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Talk plan

review dim, introduce asdim for metric spaces/groups,
introduce approximate groups, see countable approximate
groups as metric spaces and define their asdim,
for the following:

Theorem (Buyalo-Lebedeva, 2007)

For a hyperbolic group G, asdimG = dim ∂G + 1.
In fact, this is true for proper geodesic hyperbolic cobounded metric
spaces.

we generalize this to hyperbolic approximate groups:

Theorem (Cordes-Hartnick-T.)

For a hyperbolic approximate group (Λ,Λ∞), asdimΛ = dim ∂Λ + 1.
In fact, this is true for proper geodesic hyperbolic quasi-cobounded
metric spaces.

We will need to introduce some notions: (Gromov)
hyperbolicity for metric spaces/groups/approx. groups,
(Gromov) boundaries . . .
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dim and asdim, basic comparison

Both dimensions take their values in N0 ∪ {∞}, with dim ∅ := −1.

dim asdim
covering (or topological) asymptotic dimension

dimension

H. Lebesgue, 1920’s M. Gromov, 1990’s

topological spaces metric spaces

focused on small stuff focused on large stuff

open covers uniformly bounded
covers

topological coarse invariant
invariant

3 / 50 V. Tonić



Definition of dim

Definition

Let X be a topological space. If X = ∅, define dimX := −1.
If X ̸= ∅ and n ∈ N0, then dimX ≤ n means: for each open cover
U of X there is an open cover V of X such that

V refines U (i.e., ∀V ∈ V ∃U ∈ U s.t. V ⊆ U), and

multV ≤ n+1, i.e., any x ∈ X lies in at most n+1 elts. of V.
We say dimX := n if dimX ≤ n and dimX ≰ n − 1.
If no such n exists, then dimX := ∞.

Examples:

dim (of any discrete space) = 0
In particular, for Zn ⊂ (Rn, dE ), dimZn = 0.

dim(Iℵ0) = ∞, where Iℵ0 =
∏∞

i=1[0, 1]i (Hilbert cube)

(Iℵ0 with metric d((xi ), (yi )) =
√∑

i∈N
(dE (xi ,yi ))2

i2
is bounded)

dimRn = n, dim (n-manifold) = n, ∀n ∈ N
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Definition of asdim

Definition

Let (X , d) be a nonempty metric space and let n ∈ N0.
Then asdimX ≤ n means: for each uniformly bounded cover U of
X there is a uniformly bounded cover V of X such that

V coarsens U (i.e., U refines V), and
multV ≤ n + 1.

We say asdimX := n if asdimX ≤ n and asdimX ≰ n − 1.
If no such n exists, then asdimX := ∞.

Examples:

asdim (of any bounded metric space) = 0
In particular, for Hilbert cube, asdim Iℵ0 = 0.

[
dim Iℵ0 = ∞

]
asdim (of a discrete space) can be anything.
In particular, for Zn ⊂ (Rn, dE ), asdimZn = n. [dimZn = 0]
asdim of a discrete group that contains a copy of Zn, ∀n ∈ N
is = ∞.
asdimRn = n, ∀n ∈ N (in fact, asdimRn = asdimZn).
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Definition of asdim

Equivalent definition of asdim:

Definition (Coloring definition)

Let (X , d) be a nonempty metric space and let n ∈ N0.

Then asdimX ≤ n ⇔ ∀R > 0 (R < ∞) there is a uniformly
bounded cover U of X such that

U =
⋃n+1

i=1 U (i), where

each subfamily U (i) is R-disjoint, i.e., ∀U ̸= U ′ ∈ U (i) we have
dist(U,U ′) ≥ R.

We refer to i ∈ {1, 2, . . . , n + 1} as different colors.
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Easy examples of finding asdim

• asdimR = 1: U = U (1) ∪ U (2)

• asdimR2 = 2: U = U (1) ∪ U (2) ∪ U (3)
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Properties of asdim

Theorem (Monotonicity)

If A ⊆ X, then asdimA ≤ asdimX.

