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Abstract.

Many open questions and unresolved issues surround the topic of bias correction (BC) in climate change impact studies

(CCIS). One question relates to the contribution of downscaling of climate change scenarios on the uncertainties in results

obtained using impact models for agriculture. In particular, for large area or regional agricultural impact assessments, the

question of bias correction is of high relevance. Relatively few studies exist looking at the quantification of the impacts of BC5

methods in general circulation model (GCM) and regional climate model (RCM) data on results of such impact studies. Here,

we quantify the impact of different BC methods on temperature (T) and precipitation (P) from different CORDEX GCM-

RCM combinations, and how the debiased T&P signal may propagate through agricultural impact models. Specifically, we

estimate the impact of BC on i) an empirical P- and fuzzy rule-based algorithm to estimate the crop planting date, and ii) a

mechanistic T&P-based approach to quantify the crop suitability index (CSI) for the main staple crops in West Africa (i.e.10

groundnut, maize, pearl millet, sorghum). Both approaches serve as a proxy for more complex process-based ecophysiological

crop models. Depending on the choice of the BC method, the uncertainties in the assessment of the CSI can be more than

twice as high compared to the uncertainties from the GCM-RCM model selection. Comparing the estimated CSI values with

observed harvest area, it is found that BC generally improves the performance for models with low hit rates (< 30–35%),

but decreases the performance for models with relatively high hit rates (> 35%). Such consequences can also be expected for15

process-based crop models, which are developed to operate on field-scale but are driven by coarser scale RCMs. It is concluded

that such agriculturally oriented climate impact models as investigated here should be interpreted with great caution if applied

without BC or relying on a single BC approach only. Rather, we suggest to include different BC approaches in the generation

of climate projections for CCIS and quantify their uncertainties following a super-ensemble probabilistic assessment.
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1 Introduction20

Climate change will bring warmer temperatures, increased water demand, as well as more frequent extreme weather events

which are expected to pose large challenges for agricultural production (IPCC, 2018). To assess the expected impacts of

climate change, impact modelers depend on simulation results from climate models as input in their sector- or impact models

(Rötter et al., 2011a). Together with elevated atmospheric CO2 concentrations and changes in radiation, it is primarily the

changes in temperature and precipitation (T&P) that are the most crucial for agricultural yields (Pirttioja et al., 2015). T&P are25

accordingly indicative for large-scale changes in regional energy- and water cycles in a region (e.g., Duan and Duan, 2020),

have large impacts on crop growing periods and are major factors affecting heat and drought stress (Webber et al., 2018).

Assessing these changes on agriculture is largely the domain of climate change impact studies (CCIS) by utilizing agri-

cultural models. In the following, we refer largely to mechanistic and process-based models, drawing examples specifically

from crop models. Crop models dynamically simulate crop growth and development (for multiple crops and locations) in com-30

bination with many possible combinations of weather & climate, soil, and crop management conditions (Rötter et al., 2018;

Faye et al., 2018), overcoming the limitations of agricultural experiments under field and controlled laboratory environments

(Webber et al., 2018; Rötter et al., 2018). The accuracy of climate crop-yield relationships derived from crop models clearly

depend on the availability and quality of the underlying yield, soil, crop management and climate input data (Parkes et al.,

2019). The resulting uncertainties in projected impacts challenge their use by policy makers.35

Uncertainties in crop impact modeling stem from three main sources: i) climate change model simulations and scenarios,

ii) downscaling and bias correction methods, and iii) crop model simulations (Rötter et al., 2012). The uncertainties related to

crop models can be further attributed to uncertainties related to model structure (e.g., Asseng et al., 2013), model parameters,

and driving variables (e.g., Bindi et al., 2015; Tao et al., 2018).

Often, canopy- or field-scale models are applied in regional-scale climate change assessment studies (Van Bussel et al.,40

2011), leading to uncertainties either due oversimplification of the physiological processes represented and/or due errors re-

sulting from spatial aggregation of input data (climate, soil, crop varieties, and management) (Webber et al., 2020). Baron et al.

