
PrivXR: A Cross-Platform Privacy-Preserving API
and Privacy Panel for Extended Reality
Chris Warin

Institute of Computer Science
University of Göttingen

Göttingen, Germany
warin@cs.uni-goettingen.de

Dominik Seeger
Institute of Computer Science

University of Göttingen
Göttingen, Germany

dominik.seeger@stud.uni-goettingen.de

Shirin Shams
Institute of Computer Science

University of Göttingen
Göttingen, Germany

shams@cs.uni-goettingen.de

Delphine Reinhardt
Institute of Computer Science

Campus Institute Data Science (CIDAS)
University of Göttingen

Göttingen, Germany
reinhardt@cs.uni-goettingen.de

Abstract—Extended Reality (XR) technologies are rising in
popularity and affordability, while including more sensors for
new features at each new generation, thus becoming increasingly
more pervasive. While this shapes up interconnected experiences
across Augmented Reality (AR), Mixed Reality (MR), and Virtual
Reality (VR) devices, it also introduces privacy threats for users,
especially related to their sensible biometric data. Despite various
propositions for privacy-enhancing technologies tailored to XR
in academia, there are still not enough options for end-users to
be informed about privacy risks and act upon them. Therefore,
we present a work-in-progress solution, consisting of a user-
friendly privacy panel, and a cross-platform privacy-preserving
Application Programming Interface (API). Our solution aims to
provide more awareness about potential privacy risks in XR,
while enabling users to define access to XR features, better
protecting their privacy by modifying the input data. Eventually,
we aim for this work to become a viable choice for end-users
of current and future generations of XR devices—especially in
the context of cross-platform, multi-user experiences, which are
expected to become the norm.

Index Terms—Extended Reality, Privacy-Enhancing Technolo-
gies, API

I. INTRODUCTION

XR is becoming more mainstream and more affordable
[1]. However, large amounts of data are collected from users
and their environments in order for the technologies to work,
which may endanger their privacy [2], and the privacy of
bystanders [3]. In particular, recent works show the sensitivity
of biometric data used in XR devices (e.g., user identification
based on body movement data [4], [5], data inference from eye
tracking data, such as intentions or personal preferences [6]).
Such sensible data pose threats to the privacy of XR users,
when in the hands of malicious third-party developers, or
global companies who may collect these data for, e.g., targeted
advertising ends. Therefore, in the current state-of-the-art, the
sensible but mandatory nature of XR data compels its users
to sacrifice privacy in order to use these new technologies and
take part, e.g., in the upcoming Metaverse.

The XR research community has proposed various solutions
to enhance user privacy in AR and VR systems, e.g., [3],
[7]–[11]. Recently, [9] have proposed an incognito mode for
VR through a user-friendly privacy panel that enforces privacy
on sensor data through differential privacy algorithms [9] (a
preliminary improvement with deep-learning models is also
proposed in [10]). Their approach require end-users to patch
every third-party application they want privacy control over,
which then allows them to access the privacy panel in the
patched application. While this approach is very versatile,
user adoption is questionable because of the required technical
knowledge and the incurred overhead for users. Furthermore,
other tracks remain to be explored, such as usability eval-
uations, and cross-platform implementations to match the
Metaverse’s multi-user and multi-platform nature [12], [13].

Therefore, there is still a need for user-friendly privacy-
enhancing technologies in consumer devices, especially with
respect to biometric data. Such solutions are needed in order
to better protect privacy, raise XR users’ privacy awareness,
and, eventually, foster user acceptance. Hence, we present
PrivXR, our two-fold work-in-progress solution: (1) a cross-
platform AR/VR privacy panel that provides information on
privacy risks, and privacy controls over XR inputs (e.g., VR
controllers); and (2) a privacy API in the form of a Unity
extension, which is easy for developers to implement, and
reads the privacy settings defined by users in the privacy panel.
This results in a high-level solution that lets end-users control
the XR features of any third-party app which implements the
API. The task of making third-party applications compatible
with the privacy panel will fall upon XR application devel-
opers, who have been known to take the responsibility for
users’ privacy themselves [14]. Thus, a unified privacy API
may also be beneficial for them by streamlining protections.
Furthermore, this will alleviate the overhead for end-users, as
they will only need to install the privacy panel.

Finally, our approach contributes in laying ground work

2024 IEEE International Conference on Pervasive Computing and Communications - Workshops and Affiliated 
Events - PerCom WIP papers 2024

979-8-3503-0436-7/24/$31.00 ©2024 IEEE 417

© 2024, IEEE

Chris Warin
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Chris Warin
C. Warin, D. Seeger, S. Shams, and D. Reinhardt. PrivXR: A Cross-Platform Privacy-Preserving API and Privacy Panel for Extended Reality. Proceedings of the 22nd International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Work-in-Progress), 2024.