Theorem (Product theorem)

asdim(X × Y ) ≤ asdimX + asdimY .

Therefore asdimRn ≤ n · asdimR = n · 1 = n.
(Still would have to explain why asdimRn ≰ n − 1.)

Theorem (Functions preserving asdim)

asdim is a coarse invariant, i.e., it is preserved by
coarse equivalences (so, in particular, by quasi-isometries).

Once we show that Zn QI
≈ Rn, they will have the same asdim.
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Coarse equivalence and quasi-isometry

Definition

A function f : (X , dX ) → (Y , dY ) is a coarse embedding if ∃
non-decreasing functions ρ−, ρ+ : [0,∞) → [0,∞) s.t. ρ−(t) → ∞
when t → ∞, and ∀x , x ′ ∈ X we have

ρ−(dX (x , x
′)) ≤ dY (f (x), f (x

′)) ≤ ρ+(dX (x , x
′)).

In particular, if both ρ− and ρ+ are linear, i.e., ∃K ≥ 1, C ≥ 0 s.t.

1

K
· dX (x , x ′)− C ≤ dY (f (x), f (x

′)) ≤ K · dX (x , x ′) + C ,

we say that f is a quasi-isometric embedding (QI-embedding, or,
more precisely, a (K ,C )-QI-embedding).

(For K = 1,C = 0: f is an isometric embedding.)
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Coarse equivalence and quasi-isometry

Definition

If ∃D ≥ 0 is such that Y = ND(f (X )), i.e., y ∈ Y is at most
D-distant from some element of f (X ), we say that f is coarsely
surjective (and that f (X ) is quasi-dense or coarsely dense in Y ).

Definition

If f : X → Y is a QI-embedding and f is coarsely surjective,
then f is called a quasi-isometry (shortly QI). ((K ,C ,D)-QI)

If f : X → Y is a coarse embedding and f is coarsely
surjective, then f is called a coarse equivalence (shortly CE).

Properties of metric spaces which are preserved by quasi-isometries
are called QI-invariants, and properties preserved by coarse
equivalences are called coarse invariants.
If there exists a quasi-isometry (coarse equivalence) between

spaces X and Y , we write X
QI
≈ Y (X

CE
≈ Y ).
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Coarse equivalence and quasi-isometry

Example: Z ↪→ R is a QI with constants K = 1,C = 0,D = 1.

Therefore Z
QI
≈ R. Recall the theorem

Theorem (Functions preserving asdim)

asdim is a coarse invariant, i.e., it is preserved by coarse
equivalences (in particular, by quasi-isometries).

That is, X
CE
≈ Y ⇒ asdimX = asdimY

(in particular, X
QI
≈ Y ⇒ asdimX = asdimY ) .

Consequently asdimZ = asdimR.

Note: a CE between geodesic metric spaces is a QI.
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Metric on groups: finitely generated groups

To introduce asdim on groups, we need a metric.

Let G finitely generated group, S a fin.gen. set of G (S−1 = S).

1st way, on G we introduce the word metric associated to S :
dS(g , h) := ||g−1h||S (length of g−1h w.r. to S), ∀g , h ∈ G .

dS is left-invariant: dS(ag , ah) = dS(g , h), ∀a, g , h ∈ G ,
(G , dS) is a discrete metric space,
(G , dS) is proper (closed balls are compact).

2nd way, build the Cayley graph ΓS(G ):

Vertices: elements of G ,
Edges: (g , h) ∈ E if h = gs, s ∈ S ,
metric on ΓS(G ): path-length metric, i.e., d(a, b)= length of
shortest path between a, b. (Each edge of length 1.)
(ΓS(G ), d) is a geodesic metric space.

