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A B S T R A C T

Trait-based approaches are an alternative to species-based approaches for functionally linking individual organisms
with community structure and dynamics. In the trait-based approach, rather than focusing on the species identity of the
organism, the focus is on the organism traits, which represent their physiological, morphological, or life-history
characteristics. Although used in ecological research for several decades, this approach only emerged in ecological
modelling about twenty years ago. We review this rise of trait-based models and trace the occasional transfer of trait-
based modelling concepts between terrestrial plant ecology, animal and microbial ecology, and aquatic ecology, discuss
terminology of trait-based approaches and evaluate future implementation of trait-based models, including cross-dis-
cipline exchange. Trait-based models have a variety of purposes, such as predicting changes in community patterns
under climate and land-use change, understand underlying mechanisms for community assemblies, planning and as-
sessing conservation management, or studying invasion processes. In modelling, trait-based approaches can reduce
technical challenges such as computational limitations, scaling problems, and data scarcity. However, we note in-
consistencies in the current usage of terms in trait-based approaches and these inconsistencies must be resolved if trait-
based concepts are to be easily exchanged between disciplines. Specifically, future trait-based models may further
benefit from incorporating intraspecific trait variability and addressing more complex species interactions. We also
recommend expanding the combination of trait-based approaches with individual-based modelling to simplify the
parameterization of models, to capture plant-plant interactions at the individual level, and to explain community
dynamics under global change.

1. Introduction

Understanding community structure and dynamics is a key element of
modern ecology, especially in the light of global change (Harte and Shaw,
1995; Knapp, 2002). This understanding was traditionally mediated by
species-based approaches. More recently, such approaches were com-
plemented by approaches based on traits. Trait-based approaches are pop-
ular, because they allow the direct connection of organism performance to
its functions and to the functions of higher levels of organization such as
populations, communities and ecosystems. While trait-based approaches
have been introduced some decades ago (Grime, 1977) and are now firmly
established in empirical research (e.g. Violle et al., 2007; Suding and
Goldstein, 2008), they were only introduced to modelling about twenty
years ago. Given that modelling is important for understanding community
structure and dynamics, trait-based modelling can reduce some of the
challenges faced by species-based modelling. For example, species-based
models are usually complex, difficult to parameterize and often produce
outcomes that cannot be generalized to other species. Trait-based models
often require less parameterization effort than species-based models,

facilitate scaling-up, and produce more generalizable results that can be
projected to other systems and be used to fill gaps in species knowledge.
Trait-based modelling reinforces simplification, which is at the core of all
modelling, because it focuses on simplified community structure, based on
the organismic functions. The drawback of such simplification is that the
results of trait-based models may not always be very well comparable with
corresponding species-based modelling results. Here, we review the rise of
trait-based models over the past twenty years, highlighting their main fields
of application and pointing out avenues for future trait-based modelling.

Traits arose from the concept of plant functional groups and these
groups were the first published classification of organisms according to
function (based on morphology and physiology) instead of taxonomy
(Raunkiaer, 1934; Grime, 1974). The next wave of interest into func-
tional groups was led by the desire to predict community and ecosystem
responses to environmental change (Diaz and Cabido, 1997; Lavorel
et al., 1997; Chapin et al., 2000). Grime’s (1977) CSR triangle was the
first globally accepted concept propagating continuous functional traits
in contrast to discrete functional groups such as herbs, shrubs and trees.
However, the focus of functional ecology shifted only much later from
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functional groups to functional traits and thus from species grouped
because they use similar strategies to the similar characteristics un-
derlying those strategies (Yang et al., 2015b). Distinct aspects of stra-
tegies were reflected in sets of correlated traits that were defined as trait
dimensions (Westoby et al., 2002). This shift from a species-based ap-
proach to a trait-based approach is described as the ‘Holy Grail of
Ecology’ (Lavorel and Garnier, 2002). This approach involves the use of
plant functional traits, rather than species identities, to generalize
complex community dynamics and to predict the effects of environ-
mental changes (Suding and Goldstein, 2008).

Functional traits not only help derive individual strategies
(Westoby, 1998; Wright et al., 2004), but also to connect them to
functions at organizational levels higher than those of the species such
as the community or ecosystem level. There are four requirements for a
trait (Lavorel et al., 2007): It should be connected with a function; It
should be relatively easy to observe and quantify; It should be possible
to measure it in a standardized way across a wide range of species and
environmental settings; And it should have a range of values that is
comparable among individuals, species and habitats. Trait-based
ecology is further based on the assumption that trade-offs and con-
straints have shaped phenotypic variation in different trait dimensions
(Grime, 1977; Westoby, 1998).

Sets of plant traits that reliably represent the processes of growth,
survival, and reproduction (Violle et al., 2007) make it possible to fa-
cilitate and generalize empirical and modelling studies. Therefore, re-
searchers attempted to define a universal set of traits. Pachepsky et al.
(2001) identified twelve critical traits that affected resource uptake, the
area over which resource is captured, the internal allocation of re-
sources between structure, storage and reproduction, time of re-
production, number of progeny produced, dispersal of progeny, and
survival. Other researchers used smaller numbers of traits. The leaf
economics spectrum, for example, contains only six traits (Wright et al.,
2004). Díaz et al. (2015) also used six traits but not those of the leaf
economics spectrum, and several researchers even used a set with as
few as three traits (Westoby, 1998; Westoby et al., 2002; Wright et al.,
2004; Chave et al., 2009; Garnier and Navas, 2012). Thus, rather than
applying a universal trait set, modern use of the concept implies a se-
lection of a small set of critical functional traits specific to the needs of a
specific study and dependent on the specific organisms for which
strategies are being described.

Using trait-based approaches overcomes some of the well-known
problems of species-based approaches. In trait-based approaches, for
example, it is possible to directly connect community functions such as

production to environmental changes via functional traits. Moreover,
the trait-based approach is an intuitive approach for addressing evo-
lutionary processes because evolution selects organisms in a community
according to their function and not their taxonomy. Trait-based ap-
proaches are, furthermore, more suitable than species-based ap-
proaches for generalizations across species as they are not tied to tax-
onomy. In addition, trait-based approaches benefit from the rapid
expansion of trait databases more than species-based approaches, be-
cause trait-based approaches are not dependent on species-specific trait
information; particularly trait-based models can either fill information
gaps with trait data from species related to a target species or not use
species at all and only work with trait value distributions. Trait data-
bases are especially well developed for plants (Kleyer et al., 2008;
Kattge et al., 2011).

Although current trait-based approaches have several benefits, they
also have some shortcomings not present in species-based approaches.
One of these is the choice of appropriate functional traits and their
trade-offs with other traits given that a great diversity of traits are
available (Funk et al., 2017). Furthermore, traits differ intraspecifically
but these differences are often neglected (Violle et al., 2012; Bolnick
et al., 2011). Existing trait databases are usually of limited use when it
comes to species interactions, intraspecific trait variation and variable
environmental settings (Funk et al., 2017). In addition, the theoretical
assumptions of trait-based studies are not always supported by ex-
perimental data (Suding and Goldstein, 2008). These shortcomings can
be overcome by closer cooperation between empirical and theoretical
researchers and by the development of standards for trait data collec-
tion (e.g. Garnier and Shipley, 2001; Pérez-Harguindeguy et al., 2013).

In the most recent 20 years trait-based approaches have entered
ecological modelling. The main advantage of modelling over empirical
approaches is that it allows the comparison of several scenarios with
different sets of assumptions, so conducting virtual experiments. This
makes possible the systematic exploration of the outcomes under each
set of assumptions and the elucidation of the mechanisms underlying
the patterns observed. Using models therefore avoids the costs and risks
of real-world experiments. Trait-based models may contain species as
carriers of traits, but they also work without explicitly modelling spe-
cies. In species-based models, interactions occur at the level of species
(potentially depending on species traits), whereas in trait-based models,
it is usually the traits that are subject to effects and responses (poten-
tially depending on trade-offs; Fig. 1). Importantly for this distinction,
models based on discrete functional types or functional groups are not
part of our definition of trait-based models, which requires continuous

Fig. 1. Conceptual overview of trait-based models compared to
species-based models. Functional response and effect traits
(rounded rectangles) are performance indicators that are related
to organismal functions (a). Trait-based models represent com-
munity (circle) assembly by interacting functional response and
effect traits, which may be connected via trade-offs (b). Species-
based models represent community assembly by interacting spe-
cies that may implicitly contain traits (c). Trait-based models can
be divided into models that use functional traits only as static
inputs (white elements in d) that affect community and ecosystem
properties and models that use functional traits both as inputs and
dynamic outputs (white and grey elements in d). Response traits
change dynamically depending on changing environmental con-
ditions.
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trait values (although we mention some examples in sections 4.5.Trait-
based dynamic global vegetation models (DGVMs), 5.Trait-based modelling
of animals in terrestrial ecosystems and 7.Trait-based models on micro-
organisms and soil decomposers). In principal, trait-based models consist
of combinations of functional traits that respond to environmental
changes (response traits) and affect community and ecosystem prop-
erties (effect traits) (Fig. 1). Trait-based models should also account for
the shape of the distribution of these traits, which often has to be de-
rived from empirical observations (e.g. Gaedke and Klauschies, 2017).
Implementing trait-based approaches for modelling may also help
overcome the high data demand of species-based models (Garrard et al.,
2013; Weiss et al., 2014), simply due to the fact that traits usually re-
present more than one species. For the same reason, trait-based mod-
elling may also reduce computing times. Moreover, using traits in
modelling can facilitate scaling of physiological processes to global
scales (Shipley et al., 2006; Lamarque et al., 2014), because traits can
function as a common currency across scales in these models.

