
Fakultät für
Physik

Bachelor’s Thesis

Erstellen und Veröffentlichen einer neuen
Smartphone Application für das HappyFace

Meta-Monitoring Tool

Creating and Publishing a new Smart
Phone Application for the HappyFace

Meta-Monitoring-Tool

prepared by

Fabian Kukuck
from Henstedt-Ulzburg

at the II. Physikalischen Institut

Thesis number: II.Physik-UniGö-BSc-2014/09

Thesis period: 21st April 2014 until 28th July 2014

First referee: Prof. Dr. Arnulf Quadt

Second referee: Priv.Doz. Dr. Jörn Große-Knetter

Zusammenfassung
Um die immensen Datenmengen, die bei den Experimenten des LHC anfallen, zu verarbei-
ten, ist ein Netzwerk aus Rechen- und Speicherressourcen notwendig: das Worldwide LHC
Computing Grid. Das Überwachen der beteiligten Grid-Rechenzentren ist unabdingbar
zur Identifikation von Fehlern und deren Behebung, um letztendlich eine stabile Infra-
struktur zu betreiben. Jedoch werden für das Überwachen der diversen Bestandteile eines
Grids verschiedenste Dienste mit eigenständigen Zugangspunkten und eigenen Daten-
strukturen benutzt. Um die verschiedenen Monitoring-Datenquellen zu vereinen, wurde
das Meta-Monitoring Tool HappyFace ins Leben gerufen. Im Laufe dieser Abschlussar-
beit wurde eine eher unkonventionelle Ergänzung zum HappyFace Tool entwickelt: Eine
neue Smartphone Application, die eine neue Art des Zugriffs auf Monitoring-Daten von
HappyFace Instanzen ermöglicht.

Stichwörter: WLCG, Grid Computing, Meta-Monitoring, HappyFace, Smartphone,
App

Abstract
To process the enormous amounts of data that experiments create at the LHC, a net-
work of computing and storage resources is necessary: the Worldwide LHC Computing
Grid. Monitoring the involved grid sites is inevitable for running a stable infrastruc-
ture by identifying and correcting failures. However, to monitor the various integrated
constituents of the grid, different services with separate access points and own data archi-
tectures are used. To centralise and unify the different monitoring data sources, the
modular meta-monitoring tool HappyFace was initiated. In the course of this thesis, a
rather unconventional addition to the HappyFace suite has been developed: a new smart
phone application, enabling a new way of accessing the monitoring data of HappyFace
instances.

Keywords: WLCG, Grid Computing, Meta-Monitoring, HappyFace, Smart Phone,
App

iii

Contents

1. Introduction 1
1.1. WLCG . 1
1.2. Meta-Monitoring . 2

2. HappyFace Meta-Monitoring Tool 3
2.1. HappyFace . 4

2.1.1. DB Web Service . 6

3. Smart Phone Application 11
3.1. Application Structure on the Front End . 11

3.1.1. Side Menu View . 12
3.1.2. Categories View . 13
3.1.3. Modules View . 14
3.1.4. Detailed Single Module View . 15

3.2. Preparation of the Application’s Back End 16
3.2.1. Introductory Words . 16
3.2.2. Cordova . 17
3.2.3. AngularJS . 17
3.2.4. Ionic . 20

3.3. Application Structure on the Back End . 21
3.3.1. Basis . 21
3.3.2. Cordova Plugins . 21
3.3.3. From the Beginning . 23
3.3.4. Overview . 27
3.3.5. A View from Close To . 30
3.3.6. Retrieving Meta-Monitoring Data 34
3.3.7. Background Fetch . 37

4. Conclusion and Outlook 39
4.1. Conclusion . 39

v

Contents

4.2. Outlook . 39

A. Code Extracts 41
A.1. Query Result from the Example in Section 2.1.1 41

vi

1. Introduction

The Large Hadron Collider (LHC) [1] is a proton-proton collider located at CERN, built
within the 27 km tunnel of the previous experiment LEP (Large Electron Positron col-
lider). Currently LHC is the largest of its kind, with a luminosity of 1034 cm−2 s−1 and
a designed centre-of-mass energy of 14 TeV – unattained by its predecessors. The LHC
mainly houses the experiments ATLAS, CMS, LHCb and ALICE.
The high luminosity experiments ATLAS and CMS were primarily designed to discover
the Higgs boson, H0, predicted by the Standard Model (SM) (respectively the multiple
Higgs bosons of possible extensions of the SM), a particle which is indispensable for the
SM to be consistent. SM predictions however yield a probability of 1 in 1013 or more for
the event of a H0 production in pp collisions.
With the LHC design luminosity of 1034 cm−2 s−1 and a reliable operation of the experi-
ments, some 1016 minimum bias events are expected in a full year, with still only some
thousands of Higgs bosons being produced [2] – this is like looking for a needle in a
haystack.
After the preselection of events, the data output of all four experiments is around 700 MB/s
or about 15 × 106 GB/year [3] which need to be stored and analysed; a mammoth task
which demands computing powers of a new kind. This is what the Worldwide LHC
Computing Grid (WLCG) was established for.

1.1. WLCG

The goal of WLCG is to provide “a data storage and analysis infrastructure for the
entire high-energy physics community that . . . use the LHC” [4, p. 1] – over 5000 scientists
in about 500 research institutes and universities worldwide. This infrastructure is not
centralised and located near the experiments, but in order to find a reliable solution
within the funding capacities of LHC, it is realised by a network of many clusters around
the world, a computing grid.
As of today, the WLCG links over 140 computing centres from 35 countries, hierarchical
structured in so called Tiers [5]:

1

1. Introduction

Tier 0 Located on the CERN area, this Tier (also called CERN Data Centre) primarily
stores all preselected event data detected at the experiments. It is also used for first pass
reconstruction of the raw data into useful information and is responsible for forwarding
the data to Tier 1s.

Tier 1 Tier 1 centres store and archive an agreed share of raw and reconstructed data
from Tier 0. They also provide computational resources for reprocessing the data along
with storing its output. Tier 1s are connected with the CERN Data Centre with data
transfer rates of 10 GB/s. At present, there are 13 Tier 1 sites spread across the globe [6].

Tier 2 Mainly consisting of universities and scientific research centres, Tier 2 sites pro-
vide computational resources and intermediate storage for end-user analysis and produc-
tion plus reconstruction of Monte Carlo simulated events. Tier 2s are fed with data from
Tier 1 centres and the generated data at Tier 2s is sent to the Tier 1 sites for permanent
storage. At present, there are around 155 Tier 2 sites spread across the globe [6].

1.2. Meta-Monitoring

To secure a smooth workflow of a computing site, failures of its involved systems need
to be identified and localised, preferably when they indicate themselves in an early state,
having no serious impacts on the operation yet. Hence, monitoring of the grid parts
provides information about almost all involved components (both hardware and software).
However, checking the monitoring data of various involved systems is often a tedious work.
To provide a remedy for that, the meta-monitoring tool HappyFace was designed [7]. It
functions as a single point of contact to obtain monitoring information from different
sources.
Currently, the meta-monitoring data of HappyFace monitored sites is available in the form
of a website. The goal of this thesis is to bring this output to mobile devices, in the form
of a smart phone application. This will further improve the handiness of HappyFace, as
the data will be even more easily observable.

2

2. HappyFace Meta-Monitoring Tool

Maintaining a computing site in everyday life can be a cumbersome task. Not only its
computing and storage hardware has to be observed, but also the integration of the
local system into the grid as a whole, with all the incoming and outgoing traffic [8].
Additionally, the outputs of many monitoring applications are insufficiently structured
and hard to be analysed by non-professionals [7]. Furthermore, it is uncomfortable to
check all the different systems with their different ways of access and presentations of
data. Nevertheless, monitoring the site is indispensable to meet the “strict obligations
concerning the operational availability” [7, p. 1] imposed on members of the grid (e.g. the
cause of occurring failures has to be identified within 8 hours after their appearance).
An improvement to this bring meta-monitoring tools, such as HappyFace: the idea is to
collect monitoring data of different sources and make them available on a single access
point.
Meta-monitoring tools gather information from various existing monitoring applications
and unify the output. The unification is composed of the single access point on the one
hand, and on the other hand a meta-monitoring tool could introduce a rating schema by
which the states of all monitoring applications appear in a consistent manner. Overall,
meta-monitoring tools should preferably embody certain attributes such as [7]:

• compatible: be functional with all common operating systems.

• accumulative: smartly summarise all relevant information in one output.

• current: display the latest monitoring data.

• retraceable: provide a history functionality to obtain outdated data.

• accessible: consist of a lightweight architecture, enabling high performance.

• comfortable: do not allocate results more than three navigational steps away.

• evident: present results in an easy to grasp, visual way.

• customisable: means to set up alert algorithms and tests.

3

2. HappyFace Meta-Monitoring Tool

Meaning Value r

ok r ∈ [0.66, 1]
warning r ∈ [0.33, 0.66)
critical r ∈ [0, 0.33)
execution error r = −1
data acquisition failure r = −2

Table 2.1.: Possible ratings for a module [10].