Turns out: d on V (ΓS(G )) and dS on G coincide, and
G (identified with V (ΓS(G ))) is QI to ΓS(G ), for any finite
generating set S .
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Cayley graph for Γ{a,b,a−1,b−1}(F2)
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Cayley graph for Γ{a,b,a−1,b−1}(F2), but fancier
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More on Cayley graphs

Cayley graph depends on choice of the (fin.) generating set S , but:

Theorem

If S and S ′ are both finite generating sets for G, then

(G , dS)
QI
≈ (ΓS(G ), dS)

QI
≈ (ΓS ′(G ), dS ′)

QI
≈ (G , dS ′).

Example: Γ{1,−1}(Z) and Γ{2,3,−2,−3}(Z).
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asdim of finitely generated groups

Definition

For a finitely generated group G , and any fin.gen. set S of G :

asdimG := asdim (G , dS) = asdim (ΓS(G ), dS)

Note: asdim is a coarse invariant (in particular, preserved by QI),
so definition does not depend on the choice of fin.generating set S .

We can also define asdimG := asdim ([G ]c), where

[G ]c = {(X , dX ) | (X , dX )
CE
≈ (G , dS)}.

What if G is not finitely generated? Then it can be:

G countable (not fin.gen.), or

G uncountable (we will not be covering these today)

(A finitely generated group can have a subgroup which is not
finitely generated (but it will be countable).)
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Metric on groups: countable groups

For G countable: can define a left-invariant proper metric d :

Definition

Let G be a countable group and S ⊆ G be a symmetric subset. A
function w : S ∪ {e} → [0,∞) is called a weight function on S if it
is proper and satisfies w−1(0) = {e} and w(s) = w(s−1) for all
s ∈ S .

Lemma

Let S be a symmetric generating set of a countable group G and
let w : S ∪ {e} → [0,∞) be a weight function. Then

∥g∥S ,w := inf

{
n∑

i=1

w(si )
∣∣ g = s1 · · · sn, si ∈ S

}

defines a norm on G, and the associated metric dS ,w given by
dS,w (g , h) := ∥g−1h∥S ,w is left-invariant and proper.
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asdim of countable groups

Theorem

If d1 and d2 are two left-invariant proper metrics on a countable
group G, then the identity id : (G , d1) → (G , d2) is a coarse

equivalence (so (G , d1)
CE
≈ (G , d2)).

So the following makes sense:

Definition

The coarse class [G ]c of a countable group G is the coarse
equivalence class of the metric space (G , d), where d is some
(hence any) left-invariant proper metric on G .

• Therefore, for a countable group G , define:
asdimG := asdim (G , d), where d is any left-invariant proper
metric on G . We can also define asdim ([G ]c) := asdim (G , d), so
asdimG = asdim (G , d) = asdim ([G ]c).
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Approximate groups

Definition (Approximate subgroup, T. Tao, 2008)

Let (G , ·) be a group and let k ∈ N. A subset Λ of G is called a
k-approximate subgroup of G if:

(AG1) Λ = Λ−1 and e ∈ Λ, and

(AG2) ∃ a finite subset F ⊆ G s.t. Λ2 ⊆ ΛF and |F | = k.

We say Λ is an approximate subgroup if it is a k-approximate
subgroup, for some k ∈ N.

Note:

Λ2 = Λ · Λ = {a · b | a, b ∈ Λ}, Λ · F = {a · f | a ∈ Λ, f ∈ F}.
If Λ is an approx. subgroup, then Λ∞ := ∪k∈NΛ

k is a group
(Λ∞ ≤ G ). We call Λ∞ the enveloping group of Λ.

We call the pair (Λ,Λ∞) an approximate group.
We say: (Λ,Λ∞) is finite (countable) if Λ is finite (countable).
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Approximate groups – examples

(1) Let (G , ·) = (Z,+), n ∈ N and define
Λ := {−n,−n + 1, . . . ,−1, 0, 1, . . . , n − 1, n}.
Then Λ + Λ = {−2n, . . . , 2n} ̸⊆ Λ, but for F = {−n, n} we
get Λ + Λ = Λ + F , i.e., Λ is a 2-approximate subgroup of Z.
Also: Λ∞ = Z. Therefore (Λ,Z) is an approximate group.