Given the advantages of trait-based approaches, it is still surprising
that their incorporation into the tool-kit of ecological modelling has
been slow and that they are applied in proportionally fewer cases of
modelling than of empirical work. In this paper, our aim is to system-
atically review applications of trait-based models in ecology. More
specifically, we 1) discuss definitions and terminology of trait-based
approaches, 2) evaluate how trait-based models are used in different
disciplines, and 3) identify avenues for the future implementation of
trait-based models, including cross-discipline exchange. The trait-based
modelling applications in this review contribute to identifying princi-
ples that underlie spatiotemporal community dynamics, exploring
species distributions, investigating species interactions, scaling eco-
system processes from individual traits to ecosystem functioning, ex-
plaining the consequences of climate and land-use changes for com-
munity dynamics, and also supporting conservation and invasion
studies.

2. Methods

This paper is based on a systematic literature review. We searched
for papers using a topic search on the “Web of Science Core collection”.
We first used the search term “trait-base*” AND model* and in a second
search “traitbase*” AND model*. The first search yielded 772 papers all
of which turned out to postdate 1978. The second search added 4 pa-
pers, which were from the period 2010-2018. We excluded all papers
from obviously irrelevant fields, such as psychology, medicine, en-
gineering, business, management, history, industrial relations, linguis-
tics, education, nutrition, and biotechnology (Supplementary Material.
Tab. 2). After this filtering of both searches, we retained 623 papers
that focused on ecology and related biological sciences. These ecolo-
gical and biological publications were the most recent among all the
papers we found. In addition to the publications found during this
systematic literature search, we also included papers discovered by the
snowball principle, i.e. papers cited in papers already selected. We also

included additional publications recommended by experts in the field.
We finalized our research by selecting only those papers from our
compilation that directly addressed concrete trait-based models. We
excluded pure genetics, toxicology, climate and evolution studies, be-
cause we wanted to focus on ecological studies. We did not consider
studies that focused on statistical analysis of empirical data, but we did
include statistical models if the focus was on the model such as in
species distribution modelling. Our focus was on primary modelling
papers, so that we only referred to secondary modelling papers that
discuss, use, extend or review previously published models when they
introduce a new trait-based perspective. We did not consider editorial
material or technical software descriptions. This procedure yielded 188
papers (Supplementary Material. Tab. 1, Fig. 2).

2.1. Types and scales of trait-based models

We classified the papers discovered in our systematic search ac-
cording to model type and target scale. For model type, we dis-
tinguished among conceptual models, statistical models, equation-
based models, individual-based models, and their combinations (see
Glossary and Supplementary Material. Tab. 1). Statistical models oc-
curred in 26% and equation-based models in 61% of the reviewed pa-
pers. Together they were the most common types in trait-based mod-
elling. Conceptual models are probably more common than was
reflected in the papers we examined (5% of the reviewed papers) be-
cause they often precede a mathematical or code-based model for-
mulation. Individual-based models represented 16% of the reviewed
papers. Trait-based models address questions at local to landscape and
global scales (Supplementary Material. Tab. 1) and at the organiza-
tional level of individuals, species, populations, communities, and
ecosystems. Where the models targeted the ecosystem level, they were
implemented as equation-based models. This is probably due to the fact
that ecosystem-level models focus on matter or energy fluxes and in-
dividual-based models are usually not the first choice for modelling
fluxes, because this would require one flux equation per individual.
However, models at the species, population or community level do not
usually consider fluxes but use organisms as their inputs. This is typical
of individual-based models but all other model types are also used at
species, population, and community levels. Models of processes at the
level of individual organisms or their organs were either implemented
as statistical models of plant growth or, when emphasizing physiolo-
gical mechanisms, as equation-based models. Overall, different model
types benefit in different ways from the integration of traits depending
on the target scale of the question addressed by the model. In the fol-
lowing sections, we present studies that illustrate the potential benefits
of using trait-based modelling for various scales and model types to
study plants and animals in terrestrial and aquatic ecosystems, micro-
bial organisms, and soil decomposers.

3. Glossary

Functional traits are well-defined morpho-physio-phenological
characteristics of individual organisms that relate to the patterns of
growth, reproduction, and survival of the species (McGill et al., 2006;
Violle et al., 2007), and that evolved in response to abiotic environ-
mental conditions and interactions with other species (Reich et al.,
2003; Clark et al., 2012). As proxies of organismal strategies functional
traits are differently distributed across environmental gradients. This
variation in distribution may be also shaped by trade-offs among traits
(Reich et al., 2003). Hard traits are directly related to important
physiological processes that define the growth, reproduction and sur-
vival of an organism. Hard traits are usually hard to measure, and
therefore in practice they are identified and measured on the basis of
surrogate soft traits (Hodgson et al., 1999) that are correlated with
hard traits but are more easily or cheaply measured. Response traits
determine how a species reacts to a disturbance or a change in abiotic

Fig. 2. Papers on trait-based models included in the final list of reviewed
models (Supplementary Material. Tab. 1).
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or biotic processes in its environment (Lavorel et al., 1997; Lavorel and
Garnier, 2002). Effect traits determine how a species influences eco-
system properties (Lavorel et al., 1997; Lavorel and Garnier, 2002).
Effect traits alter abiotic and biotic processes corresponding to a wide
range of ecosystem functions (Eviner and Chapin III, 2003). Plant
functional types (PFT) are groups of species with presumably similar
roles in ecosystem functioning (Lavorel et al., 1997). They are con-
sidered as an important ecological framework for describing the me-
chanisms underlying vegetation responses (McIntyre et al., 1995;
Pausas, 1999). Community-weighted mean (CWM) traits provide a
quantification and use of aggregated trait attributes of the community
as a measure of diversity that does not take species into account. To
calculate a community aggregated trait value, relative abundances of
species and their trait values are used (Violle et al., 2007; Funk et al.,
2016). Intraspecific trait variability (variation) is the difference in
the values of functional traits within one species that results from the
development and adaptation of species to environmental change
(Albert et al., 2011; Schirpke et al., 2017). There are two sources for
this variation. One is heritable differences between individuals and the
other phenotypic plasticity in trait values across different environ-
mental conditions (Moran et al., 2016). Conceptual models are not
implemented in equations or programming code. In practice, they are
usually a graphical representation of causal relationships (or flows)
between factors or processes. Statistical models are descriptive
mathematical models of relationships between variables based on as-
sumptions about the data sampled. They represent a set of probability
distributions on the sample space (Cox et al., 1979). Equation-based
models are mathematical models that are formulated as a set of or-
dinary differential equations, partial differential equations, or integro-
differential equations. They can be solved analytically or numerically.
These models are sometimes also called mechanistic models, phy-
siological models or process-based models, although each of these
terms is also used for non-equation-based models. For instance, process-
based models are based on a theoretical understanding of the relevant
ecological processes. They are built on explicit assumptions about how
a system works, and these models are especially well-designed to

predict the effects of global change (Cuddington et al., 2013). Dynamic
Global Vegetation Models (DGVMs) and Earth System Models (ESM)
also fall in this category. Individual-based models (or agent-based
models) explicitly consider individual organisms as objects with
characteristics (traits) that influence interactions with other individuals
and the environment (Grimm and Railsback, 2005). They adopt a
bottom-up approach where population-level behaviour emerges from
these individual interactions (DeAngelis and Grimm, 2014). Individual-
based models are usually not based on equations, but on rules im-
plemented in programming code. Individual-based models are highly
suitable for spatially explicit implementations (Grimm et al., 2005),
often combined with a grid-based modelling approach. Individual-
based models are inherently linked to trait-based approaches, because
interactions are mediated by traits in individual-based models (Fig. 4).
Trait-based models consist of combinations of functional traits that
respond to environmental changes (response traits) and affect com-
munity and ecosystem properties (effect traits). Models based on dis-
crete functional types or functional groups are not part of our definition
of trait-based models which consider continuous trait values.

4. Trait-based modelling of plants in terrestrial ecosystems

Trait-based approaches were originally developed and discussed for
plants in terrestrial ecosystems. This focus on plant sciences was mir-
rored in the trait-based modelling studies. Fifty percent of all studies in
this review addressed terrestrial vegetation (note that we discuss the
two studies on fungi in our review as part of this section). The aims of
trait-based vegetation models were diverse. They covered investiga-
tions of plant growth and interactions, species distributions, plant in-
vasiveness, community assembly and dynamics, biodiversity hy-
potheses, ecosystem services, and global vegetation patterns and
dynamics (Fig. 3).