2.1. HappyFace

A meta-monitoring suite designed with all the above attributes in mind is the Happy-
Face Project [9]. It exactly fulfils the task of gathering status data of various monitoring
applications of a site and displaying them in a lucid manner. It is a Python-written modu-
lar software framework consisting of the HappyFace core (HappyCore) and site-specific
modules. The core and module development currently (version 3.0) is a joint project of
the Karlsruhe Institute of Technology (KIT) and the Georg-August-University Göttingen,
while modules are also being developed at the University of Aachen [10].

HappyFace is structured modular to provide maximum flexibility for arbitrary monitor-
ing sources. HappyCore is responsible for initialising the gathering process of the active
modules periodically (typically every 15 minutes). A gathering process accumulates data
from the modules which are then stored in an SQLite database, managed by the core.
The second part of the framework consists of the entirety of the modules: one module is
needed for each monitoring application HappyFace is supposed to surveil. A module in-
cludes means to address the respective monitoring application it was designed for. Besides
the instruction on how to extract information (and which) from the individual monitoring
application, a module also contains an algorithm that determines how to process the ag-
gregated data from a gathering process to form a homogeneous statement of the module’s
status in form of a rating. The rating schema of HappyFace assigns each set of monitoring
information a value, calculated based on the algorithm defined in the module. Possible
values are shown in Tab. 2.1.
With each gathering process, the HappyFace modules deliver the respective monitoring
information along with the calculated rating – indicating the summarised state of the mod-
ule – to the core. The latter then stores the information into the HappyFace database,
for later visualisation and access of past module monitoring data.

4

2.1. HappyFace

Aside from that, each module generates an HTML1 fragment which contains how a typ-
ical dataset of the module should be visualised on the HappyFace output [10]. It also
includes how the database should be later queried to grasp the desired information from
the database, the fragment should be filled with. The fragments are later pieced together
by HappyCore, shaping the visual representation of the HappyFace web output. The
structure of HappyFace is summarised on Fig. 2.1.

External
Monitoring

Data

Con�guration

Modules

HappyCore HTML Fragment

HTML Fragment

Dynamic HTML Output

Figure 2.1.: HappyFace Structure, based on diagram from [7].

In the customisation of HappyCore, modules can be subsumed under so called categories.
Defined categories appear in the output of HappyFace with their name and also a rating,
which is calculated from the ratings of the individual modules contained.

The actual output of HappyFace has two different forms: an HTML one and an XML
one (Fig. 2.2), created by HappyCore. It is common to deploy them on a server to make
them accessible through the web. Every time a user requests an output, the HappyFace
tool queries its database for the newest available data and fills the HTML template with
the return, generating a visual representation of it. Since the database contains data
from every gathering process, a history functionality is relatively easy to implement: the
desired date just has to be specified in the database query.

HTML Output Most notably this output of HappyFace consists of the category bar
and the navigation bar. A category is represented by its name and an arrow. The arrow
represents the rating of the respective category: for happy, for warning, for
critical and for error. When the HTML output is called from a user, it displays by
default the information of the latest gathering process. If it is wished to see earlier data,
the navigation provides the adequate feature.
A click on a category reveals it contained modules. On the left, a small bar gives a glance

1HappyFace version 2 actually used PHP templates, this was abandoned however.

5

2. HappyFace Meta-Monitoring Tool

at the individual states each module is currently in. The main body is the part of the
output where the HTML fragments are integrated. It offers the detailed insight into each
category’s monitoring data.

XML output The second type of output HappyFace offers is the XML format. This
output form is somewhat reduced compared to the HTML one. It is currently limited to a
rather superficial overview of the categories and their contained modules. To all categories
and modules it provides the names and ratings and also a time stamp. In addition, the
modules here come with a link to their detailed view in the HTML output.

2.1.1. DB Web Service

A module which plays a key role throughout this thesis is the database web service (DB
web service or simply web service). It is a rather unconventional module, since it is
not assigned to any monitoring application. Its purpose is to provide means for data
extraction from the SQLite database of HappyFace via the HTML output.
DB web service supports two procedures:

• Extract data from the database via a GUI.

• Extract data from the database by querying specific URLs.

Via GUI If a user of HappyFace wishes to have a fast and lucid overview of the database
of a HappyFace instance, or just wants to extract specific data from it, the GUI provides
great convenience to do so.
It is accessible from the HTML output in form of a module (or might be wrapped in its
own category). The HTML template provides an input for the desired time period, the
user wants to extract data from. A click on the button GET IT! reveals the database
structure in the form of selectable checkboxes – every module has its own entry and only
one module can be queried at a time. When the desired module is checked, a second
column with the respective module tables and subtables appears – here, too, only a single
entry can be selected at a time. In the last column, which will appear when an entry
has been selected, the exact content which will be included in the data return can be
specified. A click on the button QUERY! will query the database and then reveals a link,
where the requested monitoring information can be downloaded in JSON2 format.

2JavaScript Object Notation

6

2.1. HappyFace

(a) HTML

(b) XML

Figure 2.2.: Exemplary outputs of the GoeGrid HappyFace instance, an ATLAS Tier
2 site of the WLCG, based in Göttingen, Germany.

Via URLs Internally, the logic behind the GUI of the web service performs the desired
request by querying the database via a RESTful service implemented with a Python-

7

2. HappyFace Meta-Monitoring Tool

written CGI script [10]. This query can also be done manually by directly addressing the
script, which expects requests in form of a compound URL:

1. The URL begins with the path to the script, called db_backend.py :
http://path/to/webservice/db_backend.py .

2. Next, the desired (sub)tables and their columns are to be specified, only one (sub)table
can be queried at a time:
http://path/to/webservice/db_backend.py?data=SELECT .
For each wanted entry, the snippet +<(sub)table name>.<(sub)table column>,
has to be added. And from the last added one, the , has to be removed.

3. After the column specification, some static instructions follow, plus the information
in which (sub)table to look for the previous set columns:
+FROM+hf_runs+INNER+JOIN+<(sub)table name>
+ON+hf_runs.id+=+<(sub)table name>.id .

4. As a last portion, the desired time interval where the data should come from has to
be specified:
+WHERE+’<from year>-<from month>-<from day>
+<from hour>:<from minute>:<from second>.000000’+<+hf_runs.time
+AND+’<till year>-<till month>-<till day>
+<till hour>:<till minute>:<till second>.000000’+>+hf_runs.time%3B .

For example, a valid query URL might be
http://happyface-goegrid.gwdg.de/webservice/db_backend.py

?data=SELECT+hf_runs.id,+hf_runs.time,+mod_ddm.instance,+mod_ddm.status

+FROM+hf_runs+INNER+JOIN+mod_ddm+ON+hf_runs.id+=+mod_ddm.id

+WHERE+’2014-01-01+13:37:00.000000’+<+hf_runs.time

+AND+’2014-01-01+14:37:00.000000’+>+hf_runs.time%3B 3.

Calling a URL of this kind executes the script with the specified parameters; the re-
sult is stored on the server in form of a JSON file, which can be accessed under
http://path/to/webservice/query_result.json . Notice that, as soon as a new query is
transacted, the old query_result.json will be overwritten, so multiple users can not use
the web service at the same time – unexpected results might occur if they do so.

3The JSON result of this query can be seen in section A.1

8

2.1. HappyFace

The JSON file contains all the columns specified in the query URL, with data from all
HappyFace gathering processes happened in the asked time period.

DB web service is not yet a default module shipped with the current version of HappyFace
(version 3.0). However, in the future it may be and the application developed throughout
this thesis already supports it.

9

3. Smart Phone Application

The HTML output of HappyFace is conceived for classical browsers. Currently, the output
has no dedicated mobile version which would adapt to the conditions that mobile devices
are subjected to (first of all the small screen size). However, only adjusting the HTML
output for better readability on mobile devices would waste great potential. Nowadays,
it is common that people have smart phones as their constant companions. In addition to
providing a smart phone suitable visual output, one hence could make use of the smart
phone’s capabilities and create functionality like alerting the user when certain events in
the monitoring data occur.

In the course of this thesis, a new smart phone application (app) for the HappyFace meta-
monitoring tool has been created. It functions as an addition to any HappyFace monitored
site and while the use of it is not required, it brings further comfort to monitoring with
HappyFace. The app was designed to be usable with any HappyFace monitored site and
primarily extends the web output of HappyFace onto mobile devices. It also features a
form of alerting the users when changes in category states occur. The app is available on
iOS and Android devices.

3.1. Application Structure on the Front End

In this section the user interface (UI) of the HappyFace smart phone app will be explained.
The UI is structured in so called views. The term view describes a section of the app –
full-screen displayed to the user – which has a dedicated purpose. The HappyFace app
has four major views:

1. the side menu,

2. the categories view (main view),

3. the modules view,

4. and the detailed single module view.

11

3. Smart Phone Application

3.1.1. Side Menu View

Figure 3.1.
Side menu view.

The side menu of the app is what makes it generic – usable
with arbitrary HappyFace instances1. It provides an interface
to select which instance should be monitored or to add new
instances to the stock. It also gives entry to some app internal
settings.

