
the realistic exchange strategy.

D. Evaluation Summary

We have shown that the performance of the selected outlier
detection algorithms in identifying jumbled triplets is globally
not excellent, but remains fair to good with some very good
exceptions. Yet, the algorithms do not succeed in identifying
all jumbled triplets as illustrated by negatives MCC values.
They, however, perform better when users apply the random-
fair strategy. In this case, only few triplets are exchanged at
each encounter. They are hence more easily identifiable by the



algorithm due to their potential difference in both time and
space dimensions. By exchanging more triplets, the triplets
form groups that are coherent in terms of spatiotemporal
distribution and prevent the algorithms from detecting them.
Additionally, single user triplets have been almost perfectly
detected by all algorithms. In this case, additional mechanisms
can be run on the mobile phones to remove triplet specificities
by smoothing the spatial disparities before their reporting to
the application server. To conclude, the realistic exchange
strategy has shown to provide the best user privacy protection
and should hence be adopted as baseline exchange strategy.

VI. RELATED WORK

We have proposed an approach to protect user’s privacy by
breaking the link between the spatiotemporal context of the
sensor readings and the users who collect them. A simple
alternative to our mechanism could be that the users use
pseudonyms to report the triplets to the server. However, it was
demonstrated in [3], that the application can infer the real iden-
tity of the users by tracking their location traces over multiple
reports, since it may expose the location of their workplaces
and homes. Our approach shares features with the concept
of mix zones [11], where the users change their pseudonyms
when they encounter other users. However, our mechanism
does not involve pseudonyms, but is solely based on the triplets
collected by the users, which are actually exchanged. Our
concept shares also similarities with [12], [13] and [14]. In
these schemes, the paths followed by users are replaced by
newly generated paths intersecting with those of other users.
However, these schemes are centrally organized and require
users to transmit their current and actual position to a trusted
entity for the generation of the new paths. Finally, our scheme
shares similitudes with the data aggregation scheme proposed
in [15]. This decentralized scheme is based on data slices
equally distributed between neighbors before being reported
to an aggregation server. Instead of only considering an equal
distribution between neighbors, we examine multiple exchange
strategies that are however not addressed in this prior work.
Our mechanism is also tailored for common participatory
sensing applications, where each user individually and directly
reports triplets to the application server.

VII. CONCLUSIONS

We have proposed a collaborative and decentralized ap-
proach to preserve user’s location privacy contributing to par-
ticipatory sensing applications. Our approach is solely based
on the exchange of the collected sensor readings between
users in physical proximity in order to conceal the paths they
have followed. We have used state-of-the-art outlier detection
techniques that we have tailored to the application domain in
order to investigate if exchanged triplets can be distinguished.
The results show that the performance of the mechanisms in

distinguishing exchanged triples from original ones is mostly
between fair and good on a scale ranging from poor to perfect.
This means that at most a partial identification of jumbled
triplets is possible on average. This allows us to conclude that
path jumbling is a viable approach to protect user privacy, and
that the best privacy protection is provided when users apply
the realistic exchange strategy, i.e., the probabilistic exchange
of all collected readings since the last encounter.
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