Fig. 3. Overview of the models of plants in terrestrial ecosystems based on their main purposes and research questions (rectangles). Large circles represent com-
munity development in space and time and the rounded rectangle represents all traits and their interactions in the model (see Fig. 1 for further explanation).

Fig. 4. Trait-based modelling differs from in-
dividual-based modelling in the main entities
of the models (traits or individuals, respec-
tively) and in the way interactions are re-
presented (arrows). A. In trait-based model-
ling, interactions between traits and other
traits, populations, communities or the en-

vironment can be of three types: 1. direct, e.g. biomass influences population growth rate; 2. mediated by species, if interspecific trait variability is considered; or 3.
mediated by individuals, if intraspecific trait variability is considered. B. In individual-based modelling, interactions between individuals and other individuals,
populations, communities or the environment are always mediated by traits. Functional traits are linked to organismal functions such as growth, reproduction and
survival. Non-functional traits are not directly linked to such functions and include, for example, x-y-coordinates of individuals. Note that in both cases (A. and B.),
arrows represent interactions and any process that is related to the respective interaction, such as individual survival, growth, or reproduction.
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4.1. Trait-based models on plant growth, population dynamics, and
interactions

Plant growth, population dynamics, and interactions were modelled
with a range of model types, including statistical, equation-based and
individual-based models (Supplementary Material. Tab. 1). The influ-
ence of traits on the growth of individual plants or plant organs was
most commonly addressed using statistical models. These statistical
models were either non-linear regression models (Chavana-Bryant
et al., 2017), Bayesian approaches, or both (Hérault et al., 2011; Aubry-
Kientz et al., 2015; Thomas and Vesk, 2017a, b). Equation-based ap-
proaches focused on mechanisms such as carbon and biomass fluxes
within and across plants (Enquist et al., 2007; Sterck and Schieving,
2011), water uptake (Fort et al., 2017) or on the physiological processes
producing salt tolerance (Paleari et al., 2017).

Both models on plant population dynamics in our review were
equation-based models. One study investigated the influence of con-
sidering whole life cycles in fitness assessments (Adler et al., 2014), and
the other one studied the population dynamics and viability of a
primrose (and a lizard) population (Jaffré and Le Galliard, 2016).
Comparing the results from the equation-based integral projection
model with those from an analogous individual-based model, Jaffré and
Le Galliard (2016) highlighted the importance of constructing in-
dividual-based models when very small populations are investigated.
Our review confirms the conclusion of Salguero-Gómez et al. (2018)
that trait-based approaches are still underrepresented in studies of po-
pulation dynamics. However, note that such combinations of trait-
based and demographic approaches are more common for aquatic or-
ganisms (Vindenes et al., 2014; O’Farrell et al., 2015) or terrestrial
mammals (Santini et al., 2016; Jaffré and Le Galliard, 2016; Van
Benthem et al., 2017) than for plants.

Interactions such as competition have mainly been studied with
equation- and individual-based models or their combination. Using
dynamic process-based models, Ali et al. (2013) and Ali et al. (2015)
contrasted two alternative competition theories and demonstrated how
elevated carbon dioxide concentration influences plant competition
and, consequently, community composition in an ecosystem. In a
combined equation- and individual-based approach, Fyllas et al. (2014)
simulated ecosystem fluxes based on two axes: the leaf economics
spectrum (Wright et al., 2004) and tree architecture spectrums (Chave
et al., 2005; Mori et al., 2010). Individual-based models are particularly
useful for representing plant interactions because it is the individual
level at which interactions are initiated. For example, Taubert et al.
(2012) used them to investigate biofuel production in grasslands of
temperate regions. In this model, above- and below-ground plant
functional traits were used to characterize how successful plants were
in taking up resources and competing with neighbours.
Conclusion: Based on these examples and the nature of the models,

we suggest that different kinds of models have different efficiencies in
the sense of producing good results without requiring large amounts of
data. Statistical models are most efficient for describing the relationship
between traits and plant growth but equation-based models are most
efficient for describing mechanisms, simple interactions, or ecosystem
fluxes. Individual-based models are the best choice, however, for
complex trait-based interactions and for very small populations (see
also Jaffré and Le Galliard, 2016). This is because individuals are the
nexus of trait-based interactions.

4.2. Trait-based models on species distributions

Although trait-based modelling was often applied as an alternative
to species-based approaches, a number of trait-based modelling papers
were devoted to questions related to species distribution. For example,
a combination of species distribution models and trait-based ap-
proaches was explicitly recommended to estimate the vulnerability of
species to climate change with respect to selected species traits (Willis

et al., 2015). The great majority of the studies on species distribution
modelling combined a trait-based approach with statistical modelling,
often by using a Bayesian approach (Supplementary Material. Tab. 1).
For example, Powney et al. (2014) showed that predictions of trait-
based species distribution models were best for broad-scale changes in
regions with similar land-cover composition. Here, the trait-based ap-
proach was implemented by identifying traits that correlated with
changes in species ranges and using these trait correlations to predict
change in other regions. In another example, a new application of time-
to-detection modelling was able to detect multiple species as a function
of plant morphological and phenological traits (Garrard et al., 2013).
The model by Rosenfield and Müller (2017) estimated the relative
abundances of species that meet the values of functional traits found in
a target ecosystem. Trait-based models provide some advantages when
predicting local community assembly, especially where environmental
filtering and niche differentiation shape communities. Among the al-
gorithms used in the papers on trait-based models, Maxent (e.g. Shipley
et al., 2011; Sonnier et al., 2010) and the Traitspace model (e.g.
Laughlin et al., 2012, 2015; Laughlin and Joshi, 2015) were used for
trait-based environmental filtering. These algorithms predict low
probabilities for any species whose trait distribution fails to pass
through an environmental filter (Laughlin and Laughlin, 2013). The
Maxent model and the Traitspace model differ in their ability to predict
the relative abundance of species from a regional species pool (Laughlin
and Laughlin, 2013). Maxent predictions are degraded when high in-
traspecific variability is included (Merow et al., 2011). The importance
of intraspecific variation in functional traits was underlined by Violle
et al. (2012) and by Read et al. (2017) who found that intraspecific
variability compensated for the effects of interspecific variation along a
climatic gradient. Therefore, future models should consider to address
intraspecific variability – at least where the respective data are avail-
able. A statistical approach uniting trait-based and species distribution
models was also applied to model the trait-based response and dis-
tribution of wood-inhabiting fungi with respect to environmental
change (Abrego et al., 2017). Finally, the only equation-based model in
this section was a model that incorporated plant physiology to predict
tree distributions along resource gradients (Sterck et al., 2014). Con-
clusion: Thus, trait-based approaches are useful for modelling species
distributions, especially where environmental filtering and niche dif-
ferentiation are the predominating mechanisms. Of course, trait-based
approaches would be even more suitable to model trait distributions.
However, conservation managers are still more interested in species
than in traits, so that a focus on trait distribution modelling is still less
applicable. Based on the available examples, we locate the cutting edge
of trait-based species distribution modelling in moving from mean trait
values to intraspecific trait variability, e.g. by implementing a Bayesian
framework (Laughlin et al., 2012).

4.3. Trait-based models of community assembly

Community assembly results from species sorting by environmental
filters and biotic interactions. Until now, trait-based models of com-
munity assembly used mainly statistical modelling and equation-based
approaches to capture this process (Supplementary Material. Tab. 1).
We further found one individual-based model [(Pachepsky et al., 2007)
based on a model by Bown et al. (2007) mentioned in section 4.1. Trait-
based models on plant growth, population dynamics, and interactions], and
three conceptual models (Bhaskar et al., 2014; Crowther et al., 2014;
Losapio and Schöb, 2017), including one on fungal community as-
sembly (Crowther et al., 2014). The group of models of community
assembly partially overlapped with models of species distribution and
was thus already partly discussed in section 4.2. Trait-based models on
species distributions. Three groups of studies emerged: First, a large
group of publications where the intention was to identify traits that
affect community assembly; second, a group of four papers studying
intraspecific trait variability (Pachepsky et al., 2007; Laughlin et al.,

L. Zakharova, et al. Ecological Modelling 407 (2019) 108703

5



2012; Yang et al., 2015a; Schliep et al., 2018); and, third, another group
of three papers where traits were used as response traits to distinguish
between biotic and abiotic filtering (Bhaskar et al., 2014; Chauvet et al.,
2017) and to assess effects of environmental change (Losapio and
Schöb, 2017). The majority of the models reviewed in the current
section were in the first group that aimed to distinguish traits that in-
fluence species abundance, richness and functional diversity. One case
study, for instance, indicated that seed production and dispersion traits
are important for regional species abundance (Marteinsdóttir, 2014). In
another case study, a trait-based model incorporated both neutral
theory and niche theory to identify whether, and which, plant traits
determine community assembly and biodiversity patterns, including
plant species richness and abundance, across environments (Shipley
et al., 2006). To unify classic coexistence theory and evolutionary
biology with recent trait-based approaches, Laughlin et al. (2012) in-
corporated intraspecific trait variation into a set of trait-based com-
munity assembly models. These models generate species abundances to
test theories about which traits, which trait values, and which species
assemblages are most effective for achieving a specified functional di-
versity. Larson and Funk (2016) advocated for including regeneration
traits in a model of community assembly.