The current stock of HappyFace instances is listed in the body
of the side menu. The app can only monitor a single instance
at a time, the so called active instance. It can be set by tap-
ping on the desired instance from the list. The active instance
appears highlighted in grey. An instance can be removed from
the stock by pressing its Delete button, visible after swiping
left on an entry.

Adding an Instance To add new instances, a form can be
called by tapping the button on the top right. From here (Fig. 3.2a) the user can either
add a custom instance, or choose an instance to add from a preset list (Fig. 3.2b). While
the latter is rather self-explanatory, adding a custom instance demands further informa-
tion.
The HappyFace app hooks into the XML output of a HappyFace instance and all infor-
mation eventually displayed on the category and module view was first retrieved from
there. When adding a new instance it is therefore necessary to specify the exact URL to
the XML output of the desired instance. An example for this is
http://happyface-goegrid.gwdg.de/category?action=getxml.
Aside from the URL of the instance, input fields for the instance’s name and web service
URL are provided. Both fields are optional and can be left blank while adding an in-
stance. However, for obvious reasons, it is highly recommended to name a new instance.
If the web service input field is left empty, the app will not make use of a potential DB
web service. If the user wants to use web service, a proper URL has to be provided,
an example would be http://happyface-goegrid.gwdg.de/webservice/. If this is the
case, and a URL has been provided when tapping the Add This Custom Instance button,
the new instance is marked as uses web service.

1Instance shall describe an entity of the HappyFace suite running on a grid site.

12

http://happyface-goegrid.gwdg.de/category?action=getxml
http://happyface-goegrid.gwdg.de/web service/

3.1. Application Structure on the Front End

(a) Add custom or preset in-
stance.

(b) Action sheet with preset
instances.

Figure 3.2.: Add new instance form accessible through the side menu (button).

Figure 3.3.
Settings page accessible
through the side menu
(button).

Settings The internal settings page of the app might be
called by tapping the button on the top left. Apart from an
About page, the settings page provides the option to reset the
instance stock to default. Upon tapping and confirming the
Reset Instances button, all instances in the stock are deleted
and replaced by default ones.
The Extended Notifications toggle is intelligible in the context
of the background fetching feature of the app: If your platform
is iOS 7 or higher, the HappyFace app will automatically re-
fresh the data of its active instance, even if the app is not in
the foreground (for more information see section 3.3.7).
If a change in a category’s status occurred after this process,
the app will notify the user. However, if Extended Notifi-
cations are toggled , the app will alert every time it has
performed a fetch, even if there were no changes in states.

3.1.2. Categories View

The categories view (Fig. 3.4a), or main view, is the view which shows the categories of
your active instance. It is that view, which is shown after the app has finished launching.
From the side menu (section 3.1.1), the view is accessible by tapping on a listed instance.

13

3. Smart Phone Application

Each category of the active instance is represented by its title and its status, indicated by
an icon: for happy, for warning, for critical and for error.
The button on the top left opens up the side menu, which can also be opened by
dragging the categories view to the right.
The title of the categories view is the name, which the active instance was given. The
button on the top right refreshes the data for the active instance from the server. For
this, an Internet connection is required. A time stamp (data from . . .) indicates the
date of the displayed data. The date originates directly from the loaded XML from the
HappyFace server – it is not the date of the last successful refresh.
What is however dependent on the last date of refreshing, is the criterion for the data
being outdated. The app will automatically blend in a grey overlay (Fig. 3.4c) on the
view, when more than 20 minutes have passed since the last successful refresh – the data
is then considered outdated. This, of course, is instance-bound, meaning a refresh on
instance A will not revert an outdated state of instance B.
A tap on an instance leads to the module view.

(a) (b) (c) An outdated view.

Figure 3.4.: Categories (main) and modules view.

3.1.3. Modules View

The module view (Fig. 3.4b) reveals the modules which are contained in a category. The
modules are depicted within a list. Each contained module is represented by its title and
its status. The same icon indications as for categories (see section 3.1.2) are used. The
data of the module view is reloaded alongside the refreshing process of the categories

14

3.1. Application Structure on the Front End

view. Nevertheless, the same refresh button as for the categories view can be found
on the module view: it refreshes both the state of the categories and of the modules in
all categories. The data here will be outdated just as the data on categories view. Also,
the same time stamp as in the categories view is shown in this view.
Tapping on a listed module will lead to the detailed single module view of that particular
module. The Back button directs to the categories view.

3.1.4. Detailed Single Module View

(a) Using web service. (b) Not using web service.

Figure 3.5.: Detailed Single Module View.

This view gives information about the detailed status of a single module. It comes with
two faces, and the usage of web service determines which one shows. If the active instance
uses web service (in the sense of section 3.1.1) a tap on a listed module in the modules
view will lead to the view depicted in Fig. 3.5a. If web service is not used, it will lead to
the view depicted in Fig. 3.5b.

Using Web Service (Fig. 3.5a) This part of the detailed view makes use of the active
instance’s DB web service. It connects to the web service server and loads all tables and
subtables which are linked to the active module. After a successful loading process, the
retrieved data is displayed – all key/value pairs the respective tables contain, are listed.
A table or subtable is surrounded by a grey box and its title is displayed in bold. The
time stamp from each table is not related to the time stamps of the categories or modules

15

3. Smart Phone Application

view, but also stems from the retrieved web service data.
The key/value pair of each row can also be displayed as a whole by tapping on the
button next to the entry. This is especially useful when any text is cut off (with dots . . .)
due to limited space.
The refresh button on this view refreshes the categories and the modules view, but
also queries the DB web service for new data. Also, this view can be outdated in the same
sense as categories and modules view (if the last refresh was more than 20 minutes ago).
The Back button directs to the modules view. Additionally, the button opens up the
detailed module view without web service.

Not Using Web Service (Fig. 3.5b) On this view, the HTML output of the selected
module is displayed, as it would appear on the instance’s web page. It supports pinch-
to-zoom for better readability of the content. This view is essentially an Internet browser
showing a slightly altered version of the respective module’s web page. In principle, all
functionality provided on the original website can be made use of. Thus, provided the
proper hyperlinks on this web page, the complete Web could be accessed. To prevent this,
all hyperlinks are disabled.

3.2. Preparation of the Application’s Back End

In order to expound how the app works inside, several preconditions have to be elucidated.

3.2.1. Introductory Words

The smart phone market is not dominated by a single operating system, but rather by
two – Android and iOS (in 2013 either Android or iOS was shipped on 94 % of all sold
smart phones [11]). The desire for having an application which is available for both major
smart phone operating systems Android and iOS, was one of the top priorities during
its development. Android and iOS necessitate code written in different programming
languages, namely Java and Objective-C/Swift. Without any further effort, it is not
possible to write code once and run it on both operating systems. Because coding two
different native apps with two different code-bases in different languages is especially time
consuming, several cross-development frameworks were (and are) developed by third-
parties. All of these frameworks have in common that they enable the developer to
write an app only once, and then run it on several operating systems. This enhances
productivity massively.
The decision was made that the HappyFace app should be based on the cross-development

16

3.2. Preparation of the Application’s Back End

framework Cordova. Also, the front-end framework for building the UI was chosen to be
Ionic, which is based on the framework AngularJS.

3.2.2. Cordova

Apache Cordova.

Cordova [12] is a framework which provides the ability to write cross-
platform apps in HTML, CSS and JavaScript (JS). Cordova is open-
source2 and is a top level project within the Apache Software Foun-
dation [13].
Mobile applications made with Cordova are hybrid ones. Mean-
ing they are neither native apps, because the UI is made with web
technologies, nor web-based apps, because they are packaged and
deployed on the regular app markets and have access to the APIs
of the host-device. Cordova functions as a wrapper for essentially a web page written in
HTML, CSS and JS [14]. But the output product is, in all cases, a binary application
(.apk for Android, .ipa for iOS). The wrapper also enables the access to the native de-
vice API and thus makes features like vibration, file storage, geolocation or camera access
possible [15].

3.2.3. AngularJS

AngularJS (commonly abbr. Angular) [16] was made to address the flaw that HTML was
not designed for dynamic web pages, but rather for static ones: once loaded, the page
remains in its state until the browser reloads the site. This is not what a user would
expect from an app, as content should be updated in a dynamic sense.
Angular is an open-source3 client-side JavaScript framework maintained by Google. It uses
Model-View-Controller (MVC) architecture, undertakes DOM4 manipulation, improves
testability and encourages a modular application structure [17]. This makes Angular
highly attractive for the development of web applications.
A design goal of the framework is to separate DOM manipulation from the logic of your
application. To achieve this, several new components come with Angular. The relevant
ones will be introduced in the following [17].

Controllers The application’s business logic behind its views is wrapped in Angular
controllers. A controller can be seen as the direct implementation of anything on an

2Cordova is Apache 2.0 licensed.
3AngularJS is MIT licensed.
4Document Object Model

17

3. Smart Phone Application

app’s view which requires further processing. Prominent controller tasks are

• logic executed on user interaction with the UI or

• providing variables of the view.