(2) (Non-example): Let (G , ·) = (Z,+) and define
Λ := {2i | i ∈ Z} ∪ {0} ∪ {−2i | i ∈ Z}. Then Λ + Λ contains
2n + 2n+1 = 3 · 2n, ∀n ∈ N, so it contains infinitely many
numbers which are not in Λ, and the “distance” of these new
numbers to Λ goes to ∞. If F is a finite set ⊆ Z, then the
“distance” between the numbers in Λ + F to Λ is bounded.
Therefore we cannot have Λ + Λ ⊆ Λ + F , i.e., Λ is not an
approximate subgroup of Z.
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Approximate groups – examples

(3) If G is a group and H ≤ G ⇒, then H is also an approximate
subgroup of G ⇒ the pair (H,H) is an approximate group.

(4) If G is a group and F is a finite symmetric subset of G which
contains e ⇒ (F ,F∞) is an approximate group.

(5) If Λ is an approximate subgroup of a group G , then Λk is also
an approximate subgroup of G , so (Λk ,Λ∞) is an approximate
group.

(6) Cartesian product of two approximate subgroups is an
approximate subgroup, the image of an approximate subgroup
(via a group homomorphism) is an approximate subgroup.
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Approximate groups – examples

(7) Let BS(1, 2) = ⟨a, b
∣∣ bab−1 = a2⟩ be the Baumslag-Solitar

group of type (1, 2), and define Λ := ⟨a⟩ ∪ {b, b−1}.
Then Λ is symmetric, contains e and generates BS(1, 2) (so
Λ∞ =BS(1, 2)). A calculation (using (b−1ab)2 = a) shows
that

Λ2 ⊆ Λ{e, b, b−1, b−1a},

hence (Λ,Λ∞) is an approximate group.

(8) If G is a locally compact group and W is a relatively compact
(i.e. having compact closure) symmetric neighborhood of
identity e in G , then (W ,W∞) is an approximate group.
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Approximate groups – examples

(9) “Cut and project” construction on an irrational lattice in R2:
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Countable approximate groups and their asdim

For a countable approx. group (Λ,Λ∞), how do we define asdimΛ?

Recall: for a countable group G :

there are left-invariant proper metrics on G , and

if d1 and d2 are two left-invariant proper metrics on G , then

(G , d1)
CE
≈ (G , d2),

asdim is a coarse invariant, so

asdimG := asdim (G , d) ( = asdim ([G ]c)) is well-defined
(for any left-invariant proper metric d on G )

Analogously, if (Λ,Λ∞) is a countable approximate group:

we want to associate to it the coarse (equivalence) class [Λ]c
of (mutually coarsely equivalent) metric spaces, and

define asdimΛ to be asdim ([Λ]c), i.e., asdim of any metric
space representing [Λ]c .
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Countable approximate groups and their asdim

Lemma

If G is a countable group, and Λ ⊆ G is a subset, and if we take
any two left-invariant proper metrics d and d ′ on G, then
id : (Λ, d |Λ×Λ) → (Λ, d ′|Λ×Λ) is a coarse equivalence.

In particular, apply this on a countable approximate group (Λ,Λ∞),
(i.e., on Λ ⊆ Λ∞): take any left-invariant proper metric d on Λ∞,
define the (canonical) coarse class of Λ:

[Λ]c := [(Λ, d |Λ×Λ)]c .

Note (independence of the ambient group): If Λ is an approximate
subgroup of a countable group G , and if d is a left-invariant proper
metric on G , then d |Λ∞×Λ∞ is a left-invariant proper metric on
Λ∞, so [Λ]c = [(Λ, (d |Λ∞×Λ∞)|Λ×Λ)]c is independent of the
ambient group which is used to define it.
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Countable approximate groups and their asdim

Note: [Λ]c admits a representative which is a proper metric space.