(a) List of available devices for an XR sys-
tem, e.g., the headset and controllers on a VR
system.

(b) List of XR-related inputs available on the
chosen device.

(c) Privacy information and controls and for
a given input.

Fig. 1: Possible design for our privacy panel application.

in usable privacy-preserving solutions for XR environments,
which remain scarce at the time of writing. We argue that
expanding usable privacy research to the field of XR will be
beneficial in the long-term, notably by fostering user-centered
design aspects in order to inform and support privacy [15].
User-centered design is also typically beneficial for improving
the privacy and security of end-users [16]. Therefore, through
user-centered design, we hope for our work to become a viable
alternative to enhance privacy in XR systems.

In the following, we introduce our privacy panel in Sec. II.
We then follow with a description of the associated privacy
API in Sec. III. Finally, we conclude with a discussion of the
challenges and future work for this project in Sec. IV.

II. PRIVACY PANEL

We first present the end-user side of our solution, in the
form of a privacy panel that runs in a dedicated application.
We showcase the application with a new user-friendly design
shown in Fig. 1, which will eventually replace the current
prototype. In the current implementation, users are first shown
a list of XR devices present in Unity’s XR environment, e.g.,
headsets and controllers (Fig. 1a). When clicking on a device
in the list, the different inputs (or XR features) are shown
(Fig. 1b). On systems that contain only one device, e.g., an
AR-capable smartphone, the list of devices is hidden, and users
are directly shown the XR features.

When clicking on a given input, a third window provides in-
formation about the related privacy risks, and privacy controls

over compatible third-party applications (Fig. 1c). The infor-
mational section lists possible attacks on the selected input.
The privacy settings section lets users enable or disable the
access to the input, through a toggle button. Disabling inputs
that are not required by certain applications can help users
ensure that such inputs will not be used in an unlawful way.
However, a simple ”on/off” setting remains a compromising
choice in most cases for users. Most XR applications require
the position and rotation of the device they run on, and of the
user’s hands or controllers. Disabling these inputs will often
result in reduced functionality at best, and render applications
completely unusable at worst. Therefore, we also provide an
”input disguise” function, which introduces noise to input data.
The introduction of such noise to the data is expected to reduce
the efficiency of machine learning models, which are already
able to, e.g., (re)identify users based on body tracking data
[5], [17]. In order to explain this concept in a user-friendly
way, more information is given when clicking the information
icon next to the feature, as seen in Fig. 1c.

We provide users with three levels of noise intensity, ranging
from low to high. This lets them lower or increase the amount
of noise applied to the input depending on their use case. For
example, a left-handed user interacting in a collaborative VR
drawing application may want to use low intensity disguise
on the left controller, in order to draw precisely, and use high
intensity on the right controller, as it is not used to draw.

2024 IEEE International Conference on Pervasive Computing and Communications - Workshops and Affiliated 
Events - PerCom WIP papers 2024

418



III. PRIVACY API

A. Integration within the Unity Ecosystem

1) Design Decisions: We designed our privacy API in the
form of a Unity extension for three main reasons. Firstly, it is
currently impossible to access low-level components of most
XR devices, due to device vendors locking up their operating
systems for security reasons. Furthermore, it is challenging
to obtain sensor usage information from another developer’s
third-party application. These constraints leave few possible
approaches, one of them being application patching, as done
in [9]. Thus, we decided to interface our API between the
third-party applications that implement the API, and the XR
Software Development Kits (SDKs), in order to let end-users
control the access to sensor data. Secondly, Unity is one
of the most widely used game engines on the market [18],
which implies that privacy solutions developed for Unity may
more easily cover a wide range of end-users. Unity is also
a popular choice for XR development, and thus fits our use
case perfectly. Thirdly, this approach is relatively easy for third
party developers to adopt: they only need to import the Unity
extension, and replace function calls to Unity’s XR Interaction
(XRI) with function calls to our API. It then returns data
depending on user choices, which are defined in a separate
application that they do not need to bundle. This way, end-
users only have to install the privacy panel, which could
realistically be distributed on app stores, and developers only
need to embed an extension within their applications to make
them comply with our solution. Nevertheless, we acknowledge
that this approach is only viable if developers accept this
solution and use it in their XR experiences.

2) Resulting Design: The architecture of our privacy panel
and privacy API in its current implementation is shown in
Fig. 2. We gain control over the XR features by overriding
scripts of Unity’s XRI package, which are called by the main
code of the application (i.e., the third party developer’s code).
We can then enable, disable, and modify data related to these
features. To do this, the API communicates with the privacy
panel to fetch user settings. Choices made by users in terms
of sensor access and sensor noise are applied during the third-
party application’s runtime.