A few statistical trait-based models in the first group aimed at
quantifying the relationship between environmental gradients and in-
dividual-level traits or community-weighted mean traits to describe
environmental filters (Laughlin et al., 2015). The common assumption
of such models was that traits are unimodally distributed and centred
on an optimal trait value in any given environment. In contrast, an
extended Traitspace model (Laughlin et al., 2015) adopting a hier-
archical Bayesian approach (Laughlin et al., 2012) captured multimodal
trait distributions. Improving the Traitspace model in this way increases
the power of trait-based predictions of species abundances. The power
increase arises because the prediction of species abundance distribu-
tions then reflects the true functional diversity of a community. These
community assembly models were also used to test the mass ratio hy-
pothesis (Laughlin, 2011, 2014) and to refine restoration objectives,
either by manipulating abundances of species already existing in the
system or by adding species from warmer climates to the local species
pool (Laughlin et al., 2017). Similar to models on species distribution,
the MaxEnt algorithm is also used for models of community assembly to
predict the effect of trait-based environmental filtering on the species
pool, for example, in forest community assembly (Laughlin et al., 2011)
or using the community assembly via trait selection approach (CATS)
(Laliberté et al., 2012; Frenette-Dussault et al., 2013). Equation-based
models in the first group tended more towards theoretical questions:
For example, they investigated the multidimensional nature of species
coexistence based on traits (Kraft et al., 2015), they implemented bio-
physical principles to test niche vs neutral processes (Sterck et al.,
2011); or they showed that self-limitation promotes rarity (Yenni et al.,
2012). Conclusion: The examples in this section show that trait-based
modelling is a versatile tool to investigate mechanisms and effects of
community assembly due to the availability of response and effect
traits, the focus on function, and the possibility to study mechanistic
detail by including intraspecific trait variability. The diversity of ex-
amples also emphasizes the suitability of trait-based community as-
sembly models for tackling questions of fundamental and applied
ecology.

4.4. Trait-based models of community dynamics

Trait-based modelling can be helpful for explaining not only static
community assembly but also the temporal and spatial dynamics of
communities. We found twice as many equation-based models of
community dynamics as individual-based models (Supplementary
Material. Tab. 1). The equation-based approaches included basic and
applied research. Among the basic research, two studies investigated
vegetation dynamics at the landscape level (Falster et al., 2011; Quétier

et al., 2011), one study quantified environmental filtering and im-
migration rates of new species (Jabot, 2010), and one study assessed
plant community stability considering litter decomposition (Miki and
Kondoh, 2002). Among the more applied research, three studies in-
cluded the effect of environmental change: Moor (2017) studied the
relationship between dispersal and species diversity along a climate
warming gradient; Savage et al. (2007) investigated overyielding and
other responses to environmental change; and Tanaka (2012) advanced
Savage et al.’s (2007) study by considering interspecific competition
and trait covariance structure. One further equation-based model with
an applied question was developed to compare the effect of different
cropping systems on weed traits (Colbach et al., 2014). The individual-
based models in this section targeted effects of regional processes on
grasslands (Weiss et al., 2014), as well as the processes of grazing and
disturbances. The effects of grazing on a grassland community were
investigated in two individual- and trait-based models (May et al.,
2009; Weiss and Jeltsch, 2015). The results of these models indicated
that trait size symmetry of competition is central for community dy-
namics. This indication arose from the model only generating the pat-
terns predicted by the grazing reversal hypothesis under specific con-
ditions. These conditions were the explicit inclusion in the model of
shoot and root competition, and the assumptions that plants with larger
aboveground parts were superior competitors and belowground com-
petition was consistently symmetrical. A similar functional group
scheme based on four key traits representing typical species responses
to disturbance was used in an individual-based model that led to the
conclusion that the competition-colonization trade-off is insufficient to
predict community dynamics (Seifan et al., 2012, 2013).
Conclusion: The reviewed studies in this section show that the

potential application areas are more fully covered by equation- than
individual-based approaches. These studies also show the great ability
of trait-based models to capture the mechanisms that drive plant in-
teractions and their impact on community dynamics. Beyond the cur-
rent focus on grassland communities of individual- trait-based models,
we suggest that desert, savanna and forest community dynamics should
be explored in future studies. Furthermore, although temporal changes
in a community are often accompanied by spatial changes and spatial
interactions are often mediated by traits, our review shows that there is
still some unused potential in modelling spatial community dynamics
based on traits.

4.5. Trait-based dynamic global vegetation models (DGVMs)

Beyond the community and ecosystem levels mentioned in previous
sections, global vegetation classification is possible with DGVMs. More
specifically, DGVMS advance understanding of the distribution of plant
functional types across spatial scales (Prentice et al., 2004). DGVMs are
used as precursors of, or parts of, earth system models in which they
represent energy, carbon and water fluxes (Scheiter et al., 2013;
Drewniak and Gonzalez-Meler, 2017). Dynamic vegetation classifica-
tion is enabled by calculating separately ecosystem fluxes and plant
functional type occurrences both of which can be based on traits.
DGVMs are mainly or entirely equation-based models because this form
allows them to adequately represent ecophysiological processes (Sup-
plementary Material. Tab. 1). More recent DGVMs have added in-
dividual-based components to account for individual variation (Scheiter
et al., 2013). Most DGVMs were used to investigate vegetation re-
sponses to current climate and climate change (e.g. Verheijen et al.,
2013; Sakschewski et al., 2015). Walker et al. (2017) applied the
Sheffield DGVM (Woodward and Lomas, 2004) to compare the pre-
dictive power of four trait-scaling hypotheses on the distribution of
global maximum rate of carboxylation. The four hypotheses used were
those on plant functional type, nutrient limitation, environmental fil-
tering, and plant plasticity. The result of this comparison showed that
nutrient limitation was the most probable driver of global maximum
rate of carboxylation distributions.
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DGVMs are criticized for being insufficient realistic. This in-
sufficiency arises because they use plant functional types with constant
attributes and do not represent competitive interactions (Scheiter et al.,
2013). This criticism led to a stronger focus on traits and to the addition
of individual-based modules (Harper et al., 2016). The Jena Diversity-
DGVM incorporates 15 traits with several functional trade-offs that
define plant growth strategies (Pavlick et al., 2012). These functional
properties of the vegetation were derived, unlike in standard DGVMs,
from mechanistic trait filtering via environmental selection. The Jena
Diversity-DGVM also demonstrated its advantages over bioclimatic
approaches (Reu et al., 2010, 2011). Instead of plant functional types,
the adaptive DGVM of Scheiter and Higgins (2009) and Scheiter et al.
(2013) was based on traits. The novelty of this adaptive DGVM lay in
the process-based and adaptive modules for phenology, carbon alloca-
tion and fire within an individual-based framework. This allowed the
vegetation component in the model to adapt to changing environmental
conditions and disturbances. Such adaption is not possible in models
based on static functional types. Conclusion: As our review demon-
strates, DGVMs provide a good example of the shift from plant func-
tional types towards functional traits (Yang et al., 2015b) (e.g. compare
Smith et al. (2001) and Holzwarth et al. (2015)). The reviewed studies
give examples of how adaptive, flexible and realistic trait-based models
can be, emphasizing their strengths in these attributes. Moreover, in-
dividual-based modelling is increasingly applied to represent individual
interactions and foster the dynamic nature of DGVMs.

4.6. Trait-based models of plant invasions

Trait-based modelling was frequently used to study invasion
(Supplementary Material. Tab. 1). The frequency of this use probably
arises because it is a common goal of invasion biology to identify traits
that can be used to predict future invaders. This goal was particularly
common among statistical models (Otfinowski et al., 2007; Herron
et al., 2007; Küster et al., 2008). The individual-based models of plant
invasion focused on understanding the invasion process incorporating,
for instance, disturbance (Higgins and Richardson, 1998), or herbivory
(Radny and Meyer, 2018). These models have different regional and
taxonomic foci including pine trees in the southern hemisphere
(Higgins and Richardson, 1998), exotic plants in North America
(Otfinowski et al., 2007; Herron et al., 2007), invasion success in Ger-
many (Küster et al., 2008), and establishment success as the combined
effect of functional traits and biotic pressures (Radny and Meyer, 2018).
Conclusion: While usage of trait-based modelling in the study of in-
vasions is growing, these models have yet to yield a universal set of
traits that characterize potentially invasive species. Future trait-based
invasion models should address all the processes and interactions re-
levant to the system being studied. This might be facilitated by in-
dividual-based modelling approaches, as the broad range of individual-
based models in this section demonstrates. The models of plant inva-
sions may also benefit from the advantages discussed in Section 4.4.
Trait-based models of community dynamics.