Finally, for a countable approximate group (Λ,Λ∞), define

asdimΛ := asdim ([Λ]c)

= asdim of any metric space representing [Λ]c .

Lemma

If (Λ,Λ∞) is a countable approximate group, then ∀k ∈ N, the
inclusion Λ ↪→ Λk is a coarse equivalence, so [Λ]c = [Λk ]c .

Corollary

If (Λ,Λ∞) is a countable approximate group, then
asdimΛ ≤ asdimΛ∞, and asdimΛk = asdimΛ, ∀k ∈ N.
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A theorem on asdim of approximate groups
and the theorem which inspired it.

Theorem (Buyalo-Lebedeva, 2007)

For a hyperbolic group G, asdimG = dim ∂G + 1.
In fact, this is true for proper, geodesic, Gromov hyperbolic,
cobounded metric spaces.

For approximate groups:

Theorem (Cordes-Hartnick-T.)

For a hyperbolic approximate group (Λ,Λ∞),

asdimΛ = dim ∂Λ + 1.

In fact, this is true for proper, geodesic, Gromov hyperbolic,
quasi-cobounded metric spaces.
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Theorem we wish to generalize

Theorem (Buyalo-Lebedeva, 2007)

For a hyperbolic group G, asdimG = dim ∂G + 1.
In fact, this is true for proper, geodesic, Gromov hyperbolic,
cobounded metric spaces.

We should recall and/or define:

the notion of being (Gromov) hyperbolic for a (nice enough)
metric space, group, approximate group,

(Gromov) boundary for a (nice enough) hyperbolic space,

properness, coboundedness and quasi-coboundedness.

Definition

A metric space is proper if all closed balls in it are compact.

28 / 50 V. Tonić
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Gromov hyperbolic spaces (and groups)

Definition

A geodesic metric space is called (Gromov) hyperbolic if ∃δ ≥ 0
such that all geodesic triangles are δ-thin, i.e., every side of a
geodesic triangle is contained in δ-nbhd of the union of the other
two sides.

This is also called being
δ-hyperbolic. Let us agree that a
0-nbhd of a triangle = the
triangle, so a tripod Y in a graph
is 0-hyperbolic.

Theorem

(Gromov) hyperbolicity is a QI invariant for geodesic metric spaces.
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Gromov hyperbolic spaces (and groups)

This definition generalizes the metric properties of classical hyperbolic

geometry and of (graphs that are) trees.

Some examples:
1 hyperbolic plane H2 (also Hn, ∀n ∈ N≥2),
2 any bounded metric space,
3 hyperbolic groups (finitely generated groups G with Cayley

graph ΓS(G ) (Gromov) hyperbolic) . . .

for 3 in particular: Cayley graph Γ{a,b,a−1,b−1}(F2) of the free group of

rank 2:
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Gromov boundary

Definition

For a proper geodesic (Gromov) hyperbolic space X , its (Gromov)
boundary ∂X consists of points that are equivalence classes of
geodesic rays in X , where two geodesic rays are equivalent if they
fellow-travel, i.e., they are within finite Hausdorff distance from
eachother (supt∈[0,∞) d(γ(t), γ

′(t)) < ∞).

Elements of ∂X : γ(∞) or ξ.
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Gromov boundary

Metric on ∂X : (vague definition a visual metric on ∂X )
For ξ1, ξ2 ∈ ∂X , and some fixed x0 ∈ X , take a geodesic ray γ1
from x0 to ξ1, and a geodesic ray γ2 from x0 to ξ2. These will
fellow-travel for some distance L, before they diverge. Define
ϱ(ξ1, ξ2) := e−L (or e−εL, not a metric yet). Now if η1, η2 ∈ ∂X ,
put

d(η1, η2) := inf

{
n∑

i=1

ϱ(ξi−1, ξi ) | η1 = ξ0, . . . , ξn = η2, n ∈ N

}
.
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Gromov boundary

Some properties (for X proper geodesic hyperbolic):

two visual metrics on ∂X induce the same topology on ∂X ,

(∂X , d) is bounded, complete, compact (for d any visual
metric).