Factories The application’s business logic which is independent of its views is wrapped
in Angular factories. Anything which might be intended to be used on more than two
views is likely to be implemented within a factory. Prominent factory tasks are

• means to communicate with external servers or

• storage and manipulation of variables across controllers.

Directives Angular directives extend HTML by providing custom attributes and elem-
ents. All DOM manipulation (UI changes) is realised with directives. Prominent directive
tasks are

• showing/hiding DOMs,

• repeating specific DOMs (such as table rows) or

• registering taps on DOMs (user interaction).

Models The data which is shown to the user in the application’s views are Angular
models. These models can primarily be modified by controllers. However, Angular uses
two-way data binding. This implies that models which are altered through user input,
are automatically changed in the controller as well – and changes which arise from the
controller immediately alter the user input. Prominent examples are

• all non static data in the view or

• text inputs and toggles of the UI.

Modules Angular modules are containers for parts of an app, most notably they can
contain controllers, factories or directives. Modules are the aspect of Angular which makes
Angular-written apps modular.
A controller which is packed in module ctrl might use a factory, which could be packed in
module fac . One can then make use of the Angular feature Dependency Injection, which
wires up the different modules and makes sure module ctrl can access the functions of
module fac . Therefore, a defined way must be used to declare Angular modules. For
example, the definition of a controller wrapped in a module is done by

18

3.2. Preparation of the Application’s Back End

angular . module (/* module name */, [/* dependencies on other modules */])
. controller (/* controller name */, [/* factory dependencies */,

function (/* factory dependencies */) {/* controller content */}]
);

An example for a controller CtrlTest depending on a factory FacTest , wrapped up in
a module ModTest is

angular . module (’ModTest ’, [])
. controller (’CtrlTest ’, [’FacTest ’, function (FacTest) {

// controller content
}]);

Factories and directives are declared analogously.

Promises Angular provides advanced mechanisms which make asynchronously per-
formed routines easy to implement, the promises.
A problem that developers face when making web applications is that certain parts of the
app require content which first has to be loaded from external sources. In general, it is not
clear how long such a loading process might take and whether it even succeeds. However,
solving this issue by simply blocking any user interaction with the UI is often considered
bad practise. A more convenient way of solving this brings the promise/deferred imple-
mentation of AngularJS.
Instead of actual return values, functions are able to return promises. These promises
come with the concept of then which takes a code block following the promise, but waits
with executing it as long as the promise remains unresolved. As soon as the promise gets
resolved, then executes an appropriate code block, dependent on the outcome of the
promise: whether it succeeded or failed.
Any code which is not in the scope of then but also comes after the promise, will be
executed right away, regardless of the promise outcome or how long it might take. That
is why the whole program flow does not get blocked by an action that might take some
time (like an HTTP request).
To give an example, suppose the function takingSomeTime() returns a promise. Then

takingSomeTime ()
.then(
function (){

// success handler here
},
function (){

// error handler here
});

19

3. Smart Phone Application

results in an execution of the function takingSomeTime() and a wait for the then block
until takingSomeTime() resolves (→ success handler) or rejects (→ error handler) its
promise.

3.2.4. Ionic

Ionic [18] is an open-source5 framework, designed to develop the front-end of mobile
hybrid apps using the languages HTML, CSS and JS. It relies on Cordova as a wrapper
to deploy the created web page on mobile devices. While there are quite a lot of web
page frameworks to help creating UIs, Ionic is quite unique – apps feel very ’native’ and
not like a web page, because Ionic was exclusively conceived to create UIs for mobile apps
and not for web pages or web apps.
Ionic itself is based on AngularJS and consists of a solid set of CSS and JS components
like headers, buttons, lists, grids, check boxes, sliders, navigation bars or side menus. All
of them are easy to use and designated to be part of dynamic views in mobile applications.

Directives Ionic’s features are first and foremost realised by Angular directives – Ionic
provides a large palette of them [19]. Examples are6

• ionSideMenus to implement side menus in views,

• ionHeaderBar to display a bar at the top of a view,

• ionContent to define the content area of a view and

• ionList and ionItem to display lists and its content.

Routing In Ionic, views can be defined and linked-up comfortably. This includes auto-
matic tracking of the route the user takes, making features like a back-button easy to
implement.

Delegates Further functionality of Ionic is provided by its Angular factories, called
delegates. They can be invoked from controllers to access certain functions, for example
to open the side menu of the app programmatically, without user interaction.

5Ionic is MIT licensed.
6Following the Angular typographic conventions, directives are written with camel-casing,
e.g. ionSideMenus , even though the direct implementation in HTML is realised with
ion-side-menus .

20

3.3. Application Structure on the Back End

3.3. Application Structure on the Back End

In section 3.1, the app was presented as it would have been to a user; the app’s features
have been mentioned. This section will take another approach to the app: present it in
its internal structure, proximal to its source code.

3.3.1. Basis

Cordova apps follow a strict directory structure. The key-folders are

• platforms/ , where the specifics of each operating system the app shall support,
are controlled; and the Cordova framework code is stored in;

• plugins/ , where the implementations of plugins are stored (see section 3.3.2 for
more on plugins);

• www/ , where the cross-platform app itself, written in HTML, CSS and JS is stored.

The key-file which contains app meta-data like its name or its version is config.xml –
it is found in the source code’s root directory.

3.3.2. Cordova Plugins

Cordova’s goal is to make apps work natively on different mobile operating systems, while
being written in a single code base. The framework also strives to enable the use of the
host device’s native APIs. Cordova plugins give the implementation for that. They are
pieces of source code, which provide an interface to access native functions (written in
Java, Swift, . . .) from JS code – they act like a bridge between JS and native code. Each
plugin needs an implementation for each platform the app is supposed to run on.

The HappyFace app makes use of the following plugins:

Device Plugin The Device plugin [20] defines a device object, globally accessible in
JS code. device has properties like platform or version , which for example return
the strings "iOS" and "3.2" if the host device runs iOS 3.2. The Device plugin has
an implementation for both Android and iOS and is maintained by the Apache Software
Foundation.

21

3. Smart Phone Application

InAppBrowser Plugin The InAppBrowser plugin [21] provides an isolated web browser
within the app. It listens to the JS window.open() function. In the HappyFace app this
plugin is used to realise the detailed single module view without web service. The InApp-
Browser plugin has an implementation for both Android and iOS and is maintained by
the Apache Software Foundation.

Network Information Plugin The Network Information plugin [22] provides means to
obtain the status of the host device’s network connection. For example the network states
wifi, cellular or no connection can be returned. In the HappyFace app this plugin is used
to decide if an automatic refresh can be performed. The Network Information plugin has
an implementation for both Android and iOS and is maintained by the Apache Software
Foundation.

Status Bar Plugin With the Status Bar plugin [23] one gains access to manipulating
the style of the host device’s status bar on top of the screen – for instance hiding and
showing it. In the HappyFace app this plugin is used to have the status bar harmonise
with the UI correctly. The Status Bar plugin has an implementation for both Android
and iOS and is maintained by the Apache Software Foundation.

Local Notification Plugin The Local Notification plugin [24] implements functions
to schedule native local notifications on the host device. Local notifications are alerts of
an app which are displayed to the user even if the app is not running in the foreground.
In the HappyFace app this plugin is used to alert the user when a background fetch has
been performed. The Local Notification plugin has an implementation for both Android
and iOS and is maintained by third parties7. However, only the iOS implementation is
currently used by the HappyFace app.

Network Activity Plugin The Network Activity plugin [25] gives the ability to acti-
vate and deactivate the network activity indicator in the status bar. In the HappyFace
app the indicator is shown when a refreshing process is currently ongoing. This plugin
only has an implementation for iOS and is maintained by third parties8.

Background Fetch Plugin The Background Fetch plugin [26] provides means to access
the background fetching feature of iOS 7. It is possible to define a routine which is
executed when the iOS assigns background fetching time to the app (see section 3.3.7).

7By the user katzer.
8By the user steve228uk.

22

3.3. Application Structure on the Back End

In the HappyFace app this feature is used to perform refreshes of the XML output and
web service data from the HappyFace server of the active instance, even if the app is not
running in the foreground. A working implementation of this plugin currently only exists
for iOS and it is maintained by third parties9.

3.3.3. From the Beginning

The mechanics of the HappyFace app begin in the www/ directory. The HTML templates
for the app’s UI are found in the folder templates/ , the code of JS acting in the back-
ground is found in js/ , while the Ionic framework is contained in lib/ionic/ . Custom
CSS which act on top of Ionic are located in css/ and used images are stored in img/ .
Every Cordova app starts from the index.html , it is the entry point that the Cordova
framework looks for.

index.html

<! DOCTYPE html >
<html ng -app="hf">
<head >

<meta charset ="utf -8">
<title >HappyFace </ title >
<meta name=" viewport " content ="initial -scale =1, maximum -scale =1,

user - scalable =no , width=device -width">

<!-- no telephone number highlighting -->
<meta name="format - detection " content =" telephone =no" />

<script >... dependencies on other files ... </ script >

</head >
<body ng - controller =" CtrlMain ">

<ion -nav -view animation ="slide -left -right" ></ion -nav -view >
</body >
</html >

The app is initiated like an ordinary HTML5 website. The <head> tag most notably
contains all the <script> dependencies, where the code of the app is found. Notice that
the frameworks Ionic and jQuery10 are loaded as well, along with an XML to JSON parsing
library11. The <head> tag also contains the viewport - <meta> tag, which determines
that there shall be not zooming in the app.