4.7. Trait-based models of ecosystem services

Ecosystem service models are usually built with a management goal.
Thus, they benefit from including plant functional traits because func-
tional traits are aggregate measures that can more easily be targeted by
ecosystem management than species. Most models in this section were
statistical models (Supplementary Material. Tab. 1), often in the form of
generalized linear models (Diaz et al., 2007; Lavorel et al., 2011),
whereas three models were equation-based. According to Lavorel et al.
(2011), ecosystem properties were better captured by models including
spatial variation in environmental variables and plant traits than by
land-use models. Variation across the landscape in the community-
weighted mean of four traits and their functional divergence were
modelled with generalized linear models (Lavorel et al., 2011).

Compared to remote sensing, this trait-based statistical modelling ap-
proach better reflected the process of land use that underlay ecosystem
properties (Homolova et al., 2014). Another model investigated the
influence of plant and microbial functional traits on grassland eco-
system services (Grigulis et al., 2013). Based on Lavorel et al. (2011)
and Grigulis et al. (2013), future ecosystem services were estimated for
three socio-economic scenarios (Schirpke et al., 2017). The approach
demonstrated that ecosystem services were potentially highly resilient.
In two other semimechanistic models, functional traits facilitated the
scaling-up of well-understood functional trade-offs from the organismal
to the ecosystem level (Lamarque et al., 2014). Equation-based models
of ecosystem services ranged from assessing the sensitivity of ecosystem
services to land-use change (Quétier et al., 2007), determining the
vulnerability of pollination services (Astegiano et al., 2015), and eval-
uating the management of mown subalpine grasslands (Lochon et al.,
2018).
Conclusion: Based on the examples in this section, trait-based

models demonstrate great potential for solving applied questions in
ecosystem studies as well as for those involving scaling. Trait-based
models are particulary advantageous to explore ecosystem services
because of the fact that traits help identify underlying mechanisms such
as land-use change.

4.8. Trait-based models on interactions between plants and other organisms

A few trait-based models did not focus purely on vegetation and
interactions among plants but also included the interactions of plants
with other groups of organisms. These models were partly conceptual
and partly equation-based (Supplementary Material. Tab. 1). For ex-
ample, the effects of biodiversity on multispecies interactions and cross-
trophic functions were described in a trait-based bottom-up framework
(Lavorel et al., 2013). This conceptual model was linked to a statistical
structural equation model which demonstrated that high functional and
interaction diversity of animal mutualists promoted the provisioning
and stability of ecosystem functions. In another case study, avian body
size was identified as an important response trait related to the sus-
ceptibility of avian seed dispersers to disturbance by humans
(Schleuning et al., 2015). A conceptual model (Pöyry et al., 2017) re-
constructed how the effects of soil eutrophication cascade to higher
trophic levels across a range of plant-herbivore interactions. The model
was evaluated based on butterfly and moth data. The authors suggested
that a major future trend will be the increased dominance of insect
species that are large, dispersive dietary generalists over those pre-
ferring oligotrophic environments. These conceptual models await
further testing by being converted into equation- or code-based models
and the empirical testing of the predictions of these models. There were
also four equation-based models in this section addressing nutrient
competition in an earth system model (Zhu et al., 2016), trade-offs of
defensive plant traits in plant-herbivore interactions (Mortensen et al.,
2018), plant-soil feedback mediated by litter and microorganisms (Ke
et al., 2015), and three-way interactions between a plant, a herbivore
and a beneficial microbe in the context of biological invasions (Jack
et al., 2017). Conclusion: Due to the fact that interactions are mediated
by traits, trait-based models are ideal to capture a variety of conceptual
interactions, inclduing the ecologically significant cases of interactions
between plants and other organisms.

5. Trait-based modelling of animals in terrestrial ecosystems

Animals are underrepresented among papers on the trait-based
modelling of terrestrial ecosystems, whereas trait-based models of
marine ecosystems which included animals abounded. There are about
three times as many marine as terrestrial papers including animals in
our review (see section 6. Trait-based modelling in aquatic ecosystems).
The reason for the imbalance may lie in there being many different
behaviours, feeding strategies and morphologies among terrestrial
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animals (Scherer et al., 2016), making it hard to define common
functional traits. Nevertheless, 23 papers covered trait-based modelling
of animals in terrestrial ecosystems. There were twice as many equa-
tion-based models as individual-based models and almost as many
statistical models as equation-based ones (Supplementary Material.
Tab. 1). As the following studies show, these models cover a broad
range of topics, including population dynamics and survival analysis,
predator-prey and host-pathogen interactions, species distributions, and
community assembly.

Population dynamics was more frequently investigated in trait-
based modelling studies of animals than plants in terrestrial ecosystems.
We included here pure population dynamics studies, but also other
studies at the population level, namely time-to-detection studies, sur-
vival analysis, vulnerability analysis, home range determination, and a
study of eco-evolutionary dynamics. For example, the effect of func-
tional traits on the population dynamics of mites was studied with
equation-based integral projection models (Smallegange and Ens,
2018), drawing on the dynamic energy budget theory better known
from aquatic studies (see section 6. Trait-based modelling in aquatic
ecosystems). According to an individual-based model, the population
dynamics of meerkats depend on intraspecific variation in body mass
(Ozgul et al., 2014). In a similar but equation-based model trait-de-
mography relationships were studied to identify the mechanism un-
derlying population fluctuations (Van Benthem et al., 2017). Trait-
based models of population dynamics investigated the responses of
populations to environmental changes (Santini et al., 2016) and to
perturbations (Ozgul et al., 2012). Using an approach similar to that of
the time-to-detection studies mentioned in section 4.2. Trait-based
models of species distributions, Schlossberg et al. (2018) modelled de-
tectability for ten mammal species. This model was based on species
traits such as body mass, mean herd size and colour and employed a
statistical approach based on conditional likelihoods. An example of a
trait-based survival model was the prediction of bat survival based on
reproductive, feeding, and demographic traits such as age, sex, and type
of foraging (Lentini et al., 2015). A trait-based vulnerability index was
applied to subarctic and arctic breeding birds in a statistical model
constructed around MaxEnt and CATs (Hof et al., 2017). We found
three further individual-based models: Scherer et al. (2016) explored
the response of bird functional types to climate and land-use change;
Buchmann et al. (2011) used the methodology to predict the home
range and the spatial body mass distribution of species in terrestrial
mammal communities in fragmented landscapes; And, for a theoretical
study of eco-evolutionary dynamics, Pontarp and Wiens (2017) simu-
lated the evolutionary radiation of a clade across several habitats with
differing environmental conditions. Predator-prey interactions were
considered from a functional perspective relatively early on in the
history of trait-based approaches, i.e. when generalist and specialist
functional types were introduced into modelling (Hanski et al., 1991).
Functional traits are a much more recent characteristic of predator-prey
modelling studies, e.g. in a general additive model of beetle predation
with eight predator traits and four prey traits (Brousseau et al., 2018).
The novelty of these models is that the combination of functional traits
and phylogeny overcome the limitations of purely descriptive ap-
proaches. Where predator-prey interactions are combined into a food
web model, body size is often the central trait. This was the case in an
allometric trophic network model that explicitly featured intra- and
interspecific interference including predator-prey interactions in bee-
tles and spiders (Laubmeier et al., 2018). Pathogen-host interactions
resemble predator-prey interactions in many ways as demonstrated by
the interactions of amphibian species and their fungal pathogens. In this
case, the interactions were modelled with a statistical approach in-
vestigating the predictive power of traits related to phylogenetic his-
tory, habitat use, and life history traits (Gervasi et al., 2017). In-
dividual- and trait-based movement models are very powerful when it
comes to scaling-up across several levels of organization. This feature
was exploited in an individual-based model that scaled up from

individual movement and behaviour to metacommunity structure (Hirt
et al., 2018). Species distributions and species niches were modelled for
the cane toad with a statistical approach (Kearney et al., 2008; Kolbe
et al., 2010) and for endotherms (Porter and Kearney, 2009) and ants
(Diamond et al., 2012) with an equation-based approach. For the en-
dotherms and the ants, biophysical principles were used to link varia-
tion in functional traits with environmental data to predict thermal
niches (Porter and Kearney, 2009; Diamond et al., 2012). Community
assembly and dynamics were studied with equation-based models
which, for example, accounted for spatial variation in community
structure with a multi-region multi-species occupancy model (Tenan
et al., 2017), investigated irreversible changes in community structure
in a consumer-resource model (Haney and Siepielski, 2018), and used
trait-mediated interactions to analyse invasiveness and invasibility of
ecological networks (Hui et al., 2016). The need to include such pro-
cess-based components in community assembly models was emphasized
by Pontarp and Petchey (2016).
Conclusion: The models in this section show a great diversity of

applications for the trait-based modelling of animals in terrestrial
ecosystems, such as studying the influence of intraspecific variation in
body mass on population dynamics, investigating the mechanisms un-
derlying population fluctuations, exploring the response of populations
to environmental change, simulating evolutionary radiation and scaling
up metacommunity structure from individual behaviour. However,
each topic is represented by one or very few studies. This indicates that
there is scope for more applications in these and related fields, re-
gardless of model type.