Cross-Platform Nature. Unity supports building applica-
tions for virtually any platform. Also, its device-agnostic XR
SDK—the XRI package—allows developers to create cross-
platform applications, where multiple users can interact in
real-time while using different XR technologies, e.g., mobile
AR, VR headsets, etc. Because our API is a Unity extension
that interfaces with XRI, it is therefore also compatible with
different platforms and devices.

XR Features Access Control. We enable users to disable
XR-related features that they may not want applications to
access, such as controller position. When access to a given
feature is disabled in the privacy panel, its database is up-
dated. When a compliant application uses the API to access
this feature, it queries the privacy panel database to check
whether access is allowed. Currently, we implemented a simple

3rd party Unity Application

Main Code

Updates UI

XR Device

Privacy Panel
Application

Raw
sensor data

High-level
XR features

Cross-Platform
XR Privacy API

Overridden
XR features

XR Interaction
Package

 Unity 
 Extension

 Application

 Provided 
 by Unity

 Provided 
 by us

DB

User Privacy
Preferences

Main
Code

Fig. 2: Architecture of a Unity application implementing our
XR Privacy API.

caching mechanism (without invalidation), so that the API only
receives the current setting once when the application first
request access to a feature.

Input Disguise. Our API supports the addition of noise to
sensor data, e.g., the position and rotation of VR controllers.
This enables users to keep functionality, while enhancing pri-
vacy. However, adding too much noise will disrupt the quality
of experience of users, e.g., when aiming with precision or
performing a specific gesture. Therefore, a balance between
privacy and usability is required. For this, we implemented
our noise function in a dynamic way: the amount of noise is
scaled to the velocity of the input. For example, noise added to
the position data of a VR controller will increase in intensity
when the movements are fast and ample, but will decrease
when the movements are slow and precise. This way, users
can still perform tasks that require precision.

IV. CONCLUSION AND FUTURE WORK

We have presented our work-in-progress solution that aims
to provide privacy transparency and control to end-users in
XR environments. Future work will focus on adding more
functionalities, conducting user studies to evaluate the user
interface, and attempting to address a number of remaining
challenges.

Providing sensor usage information to users. Although
XR feature control is functional, a user-friendly way of
showing sensor usage with the privacy panel remains to be
found for all supported platforms. Currently, this can only be
done by opening the privacy panel application in full screen.
Background usage solutions, such as notifications and widgets,
are currently being investigated.

Increasing user awareness. We plan to extend the section
about privacy risks, with additional explanations and resources,
like in orthogonal domains, such as [19]. Also, we may display

2024 IEEE International Conference on Pervasive Computing and Communications - Workshops and Affiliated 
Events - PerCom WIP papers 2024

419



input sensor values in a readable way for users. With these
changes, we aim to make this privacy panel an informational
tool for users, as well as a tool that provides control over
privacy. This is however a considerable challenge, as XR
devices run on different operating systems, which have varying
levels of access to sensor data.

Supporting additional features. We plan to support more
sensors and more platforms in the future. Depending on the
possibilities, we will explore input disguise for eye trackers
and hand trackers. Regarding the noise intensity settings, we
are considering supporting custom noise levels per applica-
tion, for finer tuning of every compatible XR experience. In
addition, third party developers implementing our API could
provide optimised default values themselves for their appli-
cations. Other aspects, such as a better caching mechanism
(with invalidation, in order to support privacy settings updates
at runtime), are also considered.

Extend support for other XR SDKs and other XR plat-
forms. Currently, our system only supports apps made with
Unity’s XRI package. We will extend the API to support other
SDKs, such as Meta’s XR SDK. This would allow support for
a wider range of devices, and thus, users. Additionally, we
currently only support XR devices running on Android, such
as Meta’s Quest VR headsets, and AR applications running
on Android. This limitation exists because the communication
between the API and the privacy panel is currently done by
using Android content providers, which enable sharing data
between different applications. While this can be acceptable,
as Android devices are well represented in the market, we
are nonetheless investigating other methods to communicate
between the API and the privacy panel. Eventually, we aim
to support more XR platforms, e.g. MR headsets running
Windows (Hololens), or the upcoming Apple Vision Pro.

Evaluation of usability and user acceptance. Lastly, we
are planning user studies to evaluate the interest given by end-
users and developers in our solution, and its usability. We have
already gone through different iterations in the design of the
proposed user interface, through rounds of feedback with our
students, and will go through further iterations after submitting
it to users in usability studies, thus following a user-centered
approach. We are also interested in observing the perceived
usefulness and perceived ease of use for our system.

Eventually, upon completion of this work, we aim to provide
users with more choices to protect their privacy in XR systems,
among the existing solutions. We also hope for our solution
and other related privacy-preserving tools to improve over
time, by exchanging ideas within the research community.
We argue that different approaches to mitigate privacy issues
lead to new ideas, and better solutions for end-users. Although
functional, our solution can also be seen as a proof-of-concept,
in the sense that we show how usable privacy-enhancing tech-
nologies could look for XR end-users in the future, should they
be implemented by the device vendors directly in the operating
system. Thus, this work may also encourage companies to
implement more privacy-preserving technologies natively in
future generations of XR devices.