(2005), for instance, demonstrate the impact of using coarse-scale climate data in crop modelling using the field-scale model

SARRA-H in West Africa. Their results indicate that forcing the crop model with spatially aggregated rainfall may cause yield

overestimations up to 50% in dry latitudes of West Africa. More recent studies confirmed the need for high-resolution input45

data in order to simulate the spatial patterns of crop yield realistically (Zhao et al., 2015; Peng et al., 2020). In general, using

a higher resolution in climate input data may reduce the simulated biases in crop yields, but may depend also on other settings

applied in general circulation models (GCMs) and regional climate models (RCMs) such as e.g. the physical parameterization

(e.g., Laux et al., 2019), the choice of the land surface model (e.g., Ramarohetra et al., 2015), or the land use data (e.g., Kerandi

et al., 2017). Possible over- or underestimations might be corrected using statistical post-processing, i.e. bias correction (BC)50

approaches. However, the application of BC remains a controversially discussed issue (Ehret et al., 2012).

Despite its importance, the impact of different BC methods has rarely been considered in agricultural impact studies. The

variety of BC approaches applied in hydrology seems to be much larger, ranging from simple linear methods (e.g., Hay et al.,
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2000; Lenderink et al., 2007) via nonlinear power transformation (Shabalova et al., 2003; Leander and Buishand, 2007) and

statistical distribution- based algorithms (e.g., Piani et al., 2010) to more complex transfer functions using copulas (Laux et al.,55

2011; Mao et al., 2015; Maity et al., 2019). Albeit not yet well-established in impact modeling, multivariate approaches have

been recently developed which may better retain the inter-variable relationships (i.e. the physical consistency between the

variables as obtained by the climate models) after BC, as compared to more traditional approaches (Cannon et al., 2018; Vrac,

2018).

One common approach in agricultural impact assessment is the application of the ’delta change’ method (e.g., Räisänen and60

Räty, 2013): Climate scenarios are generated by imposing the mean monthly future changes of the variables (e.g. T&P) upon

historical observations (Wilby et al., 2004; White et al., 2011). This approach retains the variability of the local-scale weather

observations while adding the expected climate signal. In addition to the ’delta change’, weather generators and quantile-based

distributional shifts are applied to create scenarios that alter interannual and intraseasonal climate variability (e.g., Rötter et al.,

2011b; Confalonieri, 2012). Another BC approach is followed in the Inter-Sectoral Impact Model Intercomparison Project65

(ISIMIP) (e.g., Frieler et al., 2014, 2017), which is purported to allow robust bias adjustment of extreme values and is able to

preserve trends across all quantiles compared to other BC methods (Lange, 2019). Oettli et al. (2011) have used the cumulative

distribution function transform (CDF-t) (Michelangeli et al., 2009) to correct the biases of eight regional models. They showed

that bias-corrected climate variables better simulate crop yield means and standard deviations, but offer no improvement in the

reproduction of the year-to-year variations. More recently, the CDF-t has been applied to debias CMIP5 GCMs daily data over70

Africa (Famien et al., 2018).

The quantification of these uncertainties is important for the robustness of projected impacts (e.g., Tao et al., 2018). While

the use of climate- and impact model ensembles to quantify uncertainty are increasingly common in international efforts

such as the Agricultural Model Inter-comparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013), the Modeling

European Agriculture with Climate Change for Food Security (MASCUR) project (Ewert et al., 2015), or the Inter-Sectoral75

ISIMIP. The recent initiative Bias ADJustment of climate scenarios for Agricultural Model applications (BADJAM) compares

the driving data obtained from different bias adjustments techniques and their impact on crop models (Galmarini et al., 2019).

Only few of these initiatives have explored the full range of uncertainties.

This study contributes to the assessment of uncertainties related to the choice and processing of climate information, as well

as their propagation in climate impact assessments. Large uncertainties exist based on the selection and the spatiotemporal80

resolution of the climate data (Ruane and McDermid, 2017). Simulations are available through different emission scenarios

or Representative Concentration Pathways (RCPs) and various GCMs. Large climate model ensembles are generated by joint

research initiatives such as the Coupled Model Intercomparison Project (CMIP), or other CMIP-endorsed MIPs such as Co-

ordinated Regional Climate Downscaling Experiment (CORDEX), providing downscaled high-resolution RCM projections

based on different GCMs (subsequently referred to as GCM-RCM combinations). Though becoming less common, for some85

crop modeling groups and climate change impact modelers, resource limitations such as computing power may limit options

for full consideration of large ensembles of GCM-RCM combinations (Ruane and McDermid, 2017), requiring decisions based

on reduced subsets of possible future climate projections. Yet, considerable knowledge gaps remain concerning in the impact
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of BC approaches on the generation of climate change scenarios for crop modeling impact studies. Given the range of uncer-

tainties and issues, with potentially large implications for uncertainties in impact projections, we address the following research90

questions in this study:

– is bias correction still required with state-of-the-art high-resolution (region) climate projections? And,

– what is the range of uncertainties related to the application of different bias correction approaches in crop-climate impact

research?