6. Trait-based modelling of aquatic ecosystems

According to Litchman and Klausmeier (2008), the trait-based ap-
proach was first used for modelling aquatic ecosystems in a model of a
phytoplankton community by Ramon Margalef (Margalef, 1978).
Nevertheless, Follows and Dutkiewicz (2011), in their analysis of the
state of the art of marine ecosystems, concluded that trait-based ap-
proaches were just then (i.e. in 2011) starting to be used in marine
ecosystem models. The conflict between these two statements demon-
strates different understandings of what a trait-based model is. In ad-
dition to the research papers, we also found that reviews on trait-based
approaches for studying aquatic ecosystems are not uncommon.
Therefore, we shortly summarize the most important reviews here.
Litchman et al. (2010) reviewed trait-based approaches applied to
phytoplankton and revealed a new trend – to look at a trait and the
phylogenetic structure of communities simultaneously. This trend, in
combination with adaptive trait models, makes it possible to predict
trait evolution. In another review on trait-based approaches for
studying phytoplankton, Bonachela et al. (2016) showed that it is also
possible to successfully use trait-based models to identify and compare
possible survival strategies described by a set of functional traits. These
models typically include trade-offs between traits such as cell-size and
resource allocation. In the following sections, we first review aquatic
trait-based models including those for fish and then those focusing on
plankton. There are few trait-based modelling studies of other aquatic
realms, which are briefly covered in this paragraph, e.g. studies of bi-
valve species distribution models (Montalto et al., 2015), inland
freshwater communities (Gardner et al., 2014), coral reefs (Edmunds
et al., 2014; Madin et al., 2014), a pelagic microbial mixotrophic food
web (Castellani et al., 2013), marine benthic communities
(Alexandridis et al., 2017), diatoms in peatlands (Hagerthey et al.,
2012), and trace metal concentrations in invertebrates (Hug Peter et al.,
2018). Traits were usually the inputs for models but in one case were
outputs (Rinaldi et al., 2014). In that paper, mechanistic functional trait
models were used to predict life history traits such as body size and
fecundity of shellfish in lagoons. The fact that traits were used both as
inputs and outputs for models emphasizes the difference between effect
traits and response traits (Fig. 1), two concepts introduced earlier to
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terrestrial ecological theory (Lavorel and Garnier, 2002).

6.1. Trait-based models including fish

Trait-based modelling is widely applied to model fish communities.
Of those models, the overwhelming majority were equation-based
models (Supplementary Material. Tab. 1). There were only four in-
dividual-based models (Brochier et al., 2013; Houle et al., 2013;
O’Farrell et al., 2015; Huebert et al., 2018), one statistical model
(Howeth et al., 2016) and one statistical and conceptual model (Bennett
et al., 2016) that generalised the trilateral life history model by
Winemiller and Rose (1992). This prevalence of equation-based models
may be due to the fact that aquatic ecosystems are more homogeneous
than terrestrial ecosystems and therefore lend themselves more natu-
rally to the continuous character of most equation-based models. Size
appears to be the main structuring trait in aquatic ecosystems because
size influences the most important organism processes, such as fora-
ging, growth, and reproduction. For example, fish fall into different
trophic levels when young than when old. Because size usually corre-
lates with age, trophic level in fish is linked to body size. Size structure
prevails up to the community level in marine ecosystems. This fact
prompted the formulation of the community size spectrum (Guiet et al.,
2016b). The regularity of the community size spectrum is expressed in
the constancy of total ecosystem biomass within “logarithmically equal
body size intervals” (Guiet et al., 2016b). Thus, community size-spec-
trum models represent the ecosystem using two parameters – the slope
and the intercept of the community size spectrum. This type of model
mechanistically addresses the role of species diversity via the in-
troduction of the trait size (Hartvig et al., 2011; Maury and Poggiale,
2013; Guiet et al., 2016a). In these models, community dynamics
emerge from individual interactions. Trait-based size-spectrum models
were developed with a range of goals, including to study the benefit to
fish of the reproductive strategy of producing many small eggs or to
analyse coexistence between species and link it to maturation sizes and
predator-prey size ratios (Hartvig and Andersen, 2013). Trait-based
size-spectrum models also demonstrate the impact of fishing on species
composition (Shephard et al., 2012), i.e. that fishing out larger in-
dividuals shifts the size spectrum towards the dominance of smaller
species. Originally, Andersen and Beyer (2006) introduced a size- and
trait-based model to estimate fishing effects at the ecosystem level. In
this model, every individual was characterized by two features: body
size and asymptotic body size. This model was later expanded (Houle
et al., 2013; Zhang et al., 2013; Jacobsen et al., 2014; Jennings and
Collingridge, 2015). The asymptotic body size was defined as a main
trait because it is the basis for applying life history theory to estimate
size at maturity and reproductive output (Jennings and Collingridge,
2015). The indirect influence of fishing on community structure was
revealed by an extended version of the initial model considering entire
life histories and individual energy budgets (Kolding et al., 2016).
Another size- and trait-based model included individual interactions in
the form of competition and predation and individual processes such as
encounters, growth, mortality and reproduction (Jacobsen et al., 2014).
A similar model was developed by Andersen and Pedersen (2010) and
Andersen and Rice (2010). In this model, all basic processes at the
community level emerged directly or indirectly from individual-level
processes. To answer the question how to maximize fishing yield under
a certain conservation constraint, Andersen et al. (2015) suggested a
conceptual size- and trait-based model. An adaptation and a dynamic
version of the model of a theoretical fish community (Pope et al., 2006),
based on classical multi-species fishery models and community size
spectrum models, was reconsidered by Andersen and Pedersen (2010)
and Andersen et al. (2015) in the framework of a trait-based approach.
A similar model to describe population structure based on the size of
the organisms was presented by Hartvig et al. (2011) and Hartvig and
Andersen (2013). This model was a product of the synthesis between
traditional unstructured food webs, allometric body size scaling, trait-

based modelling, and physiologically structured modelling (Hartvig
et al., 2011). These approaches were further developed into more
complex food web models that showed that climate change effects are
highly unpredictable (Zhang et al., 2014, 2017). Using Approximate
Bayesian Computation in their food web model, Melián et al. (2014)
highlighted the importance of accounting for intraspecific variability
when investigating species coexistence. Such combinations of tradi-
tional approaches with novel modelling techniques provides a pro-
mising new approach to the study of size-structured food webs. Other
examples, which we briefly describe in this section, covered the topics
of marine biodiversity exploitation, marine community modelling in-
cluding seal species (Houle et al., 2016), adaptive behavioural re-
sponses, fish-mesozooplankton interactions, fish-jellyfish interactions
and freshwater fish modelling. Marine biodiversity exploitation was
studied with an object-oriented individual-based model (Brochier et al.,
2013). This model incorporated four main categories of life history
depending on which part of the life cycle fish spent in the estuary
studied. To reduce the computing power needed, Brochier et al. (2013)
used a super-individual approach (Scheffer et al., 1995) with one in-
dividual representing a fish school. They also created 15 groups of
ecologically similar model species, each representing a group of real
species (Ecoutin et al., 2010). Each group contained one or more super-
individuals with similar trophic position and ecological traits. Persistent
spatial interactions and cascading behavioural interactions were re-
vealed in a marine ecosystem model with detailed size structure and life
cycles of mesozooplankton and fish (Castellani et al., 2013). This model
became a step towards a mechanistic and adaptive representation of the
upper trophic levels in ecosystem models. In this model the main trait
was size at maturation. Based on a traditional ocean ecosystem model
including chemistry, phytoplankton, micro- and mesozooplankton
(Schrum et al., 2006), a new model version replaced the compound
group of mesozooplankton by a developmental stage- and species-spe-
cific matrix and introduced fish feeding on mesozooplankton
(Castellani et al., 2013). A general mechanistic food web model of fish-
jellyfish competitive interactions was based on the feeding traits of fish
and jellyfish populations (Schnedler-Meyer et al., 2016). The model
also incorporated, in addition to feeding traits, elemental composition,
allometric scaling of vital rates, locomotion, and life-history traits. The
model predicted fish dominance at low primary production and a shift
towards jellyfish with increasing productivity, turbidity and fishing. A
few freshwater studies included one on the simulation and screening of
freshwater fish invasion which were tackled with the help of trait-based
statistical models that used classification trees (Howeth et al., 2016).
Another example investigated temperature-dependent colonization and
extinction rates of darter fish in a body size-centred dynamic occupancy
model (Shea et al., 2015). Stochastic integral projection models were
not only used for plants and terrestrial animals, but also in a trait-based
modelling study of pike in a freshwater ecosystem (Vindenes et al.,
2014). Conclusion: On the basis of these publications, we believe there
is no question that the long and successful history of trait-based mod-
elling including fish centred on size spectrums will continue. Future
applications are likely to further improve model predictions by fol-
lowing the increasing number of examples where traits other than size
are also included in the models.