9By the user christocracy.
10A very popular open-source JS library [27], MIT licensed.
11XML to JSON Plugin [28], MIT licensed.

23

3. Smart Phone Application

The remaining code is not ordinary HTML; it is HTML enhanced with Angular12. The
<html> is provided with an ngApp 13 directive – this initiates the auto-bootstrap process
of Angular, it loads the Angular module specified in its parameter, namely hf .
The <body> is provided with an ngController directive. This assigns the controller
CtrlMain to everything in the scope of <body> ; Angular takes only the controller’s
name and Dependency Injection finds out where to actually seek for it by itself.
The ionNavView directive constitutes an entry point for the views declared later on.

js/app.js

angular . module (’hf’, [’ionic ’, ’hf. BackgroundRefresh ’, ’hf. CtrlCategories ’,
’hf. CtrlDetails ’, ’hf. CtrlMain ’, ’hf. CtrlModalNewInstance ’,
’hf. CtrlModalImpressum ’, ’hf. CtrlModalSettings ’, ’hf. CtrlModules ’,
’hf. CtrlSideMenu ’, ’hf. FacCategories ’, ’hf. FacInstances ’, ’hf. FacPopup ’,
’hf. FacRequest ’, ’hf. FacUIVariables ’, ’hf. FacWebpage ’, ’hf. FacWebservice ’])
. config ([’$stateProvider ’, ’$urlRouterProvider ’,

function ($stateProvider , $urlRouterProvider) {
$stateProvider

.state(’sidemenu ’, {
url: "/ sidemenu ",
abstract : true ,
templateUrl : " templates /side -menu.html",
controller : ’CtrlSideMenu ’

})
.state(’sidemenu . categories ’, {

url: "/ categories ",
views: {

’view - content ’: {
templateUrl : " templates / categories .html",
controller : ’CtrlCategories ’

}
}

})
.state(’sidemenu . modules ’, {

url: "/ modules ",
views: {

’view - content ’: {
templateUrl : " templates / modules .html",
controller : ’CtrlModules ’

}
}

})
.state(’sidemenu . details ’, {

url: "/ details ",
views: {

’view - content ’: {
templateUrl : " templates / details .html",
controller : ’CtrlDetails ’

12AngularJS is included with the ionic.bundle.js .
13Angular uses the namespace ng for its components.

24

3.3. Application Structure on the Back End

}
}

});
$urlRouterProvider . otherwise ("/ sidemenu / categories ");

}
]);

This file contains the module hf , which was a parameter of the ngApp in index.html .
This module can be seen as some sort of mother-module since it establishes connection to
all other used modules in its dependencies14. Furthermore, this module contains config-
uration instructions (config) which are run when the app is auto-bootstrapping.
The config block gets injected the $stateProvider , a part of Ionic where the views
of the app can be defined – just the step which happens next: four views (sidemenu ,
sidemenu.categories , sidemenu.modules , sidemenu.details) are declared, while the
dot-notation indicates that the former is a parent of the others. Each view is defined
with a template URL (containing HTML for the UI) and a controller (containing JS);
the latter manages the logic of the HTML template. Controller and template harmonise
together, and on their own they are rather pointless.
The $urlRouterProvider.otherwise ensures that if the app is in a condition with no
defined state, the app automatically translates to the sidemenu.categories view – par-
ticularly when the app has just launched and no active state is set yet.

With the views being defined, the next step happens in index.html . Because of the
configuration of the $urlRouterProvider , Ionic15 automatically translates to the
sidemenu.categories view. Since this view is a child, the parent is concerned first. This
results in the template of the sidemenu view being inserted into the ionNavView dir-
ective of index.html and CtrlSideMenu activated to control the view. The template of
sidemenu , side-menu.html , also contains an ionNavView ; this is where the template of
sidemenu.categories is then inserted – because it is a child of sidemenu .
Fig. 3.6 provides a depiction of the structure of the app as a whole; it has not yet been
fully explicated, but for the relations among the views that were introduced in this sec-
tion, it offers a clear illustration.
Since the bootstrapping process of the app has now been described, it is convenient to
continue with an overview of the app’s core elements.

14The code of those modules are found in all the files included with the <script> tags in index.html .
15More precise: the ui-router [29] part of the ionic.bundle.js .

25

Vi
ew

si
de

-m
en

u.
ht

m
l

Ct
rlS

id
eM

en
u.

js
Vi

ew

ca
te

go
rie

s.h
tm

l

Ct
rlC

at
eg

or
ie

s.j
s

Vi
ew

m
od

ul
es

.h
tm

l

Ct
rlM

od
ul

es
.js

Vi
ew

de
ta

ils
.h

tm
l

Ct
rlD

et
ai

ls
.js

M
od

al

se
tt

in
gs

.h
tm

l

Ct
rlM

od
al

Se
tt

in
gs

.js
M

od
al

ne
w

-in
st

an
ce

.h
tm

l

Ct
rlM

od
al

N
ew

In
st

an
ce

.js
M

od
al

ab
ou

t.h
tm

l

Ct
rlM

od
al

Im
pr

es
su

m
.js

In
A

pp
 B

ro
w

se
r

Fa
ct

or
y

Fa
cI

ns
ta

nc
es

.js
Fa

ct
or

y
Fa

cC
at

eg
or

ie
s.j

s

Fa
ct

or
y

Fa
cB

ac
kg

ro
un

dR
ef

re
sh

.js

Fa
ct

or
y

Fa
cP

op
up

.js
Fa

ct
or

y
Fa

cR
eq

ue
st

.js

Fa
ct

or
y

Fa
cU

IV
ar

ia
bl

es
.js

Fa
ct

or
y

Fa
cW

eb
pa

ge
.js

Fa
ct

or
y

Fa
cW

eb
se

rv
ic

e.
js

in
de

x.
ht

m
l

Ct
rlM

ai
n.

js
Co

rd
ov

a
En

tr
y

fu
nc

tio
ns

 a
re

 u
se

d
by

ca
n

tr
an

sl
at

e
to

(w
ith

 u
se

r i
nt

er
ac

tio
n)

Figure 3.6.: Application code structure.

3.3. Application Structure on the Back End

3.3.4. Overview

As already mentioned in section 3.3.3, each of the four views consist of a template and a
controller. The controllers provide the logic directly necessary for the functionality of the
template. However, they are not responsible for more demanding tasks; for these tasks
they avail themselves of the factories contained in js/ . The exact dependency tree is
depicted in Fig. 3.6. What the individual factories are good for, will be touched by the
following.

FacInstances

object representing an instance

title string
url string
webServiceUrl* string
usingWebservice boolean
categories object
lastRefreshed string

*only for instances using webservice

object representing the data retrieved

title string
category array of objects

object representing a category

name string
title string
status integer
type string
link string
module array of objects

contains same
properties

Figure 3.7.: An item of the array instances , schematically.

This factory is one of the core elements of the app. It manages the instances of HappyFace
monitored computer grids which have been entered into the app. Each instance is an
object of the kind depicted left in Fig. 3.7. The instances that are currently in the app’s
stock are stacked within the array instances . The purpose of having this factory is to
provide an internal API to access the instances and perform convenient methods on them
– from every controller. FacInstances provides the following functions, accessible from
outside:

• all() : returns the internally maintained array instances .

• getLastActiveInstance() : returns the object representing the activeInstance .

• setLastActiveInstance(index) : sets the activeInstance to be instances[index] .

• createInstance(instance, doSelect) : appends the object instance to the array
instances and sets it the activeInstance if doSelect . instance will already
have content loaded via the web (property instance.categories).

• refresh() : updates the active instance’s categories from the web. Also gives
lastRefreshed the current date.

27

3. Smart Phone Application

• conditionalRefresh() : does the same as refresh() , but only when the host
device has Internet connection and the active instance has not been refreshed in the
last 2 minutes.

• setInstancesToDefault() : empties instances and fills it with the default in-
stances (loading their content from the web).

• removeInstance(instance) : removes instance from instances .

• lightweightRefresh() : does the same as refresh() , but without any notification
for the user on the UI (no loading indicators, etc.).

FacUIVariables

Another core factory is this one; it is meant to afford a single access point for variables
which determine what the UI should show in certain situations. FacUIVariables provides
the following functions, accessible from outside:

• setter and getter16 for notFirstTimeLaunch , a boolean which is false if and only
if the app has been launched on the host device for the first time.

• getter for isGreyedOut , a boolean which is true if and only if the UI is currently
greyed out, i.e. the data is outdated.