Theorem

If (X , dX ), (Y , dY ) are two proper geodesic hyperbolic spaces
which are quasi-isometric, then ∂X and ∂Y are homeomorphic.

Some examples:

∂H2 ≈ S1 (∂Hn ≈ Sn−1)

∂(Γ{a,b,a−1,b−1}(F2)) ≈ Cantor set.
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Gromov hyperbolic spaces (and groups)

Definition

A finitely generated group G is called hyperbolic if for any finite
generating set S of G , the Cayley graph ΓS(G ) is a hyperbolic
metric space.

Note that we know that:

Cayley graphs of fin.gen. groups are geodesic metric spaces
(with path-length metrics, i.e., word metrics dS),

for S and S ′ finite generating sets of G , we have

(ΓS(G ), dS)
QI
≈ (ΓS ′(G ), dS ′),

hyperbolicity is a QI invariant of geodesic metric spaces

⇒ hyperbolicity of finitely generated groups is well-defined.

Cayley graphs of fin.gen. groups are proper and geodesic,
so if G hyperbolic, define ∂G := ∂(ΓS(G ), dS).
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Gromov hyperbolic spaces (and groups)

Some examples:

Elementary hyperbolic groups:

finite groups (⇒ Cayley graph of finite diameter),
Z and virtually cyclic groups (containing Z as a finite index
subgroup)

finitely generated free groups,

small cancellation groups,

fundamental groups of closed surfaces with genus > 1,

fundamental groups of closed, negatively curved manifolds.

Non-examples:

Z2 (
QI
≈ (R2, dE )),

any group containing Z2 as a subgroup,

Baumslag–Solitar groups B(m, n).
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Coboundedness and quasi-coboundedness

A metric space (X , d) is said to be cobounded if there is an r > 0
so that for all x , y ∈ X there is an isometry f : X → X so that
d(f (x), y) < r .

Or, equivalently, there exists a bounded subset A of X s.t. the
orbit of A, under the Isometry(X ) acting on X , covers X .

36 / 50 V. Tonić



Coboundedness and quasi-coboundedness

For a metric space (X , d) and for K ≥ 1, C ≥ 0, r > 0, we say
that X is (K ,C , r)-quasi-cobounded if for all x , y ∈ X there is a
(K ,C ,C )-quasi-isometry f : X → X such that d(f (x), y) < r .

(X , d) is quasi-cobounded if it is (K ,C , r)-quasi-cobounded, for
some K , C , r as above.
(Note that X is cobounded if it is (1, 0, 0)-quasi-cobounded (those
maps f are isometries).
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Approximate groups – before introducing hyperbolicity

Recall that we have defined hyperbolicity for finitely generated
groups. How does this translate to approximate groups?

For a group: being finitely generated
↓

For an approximate group:
• being algebraically finitely generated
• being geometrically finitely generated

Definition

For (Λ,Λ∞) we say it is algebraically finitely generated if Λ∞ is a
finitely generated group.
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Approximate groups – before introducing hyperbolicity

Definition

A countable approximate group (Λ,Λ∞) is said to be geometrically
finitely generated if (Λ, d |Λ×Λ) is coarsely connected, where
d is a left-invariant proper metric on Λ∞.

Coarsely connected = connected by “coarse paths”: ∃c > 0 s.t.
∀x , x ′ ∈ Λ, there is a c-path from x to x ′, i.e., ∃ a finite sequence
x = x0, x1, . . . , xn−1, xn = x ′ in Λ so that
d(xi , xi+1) < c, for i = 0, . . . .n − 1.

(For a countable approximate group, being geometrically finitely
generated ⇒ being algebraically finitely generated. But not the
other way around.)
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Approximate groups – before introducing hyperbolicity

Theorem

Let (Λ,Λ∞) be a countable approximate group, and let d be a
left-invariant proper metric on Λ∞. Then: (Λ, d |Λ×Λ) is coarsely
connected ⇔ there is a representative X ∈ [Λ]c which is large-scale
geodesic.