6.2. Trait-based models focusing on plankton

As with fish, it is also possible to explicitly model plankton in a trait-
based way (Follows et al., 2007; Litchman et al., 2007; Bruggeman and
Kooijman, 2007; Kiørboe, 2011). The models used are predominantly
equation-based models, as they were for those including fish discussed
in the previous section (Supplementary Material. Tab. 1). Similarly, the
models considered size as the main functional trait. Only two models
were supplemented with individual-based modules (Clark et al., 2013;
Pastor et al., 2018), two adopted a statistical approach (Litchman et al.,
2007; Terseleer et al., 2014), and one a conceptual approach (Glibert,
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2016). The great majority of these models targeted the ecosystem level.
This focus on ecosystems is possibly also one of the reasons for the
domination of equation-based approaches because such approaches are
particularly well suited to capture ecosystem fluxes. The marine eco-
system model by Follows et al. (2007) became a starting point for the
development of a number of trait-based models in microbial ecology
and plankton research. This is probably because it successfully re-
produced the observed global distributions and community structure of
the phytoplankton. The model included a diverse phytoplankton com-
munity that was described by a set of physiological traits defined by
field and laboratory data with related trade-offs. Phytoplankton cell
size, and especially the drivers of small cell size, were addressed with a
trait-based model of cellular resource allocation (Clark et al., 2013).
This model considered a three-way trade-off between cell size, nutrient
and light affinity, and growth rate. It was developed as a combination of
a classic nutrient-phytoplankton-zooplankton model and ‘cost-benefit’
models. The trait-based approach was supported by individual-based
modelling such that individual life histories gave rise to the evolu-
tionary dynamics of the whole system. This bottom-up approach al-
lowed missing ecosystem processes to be derived from model data.
Where many individuals are similar, as in the general case of plankton
and the specific case of this model (Clark et al., 2013), super-individuals
can be created that represent groups of individuals with similar traits.
As in other super-individual applications (e.g. Brochier et al., 2013 in
section 6.1. Trait-based models including fish), this approach reduces
computing power requirements. Plankton cell size and the mechanisms
underlying observed biogeographical difference in cell size were also
studied by Acevedo-Trejos et al. (2015) and Acevedo-Trejos et al.
(2018). Their models considered trade-offs between cell size and nu-
trient uptake, zooplankton grazing, and phytoplankton sinking. Mac-
roscopic system properties such as total biomass, mean trait values, and
trait variance were studied with a continuous trait-based phytoplankton
model (Chen and Smith, 2018). This model was developed as a sub-
module of a larger model the goal of which was to simulate ocean
dynamics. The model produced realistic patterns of phytoplankton
mean size and size diversity. Co-evolution of traits with respect to
chromatic and temperature adaptation was studied with a trait-based
ecosystem model (Hickman et al., 2010). Trait-based models with
adaptive traits were compared to trait-group resolving models in a
study of phytoplankton communities in partially mixed water columns
(Peeters and Straile, 2018). Disease transmission in multi-host com-
munities was the focus of a multi-generational plankton-based model
that considered epidemiological traits such as foraging or exposure rate,
conversion efficiency, susceptibility, virulence and spore yield (Strauss
et al., 2015). This model succeeded in improving the mechanistic and
predictive clarity of the dilution effect by connecting a reduction in
diluter species with the increase in disease risk. The dilution effect
probably explains links between host communities and transmission. In
their model of virus infection of plankton based on life-history traits,
Beckett and Weitz (2018) found that lysis rates were driven by the
strains with the fastest replication and not those with the greatest
abundance.

Compared to models with better resolved species-specific re-
presentations of physiological processes, improved representation of
biodiversity was suggested in a biodiversity-based marine ecosystem
model (Bruggeman and Kooijman, 2007). The model was based on a
system of infinite diversity in which species were defined by continuous
trait values for light-harvesting investment and nutrient-harvesting in-
vestment. The traits chosen affected all parts of the metabolism forming
a trade-off between harvesting and net growth. Based on this model and
a model by Bruggeman (2009), a trait-based model was developed to
include mixotrophy, succession and evolution of unicellular planktonic
organisms and to predict optimum trophic strategies of species under
changing environmental conditions (Berge et al., 2017). This model
contained three key resource-harvesting traits: photosynthesis, phago-
trophy and inorganic nutrient uptake. To distinguish two different

mixotrophic strategies, Chakraborty et al. (2017) extended the model
by Berge et al. (2017) by explicitly incorporating cell size and in-
troducing a pure heterotrophic strategy. Different aspects of plankton
ecosystems were recently scrutinized at greater detail, including trait-
based ecosystem function predictions for a global lake data set (Zwart
et al., 2015), biological interactions, species extinctions, nutrient up-
take kinetics, and some theoretical properties as well as more applied
implications of plankton models. Interactions were investigated in the
form of temperature dependence of competition of phytoplankton
species (Bestion et al., 2018) and of host-pathogen interactions between
zooplankton and a fungal pathogen, which seem to be mediated by host
foraging under climate warming (Shocket et al., 2018). Species ex-
tinctions strengthen the relationship between biodiversity and resource
use efficiency (Smeti et al., 2018) based on a model studying phyto-
plankton succession (Roelke and Spatharis, 2015a) and assemblage
characteristics (Roelke and Spatharis, 2015b). Based on insights from a
size-based model on nutrient uptake kinetics of phytoplankton, Smith
et al. (2014) emphasized that plankton ecology benefits from me-
chanistic trait-based models that account for physiological trade-offs. In
a theoretical exercise, Gaedke and Klauschies (2017) showed that the
knowledge of the shape of observed trait distributions is beneficial for
the elegant analysis of aggregate plankton models, because it allows for
data-based moment closure. With a new scale-invariant size-spectrum
plankton model, Cuesta et al. (2018) explored the constancy of the
relationship between biomass density and logarithmic body mass across
scales. Finally, there were examples of trait-based plankton models that
explicitly addressed applied questions such as the management of
harmful algal blooms (Glibert, 2016; Follett et al., 2018). Conclusion:
The vibrant field of trait-based plankton models is a good example of
how trait-based approaches can inspire ecosystem modelling. The re-
latively homogeneous conditions in aquatic environments lead to the
dominance of one trait – size – over any other trait or any taxonomic
category in explanations of community and ecosystem processes and
patterns. Although size as a main trait promotes simplification, which is
the core aim of models, size is not always the ideal trait to describe all
processes relevant for aquatic organisms. Thus, inclusion of further
traits such as light and nutrient affinity (Bruggeman and Kooijman,
2007; Clark et al., 2013; Acevedo-Trejos et al., 2015; Berge et al., 2017)
is required to improve models that aim to address such processes. Due
to the central role of body size and other traits for processes in aquatic
realms, trait-based approaches are more suitable than species-based
approaches to model aquatic communities and ecosystems.

7. Trait-based models on microorganisms and soil decomposers

Microorganisms and soil decomposers are relatively new subjects of
trait-based modelling and are still often represented as functional
groups or functional types rather than traits. Therefore, the following
seven examples also included classifications into functional groups. As
in models of aquatic ecosystems, the models of microorganisms and soil
decomposers were built around the key trait body size and were pre-
dominantly equation-based (Supplementary Material. Tab. 1) with the
exception of one statistical model (Van Bellen et al., 2017). In terms of
scale, all but one model in this section operated at the community level.
This one exception targeted continental to global scales (Wieder et al.,
2015). Such scales are surprisingly large for a model including micro-
bial processes. Nitrification by ammonia-oxidizing bacteria, ammonia-
oxidizing archaea and nitrite-oxidizing bacteria was considered in a
mechanistic trait-based model (Bouskill et al., 2012). It was based on
traits connected to the enzyme kinetics of nitrite. Another version of
this model simulated the influence of global change on ecological ni-
ches of soil nitrite-oxidizing bacteria types (Le Roux et al., 2016). This
trait-based model grouped nitrite-oxidizing bacteria into a few func-
tional groups. The authors demonstrate that this approach was suc-
cessful because three main bacterial functional types expressed con-
trasting responses to environmental changes. Using functional types can
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be inferior to using functional traits. This was demonstrated by another
microbial model that addressed time lags in the enzymatic response of
denitrifying microorganisms to changes in substrate concentration, in-
cluding the interactive dynamics between enzymes and nutrients (Song
et al., 2017). This model linked community traits with functional en-
zymes, not species or functional guilds as in previous studies (Taffs
et al., 2009; Bouskill et al., 2012). With organisms whose multiple
functions overlapped with one another, the guild-based (functional
type) approach failed to properly represent these organisms. Enzyme-
and thus trait-based implementations provide tools for scaling up bio-
geochemical functions to the community level without involving the
dynamics of individual species or their guilds.

A physiological trade-off between the traits of drought tolerance
and carbon use efficiency was at the core of two modelling studies on
soil decomposition (Allison, 2012; Allison and Goulden, 2017). In these
models, the decomposition submodel of enzymatic traits was derived
from the phytoplankton model by Follows et al. (2007) to predict litter
decomposition rates in soil. The sensitivity of microbial traits, com-
munity dynamics, and litter decomposition to variation in drought
tolerance costs was quantified in an updated model (Allison and
Goulden, 2017). The model implied that, for the Mediterranean climate
system, seasonal drought was a more important environmental filter
than reduced precipitation during the wet season. These models were
examples of successful exchange between disciplines.
Conclusion: Trait-based models are not yet so common for micro-

organisms and soil decomposers, but the few examples show their great
potential for future applications. One example (Song et al., 2017) also
illustrated nicely how important it can be to use functional traits in-
stead of functional types.