• setTimeOutIsGreyedOut(dateString) : sets isGreyedOut to true if the provided
date (via dateString) and the current date differ more than 20 minutes. If they do
not, isGreyedOut will be set to true as soon as the remaining time to a difference
of 20 minutes has past.

• setter and getter for sideMenuEnabled , a boolean which is true if and only if the
side menu is reachable.

• setter and getter for isLoading , a boolean which is set to true in order to have
the refresh button on the UI spinning.

• beginLoading(withIonicLoading) : Shows the network activity indicator in the
status bar (only for iOS) and overlays the UI with a loading screen if withIonicLoading

is true .

• stopLoading(withIonicLoading) : Hides the network activity indicator in the
status bar (only for iOS) if there are no more processes using the network. It also
hides the loading screen overlay if withIonicLoading is true .

16Functions to modify the value of the respective variable (set), and to retrieve its value (get).

28

3.3. Application Structure on the Back End

• getExtendedNotifications() : returns extendedNotifications , a boolean which
is true if the Extended Notification option is turned on.

• toggleExtendedNotifications() : sets extendedNotifications to
!extendedNotifications .

• isPlatformIOS() : returns true if and only if the host device runs iOS.

FacRequest

This factory is a utility and is responsible for establishing HTTP connections to the
HappyFace servers and get data from them. It features two functions accessible from
outside:

• Query(instanceUrl) : returns an object including the retrieved data from instanceUrl .

• cancel() : aborts any ongoing HTTP request initiated by the factory.

FacWebservice

The actions to query the web service for an arbitrary module and process the data are
taken by this factory. Here are the following functions accessible from outside:

• setter and getter for activeModule , an object which contains all information about
a module provided by the instances XML.

• setTableContent() : begins the factory internal function chain which at success
fills the object ionicTableData with updated content provided by the web service.

• getTableContent() : returns the object ionicTableData .

FacWebpage

This factory is a utility and is responsible for opening the HTML output of modules in
an InAppBrowser. It makes the following function accessible from the outside:

• openModuleInAppBrowser(mod) : opens the InAppBrowser at the URL of mod . The
function also changes some CSS on the displayed web page in order to remove the
category bar which can be found on the top of the page normally.

FacCategories

Functioning as an access point for the current active category, this small factory provides

• a setter and a getter for the index of the active category.

29

3. Smart Phone Application

FacBackgroundRefresh

What the app ought to execute during a background fetch on iOS is set within this fac-
tory. The background fetching process knows what actions to perform once the following
function has been called from the outside:

• initializeBackgroundFetch() .

FacPopup

This factory provides means to display pop-ups overlaying the UI. Therefore it makes
available the functions

• showPopupByName(name, instanceTitle) : shows the pop-up specified by name .
With instanceTitle it is possible to transmit a string, e.g. to display it within the
pop-up.

• showRowInfoPopup(subTableName, key, value) : shows a pop-up with title
subTableName and the information ’ key : value ’.

3.3.5. A View from Close To

Since the factories which supply the controllers of the views have been introduced in
section 3.3.4, this subsection will further explain how template and controller form a
unity in Angular apps. Therefore the side menu view, introduced in section 3.1.1, will
serve as an example.
As mentioned in section 3.3.3, the $stateProvider glues together the template and the
controller of a view. This way it is made sure that template and controller know of each
other. The way controllers communicate with the overlying HTML template is $scope .
$scope is what the glue between controller and template is made of, it is an object that
refers to the application model. The $scope of a controller is the whole HTML template
it is glued to. It can be given JS properties which then work as variables in the template.

sidemenu : templates/side-menu.html and js/CtrlSideMenu.js

In the template side-menu.html the Ionic implementation of a draggable side menu is
used:
<ion -side -menus class="lavender -bg">

<!-- Center content -->
<ion -side -menu - content drag - content ="true">
...

30

3.3. Application Structure on the Back End

</ion -side -menu -content >

<!-- Left menu -->
<ion -side -menu side="left" is - enabled =" sideMenuEnabled ()"

class="lavender -bg">
...
</ion -side -menu >

</ion -side -menus >

The class attributes are the standard HTML ones and modify the visual appearance
of the tags. The side menu is only able to be opened if $scope.sideMenuEnabled() is
true ; this is the first time the template includes functionality it finds in the underlying
controller: CtrlSideMenu . Here, the directive is-enabled is linked to the function

$scope . sideMenuEnabled = function () {
return FacUIVariables . getSideMenuEnabled ();

};

This is an implementation of the aforementioned properties of the $scope object. Declar-
ing it this way makes $scope.sideMenuEnabled() directly dependent on
FacUIVariables.getSideMenuEnabled() : Angular assumes the duty to change
$scope.sideMenuEnabled() accordingly to any change of
FacUIVariables.getSideMenuEnabled() at any time – effectively this results in an exten-
sion of the factory variable sideMenuEnabled to the template of the view.
The ionSideMenuContent is filled with the content which will be shown when the side
menu is closed:
<ion -nav -bar class="bar -royal nav -title -slide -ios7">

<ion -nav -back - button
class=" button icon -left ion -ios7 -arrow -back button -clear"
ng -click=" goBack ()">

Back
</ion -nav -back -button >

</ion -nav -bar >
<ion -nav -view name="view - content " ></ion -nav -view >

The ionNavBar directive manages the user’s view history and the ionNavBackButton

always provides the possibility to get to the previous view. Notice the ngClick directive
on the back button: Whenever the back button is tapped by the user, the function
goBack() is called, defined in CtrlSideMenu :
$scope . goBack = function () {

$ionicNavBarDelegate .back ();
$timeout (function () { // wait for the next $digest cycle

if ($state .is(’sidemenu . categories ’)) {
FacUIVariables . setSideMenuEnabled (true);

}
})

31

3. Smart Phone Application

};

The implementation of goBack() mainly executes the Ionic service to transition back in
navigation history. If the state changes to sidemenu.categories , the side menu becomes
enabled again (resolving the disablement when transitioning to sidemenu.modules , im-
plemented elsewhere).
Moreover, ionNavView gives the entry point for any child view of sidemenu – it will be
overwritten with the template of the currently active child.

The actual content-wise implementation of the side menu begins in the scope of ionSideMenu :
<ion -header -bar class="bar -dark">

<button class=" button button -icon ion -ios7 -cog - outline "
ng -click=" showModal (’ settings ’)">

</button >
<h1 class="title">HappyFace </h1 >
<button class=" button button -icon ion -ios7 -plus -empty"

ng -click=" showModal (’ instance ’)">
</button >

</ion -header -bar >

With the appropriate controller function $scope.showModal = function (string){...}; .
After these declarations of buttons in a header bar, the list of the instances stock is intro-
duced:
<ion - content scroll ="true">

<ion -list >
<ion -item ng - repeat =" instance in instances ()"

ng -click=" selectInstance (instance , $index)"
ng -class="{’ active ’: activeInstance () == instance }"
item=" instance ">

{{ instance .title }}
<p class="instance -uses - webservice "

ng -if=" instance . usingWebservice ">uses webservice </p>
<ion -option - button class=" button button - assertive "

ng -click=" removeInstance (instance)">
Delete

</ion -option -button >
</ion -item >

</ion -list >
</ion -content >

It is embedded in an ionContent , allowing the user to scroll by drag. The list itself is
constituted of the ionList and ionItem directives – utilised as one expects. However, it
is not known how many instances the user will have, ergo how many ionItem there have to
be. This is where the directive ngRepeat with the parameter instance in instances()

comes into play. It repeats any HTML it is equipped to, similar to a for -loop in JS. In
this case, the markup is repeated for every item in

32

3.3. Application Structure on the Back End

$scope . instances = function () {
return FacInstances .all ();

};

Additionally, the current item of the loop can be accessed within the scope of ngRepeat

by the variable instance – and its index in instances() can be accessed with $index .
The ngClick directive makes an ionItem tappable, executing the following function:

$scope . selectInstance = function (instance , index) {
FacRequest . cancel ();
FacInstances . setLastActiveInstance (index);
$ionicSideMenuDelegate . toggleLeft ();
$ionicScrollDelegate . scrollTop (false);
$ionicScrollDelegate . resize ();
FacUIVariables . setTimeOutIsGreyedOut (

FacInstances . getLastActiveInstance (). lastRefreshed
);
FacInstances . conditionalRefresh ();

};

Besides making use of the factory functions introduced in section 3.3.4, Ionic delegates
are called. In the order of appearance they close the side menu, scroll the ionContent to
the top without an animation, and resize the scroll container (because the newly selected
instance might have more or less categories than the previous one).
The ngClass adds the CSS class active to an item when that particular instance is also
the current activeInstance() , defined in the controller:

$scope . activeInstance = function () {
return FacInstances . getLastActiveInstance ();

};

Another new component inside the ionItem is the {{}} , introduced by Angular. This
construct evaluates17 any JS contained, while having access to the underlying controller.
Because of ngRepeat the instance is a place holder for an element of instances()

(see Fig. 3.7). Hence its properties can be addressed with the dot notation instance.title

and this results in the respective instance titles.
The ionOptionButton directive makes each ionItem swipe-able, to reveal an additional
button. The list items and the option buttons are equipped with ngClick s, wired up to
the respective controller function:

$scope . removeInstance = function (instance) {
FacInstances . removeInstance (instance);
if ((instance == $scope . activeInstance ())

|| ($scope . instances (). length == 0)) {
FacInstances . setLastActiveInstance (-1);

17 {{1+1}} would evaluate to 2 for example.