By quantifying how different BC approaches impact on the selection through subsetting of climate projections and simulated95

results, we also provide practical guidance to crop modellers on how to generate climate change scenarios to drive crop-

climate modeling impact assessments. We address these research questions by quantifying the uncertainties of four different

BC methods applied to a set of selected CORDEX GCM-RCM combinations, propagated through two simple crop-climate

models: i) an empirical P- and fuzzy rule-based algorithm to estimate the agriculturally relevant onset of the rainy season

(ORS), i.e. the crop planting date, and ii) a mechanistic T&P-based approach to quantify the crop suitability expressed as a100

seasonal crop suitability index (CSI) for the period of June–September (JJAS).

2 Data and Methods

2.1 CORDEX climate data

CORDEX provides a set of climate projections over Africa (Nikulin et al., 2012). To enable a large ensemble of climate

projections, CORDEX-Africa simulations were carried out on a rather coarse resolution of 0.44◦ (approx. 50 km). Many105

variables are provided by CORDEX, but in this study, only T&P is considered. In climate models, T is a direct response to

radiation and involves relatively simple scattering, absorption, and emission equations. In turn, P is the result of many non-

linear interactions such as evaporation, convection, cloud formation. Some of them occur on scales smaller than the model

grid resolution, and hence, requiring parameterization with different inherent assumptions and approximations. Furthermore,

P is a more non-homogeneous variable in its spatio-temporal distribution in nature compared to T (Schleiss et al., 2011). For110

both reasons, P is more difficult to model accurately, i.e. uncertainties in modeling precipitation are relatively higher than for

temperature.

It is found that many of the CORDEX GCM-RCM combinations significantly improve the representation of precipitation

compared to that from their boundary conditions (i.e. the driving GCMs), however, biases still may exist, particularly in the

diurnal cycle. Only a small subset of models have a reasonable representation of the phase of the diurnal cycle, while for115

the majority of the RCMs precipitation is triggered too early during the diurnal cycle (Nikulin et al., 2012). It is noted that

combinations based on the non-Gregorian calendar are excluded from this study. Finally, a set of nine CORDEX GCM-RCM

combinations is applied in this study (Table 2).
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2.2 AgMERRA climate data

AgMERRA data, which has been used in numerous modeling activities for regions where observed long series of historical120

weather records are scarce or not accessible, is applied in this study as reference data for bias correction and spatial disaggre-

gation for the CORDEX data. AgMERRA is a hybrid of the Modern-Era Retrospective-analysis for Research and Applications

(MERRA, (Rienecker et al., 2011)) and various gridded and satellite products. It provides a global, daily, 0.25◦×0.25◦ gridded

climate data from 1980–2010 containing maximum, minimum, and average temperatures, precipitation, solar radiation, wind

speed, and relative humidity at the maximum temperature time of day (Ruane et al., 2015).125

2.3 SPAM agricultural data

SPAM (Spatial Production Allocation Model) data is used in this study as a reference to compare the spatial patterns of

crop suitability. Data on global agricultural production are usually available as statistics at administrative units, which makes

them less suitable for validation of spatially distributed CCIS output due to their aggregation level. SPAM, therefore, uses a

cross-entropy approach to make plausible estimates of crop distribution within disaggregated units (IFPRI, 2019). The data130

is provided with a 10 km grid-cell resolution and contains four variables which are calculated by the model: physical area,

harvest area, production, and yield, altogether for 42 crops, split by the rainfed and irrigated production system, as well as

the combination of both. In this study, we apply SPAM 2017 v1.1 Sub-Saharan Africa rainfed data on the harvested area, for

groundnut, maize, pearl millet, and sorghum. The data is a snapshot for the year 2007 only.

In this study, the 2007 SPAM data is compared to suitability maps for the period 2006–2100 (assuming steady climate).135

Moreover, crop suitability considers only climatic variables but neglects edaphic, as well as, societal constraints.