Large-scale geodesic means: ∃a > 0, b ≥ 0, c > 0 such that
∀x , x ′ ∈ X there is a c-path between x , x ′ of length≤ a · d(x , x ′)+ b.

Now, for (Λ,Λ∞) geometrically finitely generated, we define the internal
QI type of (Λ,Λ∞):

[Λ]int := {X ∈ [Λ]c | X large-scale geodesic},

Note: • X large-scale geodesic ⇔ X
QI
≈ to a geodesic metric space,

• For X ,X ′ ∈ [Λ]int, we have X
QI
≈ X ′.
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Approximate groups – before introducing hyperbolicity

Note that, for (Λ,Λ∞) geometrically finitely generated:

[Λ]int can always be represented by a proper metric d on Λ,
called internal metric on Λ (“large-scale path metric”).

For internal metric d , (Λ, d) is proper and large-scale

geodesic, so (Λ, d)
QI
≈ to a locally finite graph XΛ, which we

call a generalized Cayley graph of (Λ,Λ∞).

we can choose a representative (X , d) of [Λ]int ⊆ [Λ]c which is
a proper, geodesic and quasi-cobounded metric space. We will
call such a space an apogee for (Λ,Λ∞).
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Hyperbolic approximate groups

Recall the definition for groups: A finitely generated group G is
hyperbolic if one (hence any) Cayley graph ΓS(G ) of it (with
respect to a finite generating set S) is (Gromov) hyperbolic.

Definition (Hyperbolicity for approximate groups)

A geometrically finitely generated approximate group (Λ,Λ∞) is
said to be hyperbolic if one (hence any) apogee of it is hyperbolic.
Equivalently, if some (hence any) generalized Cayley graph of it is
hyperbolic.

Note: For a hyperbolic approximate group (Λ,Λ∞), an apogee
(X , d) ∈ [Λ]int ⊆ [Λ]c is a proper geodesic hyperbolic
quasi-cobounded space.
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B.-L. Theorem for hyperbolic approximate groups

Theorem (Cordes-Hartnick-T.)

For a hyperbolic approximate group (Λ,Λ∞),

asdimΛ = dim ∂Λ + 1.

In fact, this is true for proper geodesic hyperbolic quasi-cobounded
metric spaces.

How do we define the (Gromov) boundary ∂Λ:

take any apogee (X , d) ∈ [Λ]int ⊆ [Λ]c ,

recall that, if (X , dX ), (Y , dY ) are proper geodesic hyperbolic

spaces s.t. X
QI
≈ Y , then ∂X ≈ ∂Y ,

therefore define ∂Λ := [∂X ]homeo = the homeomorphism class
of ∂X , for any apogee (X , d) ∈ [Λ]int,

recall that dim is a topological invariant (i.e., preserved by
homeomorphisms).
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B.-L. Theorem for hyperbolic approximate groups

Equivalently, the first part of this theorem is saying:

Theorem

For any apogee X of a hyperbolic approximate group (Λ,Λ∞), we
have

asdimX = dim ∂X + 1.

In full generality, the theorem we prove is:

Theorem

For a metric space X which is proper, geodesic, hyperbolic and
quasi-cobounded, we have

asdimX = ℓ- dim (∂X , d) + 1 = dim ∂X + 1,

where d is any visual metric on ∂X.

Here ℓ-dim denotes linearly controlled metric dimension.
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Outline of the proof

We need to show:
• asdimX ≥ dim ∂X + 1 and • asdimX ≤ dim ∂X + 1.

The first of these two inequalities works without the assumption of
coboundedness or quasi-coboundedness:

Theorem (Buyalo-Schroeder)

If X is a proper, geodesic, hyperbolic metric space, then

asdimX ≥ dim ∂X + 1.