33

3. Smart Phone Application

// -1 is code for deleting the active instance
}

};

Also, the information if an instance is using web service is included in an item only if it
actually does use the web service, ergo if instance.usingWebservice is true . This is
realised with ngIf , which only renders its tag when the provided expression is true .

3.3.6. Retrieving Meta-Monitoring Data

The HappyFace app acquires its data from two different sources. First and foremost the
app hooks into the XML outputs of HappyFace instances. All data displayed on the
categories and modules view is sourced from there.
On the other side, the data on the detailed module view is retrieved from the DB web
service module of the instance, provided that a DB web service has been associated with
the instance. If this is not the case, the detailed module view is just displaying the
ordinary HTML output of the respective module – with no data retrieval in such a sense
that the data could be further processed (see section 3.1.4).

Acquiring and Processing the XML Output

The routines which are involved in obtaining and processing the XML output of Happy-
Face instances will be covered by this paragraph. Those routines are executed immediately
after a HappyFace instance has been added to the stock or when the app or user performs
a refresh.
The mechanisms described in the following all take place in the FacInstances and
FacRequest and are performed by the FacInstances internal functions createInstance ,
refresh and lightweightRefresh .

The main process of acquiring the XML output begins with the query of the respect-
ive server. FacInstances therefore calls the Query function of the FacRequest factory.
This function makes use of the $http service that comes with Angular [17]. It is essen-
tially a wrapper for the built-in JS way of performing AJAX operations, revolving around
the XMLHttpRequest . But additionally the $http makes use of the AngularJS promises
system introduced in section 3.2.3.
Hence FacRequest.Query returns a promise whose outcome influences which code block is
executed by the following then . In case of a promise rejection, i.e. a data retrieval failure
of the $http request, appropriate notifications are given to the user. If the promise gets

34

3.3. Application Structure on the Back End

resolved, i.e. data was retrieved from the XML output, the success handler is called. It
proceeds with converting the retrieved XML into JSON, by using the library mentioned
in section 3.3.3.
After assigning the proper variables with the newly retrieved content, the lastRefreshed

date of the respective instance gets updated. This information is necessary to be able to
assess data as outdated.

Acquiring and Processing DB Web Service Data

There are several steps involved in the procedure of querying the web service and pro-
cessing the data retrieved. They proceed in a function chain within the FacWebservice ,
which is triggered by the user who opens the detailed single module view for a specific
module.

The chain begins with beginSetTableContentChain() . This function is responsible for
loading and processing the mapping of module names between XML and web service.
This mapping exists because the module names delivered with the XML output differ
from the ones the web service query URL demands – but the app does only know of the
module names from the XML. The mapping also disclosures the specific column names
of each (sub)table, necessary for a correct query URL.
beginSetTableContentChain() takes the name of the active module – the one the user
tapped to get into detailed view – from the XML and seeks its corresponding web service
name with help of the mapping (the mapping is located on the server-side, within the DB
web service module). If successive, the next function in the chain is triggered:

prepareQueryUrls() composes the URLs used to query the web service in a subsequent
step. The function follows the composing scheme described in section 2.1.1. For a single
module several query URLs might be necessary, since a module can be mapped to more
than one (sub)table in the database and a query URL can only address one (sub)table at
a time.
Since the web service module, in its current implementation, cannot handle queries for
a point in time but only for intervals, the time interval for the produced query URLs
is chosen to be 45 minutes into the past. Certainly, the web service might answer with
several datasets contained in the JSON, but a later step will filter the returned data to
make it contain only the newest entry.
As of now, the query URLs are prepared to request all columns for each (sub)table the
mapping delivered in the previous step.

35

3. Smart Phone Application

After preparation of the URLs, the querying is initiated:

The current implementation of the web service module makes it necessary to execute
all requests to it in a successive manner. That is because the result of the latest query
gets stored server-side in form of query_result.json , but this file gets overwritten as
soon as a new query is processed by the DB web service. Thus the way to approach this
by the app is to query, download the result, and then proceed with querying the next
(sub)table.
requestWithQueryUrls() acts according to this pattern – realised with the promise sys-
tem of Angular. After all query URLs have been processed and their results have been
stored, the next item of the function chain is called:

reformatTables() rearranges the returned JSON to make further processing easier. A
typical query_result.json might have been

{ " content ": [
["2014 -07 -12 18:30:02.000000 ", 12345] ,
["2014 -07 -12 18:45:02.000000 ", 12346]

],
" table_name ": " mod_example ", " table_columns ": "time , mod_example .id"

}

The reformatTables() would rearrange that object to the following array:

[
{"time": "2014 -07 -12 18:30:02.000000 ", " mod_example .id": 12345} ,
{"time": "2014 -07 -12 18:45:02.000000 ", " mod_example .id": 12346}

]

The next function of the chain, shrinkSubModuleTablesToOnlyNewestDate() , discards all
datasets but the newest. The above array would thus be shrunk to
[

{"time": "2014 -07 -12 18:45:02.000000 ", " mod_example .id": 12346}
]

The last link of the chain is the function prepareIonicTableData() . In this final step the
data is reorganised to ensure it to be suitable to be shown to users. The data is written
into ionicTableData , an array that is directly shown on the detailed single module view.
The current version of the app shows all columns the web service returns, without any
preselection.

36

3.3. Application Structure on the Back End

3.3.7. Background Fetch

Currently only on iOS, the app comes with a background refreshing capability. It auto-
matically fetches new data from the HappyFace XML output and alerts the user when a
change in a category’s status occurred. This feature does work when the device is locked
or the user has opened another app. However, the app has to remain open (visible in the
multitasking switcher of iOS). A closed app will not perform background fetching.
The background refresh capability is based on the Background Fetch feature of iOS 7 [30],
accessed with a suitable plugin (see section 3.3.2). That is why the interval of fetching
however is not directly influenceable by the app – it is regimented by iOS itself. This
results in an irregular periodicity of the content being updated. iOS takes into account
the internal usage statistics of the app (time of day, usage frequency), to determine when
the app gets assigned time to perform a background refresh.

37

4. Conclusion and Outlook

4.1. Conclusion

The HappyFace smart phone app has been finished in its first version, 0.0.1. It has not
yet entered the Apple App Store, but has been submitted and currently finds itself in the
review process. After an approval it will be downloadable from the regular App Store to
any device running iOS 7.1 or higher.
The Android version of it was not submitted to Google Play, the Android pendant to the
App Store, because the distribution of an app via alternative ways is significantly easier
for Android than for iOS devices. In case of Android, the binary application in the .apk
format will be available on the official HappyFace website [31], hosted by the KIT.

The app is ready to be used for every computing site running HappyFace. To the user, it
brings several obvious benefits: To obtain the monitoring data that HappyFace aggregates
it is no longer necessary to effort a classical computer. This results in further flexibility
for the user, as it is now possible to check data at moments that previously did not allow
for a quick glance at the monitoring status.
Also, with the feature of an automatic refreshing process in the background and the app
reporting any changes in category states, it is not mandatory to check the status manually
to stay informed.

4.2. Outlook

As of now the background fetching feature is only available for iOS devices, as Android
manages background activity of running apps totally different than iOS. Future versions
of the HappyFace app could provide support there.
Another aspect concerning the background refreshing on iOS is that this feature currently
is based on the background fetching capability introduced with iOS 7. As explained in
section 3.3.7, it is not possible to strictly control the fetching times with this capability.
In case of a category-state-change this might result in a somewhat delayed alert from the

39

4. Conclusion and Outlook

app. In order to have background refreshes synchronised with the internal HappyFace
gathering process, the background refreshing routines could be revamped; letting the new
version base on Push Notifications [32, ch. 19]. A HappyFace server would then have to
communicate with the Apple Push Notification Service.
At the present time the background refreshing routine only alerts the user when a category
state change has happened. Since the app makes use of the DB web service module, which
allows the data to be further processed, the reasons for an alarm could be chosen freely –
and even the individual user could. One might implement a customise feature: allowing
users to choose the elements (categories, modules, web service columns) they want the
alert to be reactive to. Numerical web service columns might trigger an alarm when their
value reaches critical limits, which in turn could be set by the user.

40

A. Code Extracts

A.1. Query Result from the Example in Section 2.1.1

[
{

" content ": [
[

17100 ,
"2014 -07 -01 13:45:02.000000 ",
"ddm",
1.0

],
[

17101 ,
"2014 -07 -01 14:00:02.000000 ",
"ddm",
1.0

],
[

17102 ,
"2014 -07 -01 14:15:02.000000 ",
"ddm",
1.0

],
[

17103 ,
"2014 -07 -01 14:30:02.000000 ",
"ddm",
1.0

]
],
" table_name ": " mod_ddm ",
" table_columns ": " hf_runs .id , hf_runs .time , mod_ddm .instance , mod_ddm . status "

}
]

41

Bibliography

[1] Lyndon Evans. “The Large Hadron Collider”. In: New Journal of Physics 9.9 (2007),
p. 335.