2.4 Subsetting of possible climate scenarios

For some crop modeling groups and climate change impact modelers resource limitations such as computing power may limit

options for full consideration of very large climate ensembles (Ruane and McDermid, 2017), thus requiring decisions based on

reduced subsets of possible future climate projections. Subsetting is one possibility to overcome this limitation, although this140

leads to a loss of information and begs the question of what type of information should be maintained (Ruane and McDermid,

2017; Pirttioja et al., 2019).

In this study, we apply the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach. The approach

helps to group the single members of the climate scenarios into five basic classes of climate changes (i.e. relatively cool/wet,

cool/dry, hot/wet, hot/dry, and normal). These classes of projected climate change are calculated as location-specific T&P145

changes in terms of their deviation from the ensemble median, i.e. their anomalies. The ’normal’ class is calculated to include

all models whose T&P changes are within ±0.5×σ (standard deviation) of the median (Ruane and McDermid, 2017). Here,

it is applied to demonstrate the potential impact of BC on the simulated T&P regimes in West African based on the CORDEX

GCM-RCM combinations. We adapted the procedure in that we consider the statistics of the entire year, and not the growing

season of specific crops exclusively as we do not want to constrain our analyses to a specific crop at this point. Rather we aim to150
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contrast the different climate scenarios more generally. In case impact modelers are interested in specific crops, we suggest to

consider crop-specific planting windows as well as the growing periods of the crops and their varieties, respectively. For future

climate projections, it should be noted that planting windows may change remarkably. As the daily maximum temperature

(Tmax) plays a crucial role for crop limiting conditions in agricultural impact models, we consider Tmax instead of daily mean

temperature (Tmean). The period considered in the CTRL run is 1980–2005, and for the RCP4.5 scenario is 2006–2100.155

2.5 Spatial disaggregation and bias correction of GCM-RCM combinations

Spatial disaggregation of the CORDEX GCM-RCM combinations is performed first before applying different bias correction

approaches. The spatial disaggregation consists of the distance-weighted average (DWA) remapping of the CORDEX climate

data to the grid resolution of AgMERRA, i.e. from 0.44◦ to 0.25◦. The underlying assumption is that the similarity of any

unknown value decreases with the distance to a known value. The weights to estimate unknown values are assigned that they160

increase to the inverse of the distance to each known point. More technical information on the spatial disaggregation is given

in Appendix A.

BC methods, in general, derive transfer functions between model simulations and observations for a baseline period and

apply these functions for future climate projections, in which no reference data is available. BC is crucial because CORDEX

GCM-RCM combinations may deviate from the observed climatic data. Such biases may propagate through agricultural impact165

models.

Bias correction methods of varying complexity have been developed and applied to the output of different RCMs driven

by different large-scale boundary conditions, i.e. different CORDEX GCM-RCM combinations, based on different emission

scenarios. This study is limited to the application of BC methods for T&P because these two variables are the main atmospheric

drivers for most climate impact models. To enable performance evaluation, the transfer functions are typically derived for a170

calibration period and are evaluated for an independent period (cross-validation). More technical information on the setup and

the different BC approaches is given in Appendix B.

Table 1. List of applied bias correction (BC) approaches to the spatially disaggregated CORDEX GCM-RCM combinations. More informa-

tion about the BC methods is given in Appendix B.

Name of BC method Abbreviation Variable Reference

Linear Scaling LS T, P Hay et al. (2000)

Power Law Transformation PLT T, P Leander and Buishand (2007)

Theoretical Distribution Mapping DMtheo T, P Themeßl et al. (2011); Fang et al. (2015)

Empirical Distribution Mapping DMemp T, P Themeßl et al. (2011); Fang et al. (2015)

Four different BC methods for T&P, borrowed from hydrological impact assessment studies, are used to estimate their

potential consequences in agricultural impact assessment. Two established approaches with different complexity, both based

on threshold-values of meteorological parameters, are applied for demonstration: i) For the estimation of the onset of the rainy175
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season (section 2.6), P has been debiased. LS, PLT, DMtheo, and DMemp are applied (Table 1); ii) for the estimation of the

impact of the BC on crop suitability (section 2.7), both T&P have been debiased, leading to 16 (i.e. 4× 4) permutations of the

4-fold set of {T,P} BC approaches.