This is not too hard to prove, using a hyperbolic cone of ∂X and
its embedding into X , and then some properties of dim . . .

Note that equality holds when X is a bounded metric space, since
asdimX = 0 and dim ∂X = dim ∅ = −1.

But if X is unbounded, “≤” does not work with only the
assumptions from B.-S. Theorem, as shown in the following
example:
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Outline of the proof

Example (hyperbolic shish-kebab (or shashlik or skewer)):
Let n ≥ 2, γ : [0,∞) → Hn be a geodesic ray, and let x1, x2, . . . be
points on γ([0,∞)) such that d(xk , xk+1) ≥ 2k+2, ∀k ∈ N. Define

X = γ([0,∞)) ∪
⋃
k∈N

B(xk , 2
k) ⊂ Hn.

With path-lenght metric, X is a
proper geodesic hyperbolic space,
which contains arbitrarily large
balls of Hn, so asdimX = n.

But X contains a single geodesic
ray, so ∂X is just one point ⇒
dim ∂X = 0.
So asdimX ≰ dim ∂X + 1,
since n ≰ 0 + 1.
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Outline of the proof

Let us list the main steps of the proof for

asdimX ≤ ℓ- dim (∂X , d) + 1 ≤ dim ∂X + 1,

when X is an unbounded, proper, geodesic, hyperbolic and
quasi-cobounded space, and d is any visual metric on ∂X .
First of all, the following lemmas are true [Cordes-Hartnick-T.]:

L1: X is a visual space (has coarse version of the geodesic
extension property)

L2: (∂X , d) is locally quasi-similar to itself (i.e., there are constants
λ ≥ 1, K ≥ 1, and R0 > 1 s.t. ∀R > R0 and ∀C ⊂ ∂X with
diamC ≤ 1

R , ∃ a map f : C → ∂X such that ∀x1, x2 ∈ C
1

λ
RK (d(x1, x2))

K ≤ d(f (x1), f (x2)) ≤ λ
K
√
R K
√

d(x1, x2).)

L3: (∂X , d) is doubling, i.e., ∃N ∈ N s.t. for all t > 0 and all

ξ ∈ ∂X there exist ξ1, . . . , ξN ∈ ∂X s.t. B(ξ, 2t) ⊂
N⋃
i=1

B(ξi , t).
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Outline of the proof

Now we use the following:

Thm1: [Buyalo-Schroeder] Since (∂X , d) is doubling (at small
scales), then ℓ- dim(∂X , d) < ∞.

Thm2: [Buyalo-Schroeder] Any visual hyperbolic space X with
ℓ- dim(∂X , d) = n can be QI-embedded into the product of

n + 1 simplicial trees, i.e., ∃ X
QI
↪→ T1 × . . .× Tn+1.

Cor: We know that asdimTi ≤ 1, so asdim (T1 × . . .× Tn+1) ≤ n + 1,
by the product theorem for asdim.
Therefore asdimX ≤ n + 1 = ℓ- dim (∂X , d) + 1.

Thm3 [C.-H.-T.] If a metric space (∂X , d) is locally quasi-similar to
itself, and ℓ- dim (∂X , d) < ∞, then ℓ-dim (∂X , d) ≤ dim ∂X .

Prop: In general, for a metric space (Z , d): ℓ-dim (Z , d) ≥ dimZ .

So
asdimX ≤ ℓ- dim (∂X , d) + 1 = dim ∂X + 1.
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Importance of formulas like asdimX = dim ∂X + 1

For hyperbolic groups, asdimG = dim ∂G + 1 means that
using dim (of the boundary) we can estabish the finiteness of
asdim of the group, and groups with finite asdim are
important, for example, for Novikov’s conjecture (in topology
of manifolds).

For hyperbolic approximate groups, asdimΛ = dim ∂Λ + 1 is
useful in proving some other interesting facts, like the fact
that every non-elementary hyperbolic approximate group of
asdim = 1 is QI to a fin. generated, non-abelian free group.
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Thank you!
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