[2] Oliver Sim Brüning et al. LHC Design Report. Geneva: CERN, 2004. Chap. 19.

[3] Christiane Lefevre. LHC the guide. Jan. 2008. url: http://cds.cern.ch/record/
1092437/files/CERN-Brochure-2008-001-Eng.pdf (visited on 07/22/2014).

[4] Christoph Eck et al. LHC computing Grid: Technical Design Report. Version 1.06
(20 Jun 2005). Technical Design Report LCG. Geneva: CERN, 2005.

[5] Ian Bird. “Computing for the Large Hadron Collider”. In: Annual Review of Nuclear
and Particle Science 61 (Nov. 2011), pp. 99–118.

[6] The Grid: A system of tiers. url: http://home.web.cern.ch/about/computing/
grid-system-tiers (visited on 07/22/2014).

[7] Viktor Mauch et al. “The HappyFace Project”. In: J. Phys.: Conf. Ser. 331.082011
(2011).

[8] Friederike Nowak. “Search for Supersymmetry with Jets, Missing Transverse Mo-
mentum, and a Single Tau at CMS”. FB Physik, Univ. Hamburg, June 2012.

[9] Volker Brüge et al. “Site specific monitoring of multiple information systems - the
HappyFace Project”. In: J. Phys.: Conf. Ser. 219.062057 (2010).

[10] Christian GeorgWehrberger. “HappyFace Meta-Monitoring for ATLAS in theWorld-
wide LHC Computing Grid”. MSc Thesis, II.Physik-UniGö-MSc-2013/07. II. Insti-
tute of Physics, Georg-August-University Göttingen, 2013.

[11] Gartner Inc. Worldwide Smartphone Sales to End Users by Operating System in
2013. Feb. 13, 2014. url: http://www.gartner.com/newsroom/id/2665715
(visited on 07/22/2014).

[12] Cordova. url: http://cordova.apache.org/ (visited on 07/22/2014).

[13] Cordova in the Apache Software Foundation. url: http://projects.apache.org/
projects/cordova.html (visited on 07/22/2014).

43

http://cds.cern.ch/record/1092437/files/CERN-Brochure-2008-001-Eng.pdf
http://cds.cern.ch/record/1092437/files/CERN-Brochure-2008-001-Eng.pdf
http://home.web.cern.ch/about/computing/grid-system-tiers
http://home.web.cern.ch/about/computing/grid-system-tiers
http://www.gartner.com/newsroom/id/2665715
http://cordova.apache.org/
http://projects.apache.org/projects/cordova.html
http://projects.apache.org/projects/cordova.html

Bibliography

[14] Andrew Trice. PhoneGap Explained Visually. May 2, 2012. url: http://phonegap.
com/2012/05/02/phonegap-explained-visually/ (visited on 07/22/2014).

[15] PhoneGap Supported Features. url: http : / / phonegap . com / about / feature/
(visited on 07/22/2014).

[16] AngularJS. url: http://angularjs.org/ (visited on 07/22/2014).

[17] Brad Green and Shyam Seshadri. AngularJS. O’Reilly Media, Inc., 2013.

[18] Ionic framework. url: http://ionicframework.com/ (visited on 07/22/2014).

[19] Ionic API. url: http://ionicframework.com/docs/api/ (visited on 07/22/2014).

[20] Cordova Device Plugin. Version 0.2.8. url: http://plugins.cordova.io/#/
package/org.apache.cordova.device (visited on 07/22/2014).

[21] Cordova InAppBrowser Plugin. Version 0.3.3. url: http://plugins.cordova.io/
#/package/org.apache.cordova.inappbrowser (visited on 07/22/2014).

[22] Cordova Network Information Plugin. Version 0.2.8. url: http://plugins.cordova.
io/#/package/org.apache.cordova.network-information (visited on 07/22/2014).

[23] Cordova StatusBar Plugin. Version 0.1.3. url: http://plugins.cordova.io/#/
package/org.apache.cordova.statusbar (visited on 07/22/2014).

[24] Cordova Local-Notification Plugin. Version 0.8.0dev. url: https://github.com/
katzer/cordova-plugin-local-notifications (visited on 07/22/2014).

[25] PhoneGap NetworkActivity Plugin. Version 1.0.0. url: https : / / github . com /
steve228uk/network-activity (visited on 07/22/2014).

[26] Cordova BackgroundFetch Plugin. Version 2.0.0. url: https : / / github . com /
christocracy/cordova-plugin-background-fetch (visited on 07/22/2014).

[27] jQuery. url: http://jquery.com/ (visited on 07/22/2014).

[28] Fyneworks.com. jQuery XML to JSON Plugin. Version 1.3. July 8, 2013. (Visited
on 07/22/2014).

[29] Angular ui-router. url: https://github.com/angular-ui/ui-router/ (visited
on 07/22/2014).

[30] Vandad Nahavandipoor. iOS 7 Programming Cookbook. O’Reilly Media, Inc., 2014.
Chap. 16.3.

[31] HappyFace Meta monitoring framework. url: https://ekptrac.physik.uni-
karlsruhe.de/trac/HappyFace/ (visited on 07/22/2014).

44

http://phonegap.com/2012/05/02/phonegap-explained-visually/
http://phonegap.com/2012/05/02/phonegap-explained-visually/
http://phonegap.com/about/feature/
http://angularjs.org/
http://ionicframework.com/
http://ionicframework.com/docs/api/
http://plugins.cordova.io/#/package/org.apache.cordova.device
http://plugins.cordova.io/#/package/org.apache.cordova.device
http://plugins.cordova.io/#/package/org.apache.cordova.inappbrowser
http://plugins.cordova.io/#/package/org.apache.cordova.inappbrowser
http://plugins.cordova.io/#/package/org.apache.cordova.network-information
http://plugins.cordova.io/#/package/org.apache.cordova.network-information
http://plugins.cordova.io/#/package/org.apache.cordova.statusbar
http://plugins.cordova.io/#/package/org.apache.cordova.statusbar
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/steve228uk/network-activity
https://github.com/steve228uk/network-activity
https://github.com/christocracy/cordova-plugin-background-fetch
https://github.com/christocracy/cordova-plugin-background-fetch
http://jquery.com/
https://github.com/angular-ui/ui-router/
https://ekptrac.physik.uni-karlsruhe.de/trac/HappyFace/
https://ekptrac.physik.uni-karlsruhe.de/trac/HappyFace/

Bibliography

[32] Wei-Meng Lee. Beginning iOS 5 Application Development. John Wiley & Sons, Inc.,
2012.

45

Acknowledgements

I want to thank Prof. Dr. Arnulf Quadt for giving me the opportunity to work on this
interesting topic, as well as to extend my horizon beyond the tasks physicists are usually
confronted with. Moreover, I am thanking Priv.Doz. Dr. Jörn Große-Knetter for dedicat-
ing his time for my thesis as second referee.

Furthermore I express my gratitude to Dr. Gen Kawamura, Erekle Magradze, Haykuhi
Musheghyan, Dr. Jordi Nadal and Prof. Dr. Arnulf Quadt for affiliating me that kindly
into the working team and for their support throughout the whole thesis.

47

Erklärung nach §13(8) der Prüfungsordnung für den Bachelor-Studiengang Phy-
sik und den Master-Studiengang Physik an der Universität Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig ver-
fasst habe, keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe und alle Stellen, die wörtlich oder sinngemäß aus veröf-
fentlichten Schriften entnommen wurden, als solche kenntlich gemacht
habe.
Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch
nicht auszugsweise, im Rahmen einer nichtbestandenen Prüfung an
dieser oder einer anderen Hochschule eingereicht wurde.

Göttingen, den 22. September 2014

(Fabian Kukuck)

	1 Introduction
	1.1 WLCG
	1.2 Meta-Monitoring

	2 HappyFace Meta-Monitoring Tool
	2.1 HappyFace
	2.1.1 DB Web Service

	3 Smart Phone Application
	3.1 Application Structure on the Front End
	3.1.1 Side Menu View
	3.1.2 Categories View
	3.1.3 Modules View
	3.1.4 Detailed Single Module View

	3.2 Preparation of the Application's Back End
	3.2.1 Introductory Words
	3.2.2 Cordova
	3.2.3 AngularJS
	3.2.4 Ionic

	3.3 Application Structure on the Back End
	3.3.1 Basis
	3.3.2 Cordova Plugins
	3.3.3 From the Beginning
	3.3.4 Overview
	3.3.5 A View from Close To
	3.3.6 Retrieving Meta-Monitoring Data
	3.3.7 Background Fetch

	4 Conclusion and Outlook
	4.1 Conclusion
	4.2 Outlook

	A Code Extracts
	A.1 Query Result from the Example in Section 2.1.1