2.6 Fuzzy-rule based estimation of the onset of the rainy season (ORS)

Particularly in semi-arid regions with limited water availability for cropping, the determination of the planting date is of cru-180

cial importance for food production (Laux et al., 2008). For West Africa, there are many definitions in use, most of them are

threshold-based and apply P observation data, (e.g., Dodd and Jolliffe, 2001). Such threshold-based approaches are imple-

mented in a few crop models to automatically estimate planting dates, given as agricultural management input data to the crop

models.

Due to the sternness of threshold-based ORS approaches, a new fuzzy rule-based algorithm has been developed (Laux et al.,185

2008). It consists of three different criteria, i) accounting for sufficient soil moisture to initiate germination, ii) excluding single

wet days which may often occur during the pre-monsoonal period and could be misinterpreted as the onset of the monsoonal

rains, and iii) avoiding a dry period of seven or more consecutive days during the following month to ensure the survival of

the seedlings. The approach has been applied across sub-Saharan Africa, e.g. for seasonal forecasting (Siegmund et al., 2015;

Rauch et al., 2019) and in climate projections (Dieng et al., 2018), or coupled with process-based crop models in order to190

derive location-specific planting rules (Laux et al., 2010; Waongo et al., 2013). Due to the importance of the planting date

for agricultural CCIS in West Africa under rainfed conditions (Faye et al., 2018), we applied the fuzzy rule-based planting

approach of Laux et al. (2008) using the same parameters as used for Ghana and Burkina Faso in this study. It should be noted,

that the planting rules (and consequently the planting dates) depend not only on the region but also on crop-specific needs.

In this study, however, we apply the same planting rules for the entire study region since we are not interested in obtaining195

suitable crop-specific planting dates, but rather in the relative differences due to the different BC approaches.

2.7 Crop Suitability

Crop growing conditions vary between different crops, varieties, and for different climatic, edaphic, hydrological, and topo-

graphic conditions. Due to the lack of detailed environmental data such as ground- and surface water for irrigation and detailed

edaphic parameters, climate data is often the only source of information considered. Crop suitability further describes the ap-200

propriateness of a given land area based on the growing thresholds for crops in relation to climatic conditions (FAO, 1976;

Egbebiyi et al., 2019).

We apply the Ecocrop model, based on climatic growing thresholds from the FAO-Ecocrop database, which has been devel-

oped from results of a large number of field experiments across the world (Hijmans et al., 2001). The FAO-Ecocrop database

consists of thresholds of monthly suitability ranges for plant species against total monthly rainfall and monthly minimum,205

mean and maximum air temperatures over the length of its growing season (Egbebiyi et al., 2019). The suitability of a crop in

response to climate variables can be assessed through the Crop Suitability Index (CSI).
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Table 2. List of applied CORDEX GCM-RCM combinations applied in this study. The modeling institutes are: Centre National de

Recherches Météorologiques, Centre Européen de Recherche et Formation Avancée en Calcul Scientifique (CNRM-CERFACS) for #1,

Irish Centre for High-End Computing (ICHEC) for #2–4, Max Planck Institute for Meteorology (MPI) for #5–8, and Norwegian Climate

Centre (NCC) for #9. For the latter, Tmean is not available and is thus not considered in the calculation of the CSI.

ID # Modeling Institute Abbreviation GCM Name RCM Name (Version)

1 CNRM-CERFACS CNRM-CM5 CCLM4-8-17 (v1)

2 ICHEC ICHEC-EC-EARTH CCLM4-8-17 (v1)

3 ICHEC ICHEC-EC-EARTH REMO2009 (v1)

4 ICHEC ICHEC-EC-EARTH HIRHAM5 (v2)

5 MPI MPI-M-MPI-ESM-LR CCLM4-8-17 (v1)

6 MPI MPI-M-MPI-ESM-LR REMO2009 (v1)

7 MPI MPI-M-MPI-ESM-LR RCA4 (v1)

8 MPI MPI-M-MPI-ESM-LR UQAM-CRCM5 (v1)

9 NCC NCC-NorESM1-M HIRHAM5 (v1)

The Ecocrop model is considered as a computationally inexpensive but valuable tool to help to understand the spatio-

temporal distribution of crop suitability over large areas and long time periods. Since fully empirical and working with coarse

temporal resolutions, it cannot be applied for detailed studies dealing with crop yield predictions under various management210

options like process-based crop models, which are resolving the full physiological life cycle of crops. Technical details about

the calculation and interpretation of the CSI are given in Appendix C.