8. General insights on trait-based modelling

There were few general trait-based models that are applicable to
terrestrial and marine ecosystems alike. One of the rare cases, Harfoot
et al. (2014), was a general ecosystem model based on eight traits
thought to be the most important for determining rates of ecological
processes. These traits were realm, nutrition source, mobility, leaf
strategy, feeding mode, reproductive strategy, thermoregulation mode,
and body mass. This model benefited from a coupled individual- and
equation-based approach. The equation-based approach was applied to
autotrophs and the individual-based one to all other organisms. In this
way, ecosystem structure and function emerged from interactions at the
individual level. However, the individuals in this model were in fact
groups or cohorts of organisms (the super-individual approach, Scheffer
et al., 1995). This general ecosystem model showed that highly complex
models require the combination of different modelling approaches in-
cluding simplification tools such as the super-individual approach.

All in all, the variety of models in all sections demonstrates that
trait-based modelling approaches are useful tools that are able to fa-
cilitate modelling and improve the predictive power of model outcomes
across taxa and disciplines (Suding and Goldstein, 2008; Litchman
et al., 2010; Powney et al., 2014; Laughlin et al., 2015; Song et al.,
2017). In this variety of models, we nevertheless see a number of trends
that allows comparison and incorporation of results across taxa and
disciplines. One of these is a shift from functional types to functional
traits. There is also a search for generalizations across organisms with
similar functions and a few examples that scale-up processes from the
local to the global level. Techniques that appear to be useful, especially
in individual-based models, are the super-individual approach and the
incorporation of intraspecific trait-variability. Nevertheless, it seems
clear from both empirical and modelling studies that the development
of trait-based models did not produce a universal set of traits. There-
fore, researchers should instead select traits according to the research
question and strategies of the organisms under investigation.

9. Discussion and conclusions

Based on our systematic review, it is clear that trait-based ap-
proaches are as valuable in modelling studies as they were earlier in
empirical studies. They facilitate parameterization and scaling-up of
models as well as the generalization of their results. Despite some in-
consistencies in the terminology of trait-based studies, trait-based
models have been implemented widely for different groups of organ-
isms and ecosystems, in different model types, and for achieving a
broad range of aims (See Supplementary Material. Tab. 1). We observed
productive exchange of trait-based modelling concepts and techniques,
especially between vegetation ecology and other disciplines, and argue
that this should be intensified and extended to more disciplines in the
future.

Inconsistencies in terminology within trait-based approaches mainly
originate from the unclear differentiation between functional types and
functional traits as categories for grouping organisms. For example,
Jeltsch et al. (2008) suggested three strategies for applying plant
functional type approaches in modelling, where the “functional trait”
strategy was one of them - together with “functional group” and
“functional species” strategies. Jeltsch et al. (2008) also pointed to the
fact that it was not possible to easily separate these strategies from each
other. In any case, none of the modelling papers explicitly use the
classification by Jeltsch et al. (2008). If researchers did so, it would
certainly clarify terminology. In our review, we distinguish between
models applying functional types and functional traits, following the
shift in the theoretical literature from describing vegetation types to
describing vegetation function (Moore and Noble, 1990; Webb et al.,
2010) reflected in the development of DGVMs (Van Bodegom et al.,
2012). The inconsistent use of terminology biases systematic reviews
that use key words in search engines. For example, some papers state
that they implement a novel trait-based modelling approach although
in practice they use functional types. Other papers clearly consider
well-developed trait-based models but are not found using that key
word (e.g. Seifan et al., 2012). Some studies develop crucial theoretical
frameworks or methods that are probably useful for future model de-
velopment and validation but do not themselves use any model. They
advocate, for example, incorporating other organisms in plant trait-
based models (Treseder, 2016), including community trait distributions
to overcome the challenge of estimating single traits (Edwards, 2016),
considering intraspecific variability (Burton et al., 2017), or using re-
motely sensed data to parameterize trait-based models (McDowell and
Xu, 2017). Nevertheless, not all facets of trait-based modelling seem to
be sufficiently well known in all fields of ecology to warrant correct
attribution of a study to this method. Thus, unambiguous terminology
requires more attention in the future. Adhering to a consistent termi-
nology will also simplify the exchange of trait-based concepts between
different disciplines.

Exchange of ideas on implementing trait-based models occurred
between the fields of vegetation ecology, marine ecology, limnology,
animal ecology and microbial ecology. This exchange already started
with the first trait-based approaches from plant functional ecology
(Lavorel and Garnier, 2002; Wright et al., 2004) being adopted by
animal studies of bats (Lentini et al., 2015) and birds (Scherer et al.,
2016). In ecological modelling, ideas were transferred from phyto-
plankton research (Follows et al., 2007) to a litter decomposition model
(Allison, 2012). We encourage the expansion of such exchange of trait-
based modelling approaches between disciplines. These exchanges are
likely to be most promising for cases where different organisms have
similar functions in their communities.

Trait-based models have been implemented for answering a number
of ecological research questions from basic and applied ecology. Basic
ecological questions that were addressed with trait-based models in-
cluded goals such as identifying which mechanisms drive plant growth,
how populations develop over time and space, how communities as-
semble and biodiversity can be explained, as well as which factors
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influence community dynamics. Applied trait-based modelling studies
investigated biological invasion conditions and consequences, re-
sponses of ecosystems to climate and land-use change, conservation and
management planning, as well as the evaluation of ecosystem services.
We see potential for the reinforcement of trait-based modelling ap-
proaches in areas such as the assessment of ecosystem services, invasion
prediction and prevention, biodiversity studies, connection to demo-
graphic approaches (Salguero-Gómez et al., 2018) and, especially, the
prediction of community and ecosystem responses under climate and
land-use changes.

Many model types were employed to implement trait-based ap-
proaches. The greatest proportion was equation-based models. The next
greatest proportion was that of statistical models that describe patterns
and demonstrate correlations between, for example, functional traits
and environmental filters. The combination of trait-based approaches
with process-based modelling, as one subcategory of equation-based
modelling, is particularly interesting because the detailed representa-
tion of physiological processes in process-based models may not at first
be compatible with the aggregated approach of trait-based models.
However, once united in a model, it is possibly just these different
perspectives on a study system that, by complementing each other, will
overcome the limitations from which the constituent approaches suffer
when used in isolation (Scheiter and Higgins, 2009; Ali et al., 2015;
Holzwarth et al., 2015). Combined process- and trait-based models are
also able to capture a broader range of scales than each approach alone.
Trait-based models are challenging to implement at extreme scales
because the trait concept aggregates information too much for very
fine-scale models and too little for very broad-scale models. However,
traits are successfully integrated into process-based models that im-
plement plant physiology at fine scales and into DGVMs and earth
system models at global scales.

Individual-based approaches (Grimm and Railsback, 2005;
DeAngelis and Mooij, 2005) are well suited to implement trait-based
models, because they can capture variation of trait values at the in-
dividual level (May et al., 2009; Scheiter et al., 2013; Weiss et al., 2014;
Pontarp and Wiens, 2017). Despite of the apparent similarity between
trait-based modelling and individual-based modelling, when considered
in isolation, there are differences between them in the main entities of
the models (traits versus individuals) and in the way interactions are
represented (Fig. 4). Nevertheless, trait-based models can easily ac-
commodate individual-level variation, and in individual-based models
interactions are usually mediated by traits (Fig. 4). Thus, it is
straightforward to combine these two approaches, yielding several
advantages: It is possible to link traits directly to environmental con-
ditions, so that combined individual- and trait-based models are con-
sidered to be an adequate tool for investigating community responses to
environmental gradients (McGill et al., 2006; Webb et al., 2010).
Moreover, combined individual- and trait-based models are able to
offer sufficient flexibility to simplify the description of individuals, to
capture plant-plant interactions at the individual level and thereby
explain local community-level phenomena (Jeltsch et al., 2008), and to
facilitate model parameterization based on trait data that are becoming
increasingly available through databases (Weiss et al., 2014; Grimm
and Berger, 2016). Trait databases will become an even richer source
for trait-based modelling once they expand their current focus on plants
to other organisms and start collecting and offering information on
abiotic and biotic interactions as well as intraspecific trait variation
(Funk et al., 2016).

We conclude that although trait-based modelling approaches have
rapidly increased in ecology over the past twenty years, the potential
advantages of the method have not yet been fully exploited. Key terms
should be uniquely defined and the main concepts of the theoretical
framework should be unambiguously clarified. We recommend devel-
oping and applying trait-based models to study community structure
and dynamics and to attempt predicting the direction and intensity of

community changes under global climate and land-use change. The
complexity of such community-level studies is outweighed by the
usually lower parameterization effort and more general model out-
comes of trait-based modelling approaches. We recommend combining
individual-based with trait-based approaches more frequently to benefit
from the enhanced flexibility. Moreover, trait-based modelling enables
the capturing of the feedback from communities to the environment, as
long as the model includes the effects as well as the responses of eco-
systems and traits. Trait-based modelling is therefore able to become an
important contributor to a comprehensive understanding of community
structure and dynamics under global change.
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