REFERENCES

[1] ARtillery Intelligence, “Extended Reality (XR) Market Size
Worldwide from 2021 to 2026 (in Billion U.S. Dollars).” [Online].
Available: www.statista.com/statistics/591181/global-augmented-virtual-
reality-market-size/

[2] J. A. De Guzman, K. Thilakarathna, and A. Seneviratne, “Security and
Privacy Approaches in Mixed Reality: A Literature Survey.”

[3] M. Corbett, B. David-John, J. Shang, Y. C. Hu, and B. Ji, “BystandAR:
Protecting Bystander Visual Data in Augmented Reality Systems,” in
Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services (MobiSys), pp. 370–382.

[4] J. Liebers, S. Brockel, U. Gruenefeld, and S. Schneegass, “Identifying
Users by Their Hand Tracking Data in Augmented and Virtual Reality.”

[5] V. Nair, W. Guo, J. Mattern, R. Wang, J. F. O’Brien, L. Rosenberg, and
D. Song, “Unique Identification of 50,000 Virtual Reality Users from
Head and Hand Motion Data,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023.

[6] J. Steil, I. Hagestedt, M. X. Huang, and A. Bulling, “Privacy-Aware
Eye Tracking using Differential Privacy,” in ACM Symposium on Eye
Tracking Research & Applications (ETRA).

[7] Y. Kim, S. Goutam, A. Rahmati, and A. Kaufman, “Erebus: Access
Control for Augmented Reality Systems,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 929–946.

[8] G. Ramajayam, T. Sun, C. C. Tan, L. Luo, and H. Ling, “Saliency-Aware
Privacy Protection in Augmented Reality Systems,” in Proceedings of
the First Workshop on Metaverse Systems and Applications, pp. 1–6.

[9] V. C. Nair, G. Munilla-Garrido, and D. Song, “Going Incognito in the
Metaverse: Achieving Theoretically Optimal Privacy-Usability Tradeoffs
in VR,” in Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology (UIST), pp. 1–16.

[10] V. Nair, W. Guo, J. F. O’Brien, L. Rosenberg, and D. Song, “Deep Mo-
tion Masking for Secure, Usable, and Scalable Real-Time Anonymiza-
tion of Virtual Reality Motion Data.”

[11] C. Slocum, Y. Zhang, N. Abu-Ghazaleh, and J. Chen, “Going through
the Motions: AR/VR Keylogging from User Head Motions,” in USENIX
Security Symposium.

[12] J. Auda, U. Gruenefeld, S. Faltaous, S. Mayer, and S. Schneegass, “A
Scoping Survey on Cross-reality Systems,” pp. 1–38.

[13] C. Warin and D. Reinhardt, “Vision: Usable Privacy for XR in the Era
of the Metaverse,” in Proceedings of the 2022 European Symposium on
Usable Security.

[14] D. Adams, A. Bah, C. Barwulor, N. Musaby, K. Pitkin, and E. M. Red-
miles, “Ethics Emerging: the Story of Privacy and Security Perceptions
in Virtual Reality,” in Symp. on Usable Privacy and Security.

[15] R. Y. Wong and D. K. Mulligan, “Bringing Design to the Privacy Table:
Broadening “Design” in “Privacy by Design” Through the Lens of HCI,”
in Proceedings of the 38th SIGCHI Conference on Human Factors in
Computing Systems (CHI).

[16] C. Reuter, L. L. Iacono, and A. Benlian, “A Quarter Century of Usable
Security and Privacy Research: Transparency, Tailorability, and the Road
Ahead,” Behaviour & Information Technology.

[17] J. Liebers, M. Abdelaziz, L. Mecke, A. Saad, J. Auda, U. Gruenefeld,
F. Alt, and S. Schneegass, “Understanding User Identification in Virtual
Reality through Behavioral Biometrics and the Effect of Body Normal-
ization,” in SIGCHI Conf. on Human Factors in Computing Systems
(CHI).

[18] TIGA, “TIGA Survey Reveals that Unity 3D Engine
Dominates the UK Third Party Engine Market.” [Online].
Available: https://www.prnewswire.com/news-releases/tiga-survey-
reveals-that-unity-3d-engine-dominates-the-uk-third-party-engine-
market-300900187.html

[19] D. Christin, M. Michalak, and M. Hollick, “Raising user awareness
about privacy threats in participatory sensing applications through graph-
ical warnings,” in Proceedings of International Conference on Advances
in Mobile Computing & Multimedia, 2013, pp. 445–454.

2024 IEEE International Conference on Pervasive Computing and Communications - Workshops and Affiliated 
Events - PerCom WIP papers 2024

420