In this study, we quantify the impact of the different BC methods on the CSI across West Africa. As CSI depends on

thresholds both for T&P, it adds more complexity compared to the algorithm to estimate the ORS (see section 2.6), which

depends on P thresholds exclusively. To study the impact of the BC method, we calculated the CSI for all possible combinations,215

i.e. the full factorial set for the univariate BC methods for T&P, respectively, resulting in 4× 4 combinations.

3 Results

First, the variability of the uncorrected CORDEX GCM-RCM climate ensemble (consisting of 9 members) is illustrated for

P. The ensemble mean shows large spatial differences of P across the West African domain, ranging from < 1 mm/day in the

Sahara up to 16 mm/day around the coastal areas of the Gulf of Guinea (Figure 1 a) ). The dispersion of the different members,220

expressed as the ensemble standard deviation even exceeds the magnitude of the ensemble mean, reaching values up to 25

mm/day (Figure 1 b) ). This indicates the high uncertainties in the generation of climate change projections for CCIS.

In the following, we present the impact of the bias correction methods on i) the representation of the variables T&P, sep-

arately, ii) the P threshold-based approach to estimate the onset of the rainy season, and iii) the joint T&P crop suitability

index.225
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Figure 1. Uncorrected CORDEX GCM-RCM of a) ensemble mean of P [mm/day], b) ensemble standard deviation of P [mm/day] across

West Africa for 2006–2100 under the RCP4.5 scenario. The ensemble consists of 9 members (Table 2).

3.1 Representation of T&P

The nine models adequately represent the different possible combined wetness and warming states, i.e. dry/hot, wet/hot,

dry/cold, wet/cold, and normal/normal (Figure 2). Only for the CTRL period, the state “normal” is not occupied. We apply

the approach for the RCP4.5 scenario. The reason for this choice is the higher number of CORDEX GCM-RCM combina-

tions availability than for RCP26 and RCP85. Compared to the results for the CTRL, it is found that the representation of the230

states remains relatively stable if the RCP4.5 scenario is considered. Most of the GCM-RCM combinations remain in the same

class, except for combinations #4 and #5, which shift from wet/cold and dry/cold into dry/cold and normal states, respectively.

In addition, it is noteworthy that despite the same large-scale forcing GCM, different RCMs can lead to different states. For

instance, the 4 MPI-ESM-LR models are represented in 3 states respectively, both under CTRL and RCP4.5. This indicates

that the variability from the RCMs can be relatively higher than that from the GCMs, supporting the use of an RCM ensemble235

driven by fewer GCMs rather than a large GCM ensemble combined with one single RCM. However, it is worth mentioning

that using multi-GCM multi-RCM combinations is always preferential (in case of sufficient resources for this kind of impact

simulations).
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Figure 2. Anomaly plot of T&P, following the procedure of Ruane et al. (2015). Shown are the uncorrected CTRL run of 1980–2005 (black

dots) vs. the uncorrected RCP4.5 runs (2006–2100) (red dots). The numbers denote the different CORDEX GCM-RCM combinations given

in Table 2.

Figure 3 contrasts the impact of different bias correction methods on the mean values of daily Tmax and P. For CORDEX

GCM-RCM combination #1 it is seen that the variability (expressed as a range of the distribution, i.e. the boxes) of T (top) is240

lower for the uncorrected runs (both the control run (CTRL) as well as the RCP4.5 scenario run) compared to the observation

(AgMERRA). As expected, the distribution of the RCP4.5 is shifted to higher values than for the CTRL. All of the applied bias

correction approaches can increase the variability of the RCP4.5 scenarios (comparable to that of AgMERRA) and to lift the

distribution in the order of the differences between CTRL and RCP4.5 run. This effect is less pronounced for the LS compared

to the PLT and DMtheo and DMemp.245

For P (bottom), a slightly reduced variability of the distribution is found for the uncorrected CTRL and RCP4.5 runs com-

pared to the observation. However, more values are declared as outliers in the upper tails, indicating more and higher P extremes

in this CORDEX GCM-RCM run. The bias correction methods can inflate the distributions that are comparable to the obser-

vations. In addition, the BC is reducing the number of identified ’outliers’, i.e. extreme values. It is however not the subject of

this study to validate the results with independent observational data. Unlike T, there is no clear shift in the distribution from250

the CTRL to the RCP4.5 scenario, thus the median values should remain at similar levels after bias correction.

The LS bias correction is reducing the spread of the Tmax anomaly compared to the uncorrected RCP4.5 run (Figure 4, top).

The spread in the P anomaly (a-axis) remains similar compared to the uncorrected RCP4.5 run, is however generally on a small

level (see scaling of the x-axis). The spread in the Tmax anomaly is remarkably reduced and centered around zero. Altogether,
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Figure 3. Boxplot of observation (AgMERRA), uncorrected CTRL (both 1980–2005), and RCP4.5 (2006–2100) run of CORDEX GCM-

RCM combination #1 (see Table 2), and the bias-corrected RCP4.5 runs for Tmax (top) and P (bottom). The boxplots represent the mean

values for all grid cells in the study region. The box spans the interquartile range, the median is marked by the red vertical line inside the

box, the whiskers represent the highest values, whereas the red crosses represent outliers.
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Figure 4. Same as Figure 2, but for uncorrected RCP4.5 runs (black dots) vs. bias-corrected RCP4.5 runs (red dots). The randomly selected

BCs applied are the linear scaling (LS) (top) and the distribution mapping based on a fitted theoretical distribution (DMtheo) (bottom) for both

T and P, respectively.
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the bias correction leads to some changes of the wetness-temperature classification: e.g. #9 changes from wet/hot to dry/cold,255

#4 from dry/cold to wet/cold, and #6 from wet/hot to normal. The bias correction based on the DMtheo (Figure 4, bottom), in

turn, is widening the spread of both the T and the P anomaly. This may also lead to regime changes (e.g. #4 changes from

wet/hot to dry/cold).

3.2 Onset of the rainy season

Figure 5 demonstrates the impact of different BC methods on the calculated ORS dates in West Africa. Figure 5 a) shows the260

mean ORS dates (2006–2100) for the uncorrected RCP4.5 run of CORDEX GCM-RCM combination # 1 as an example. It can

be seen that the ORS pattern, in general, follows the latitudinal movement of the monsoonal rains, triggered by the movement

of the Intertropical Convergence Zone (ITCZ). The same model run has been bias-corrected by 4 different BC methods and

the deviations between the corrected model runs and the uncorrected run (i.e., ORS (debiased RCP4.5) minus ORS (uncorr.

RCP4.5)) are shown in Figure 5 b) to e). The spatial pattern of the deviation may vary tremendously over the West African265

domain, between the different CORDEX GCM-RCM combinations (not shown) but also between the different BC approaches.

Averaged for the entire domain, the deviations for #1 are ranging from 5 days for PLT (DOY 165) up to 21 days (DOY 183)

in relation to the uncorrected RCP4.5 run (DOY 160).

Table 3 gives a summary of the corresponding spatial-temporal averaged statistics (i.e. the mean and standard deviations)

for all CORDEX GCM-RCM combinations under consideration. In general, it is found that in comparison to the ORS dates of270

the observation AgMERRA (DOY 163), the mean ORS in the uncorrected RCP4.5 runs occur too early, partly up to 1 month

(see #9). The bias correction methods compensate for this effect and are able to delay the mean ORS dates. For most of the

GCM-RCM combinations, however, the two DM approaches overcompensate for most model runs, while LS follows more

closely the overall mean ORS dates of the observation. Amongst the BC methods, the mean ORS dates may vary remarkably,

ranging from DOY 131 to DOY 186, i.e. altogether 55 days, while the differences between the CORDEX runs are only 30 days275

(DOY 165 in #5 vs. DOY 135 in #9). The ranges in the ORS dates are higher between most of the applied BC methods (32,

34, 39, 26 days for LS, PLT, DMtheo, and DMemp, respectively) are compared to the range between the 9 different CORDEX

runs of the uncorrected RCP4.5 (30 days).

The slightly increased range of the distribution of the P observation data (AgMERRA) compared to the uncorrected CTRL

and RCP4.5 runs from Figure 3 propagates through the ORS algorithm and results in a comparatively high widening of the280

observed ORS dates in relation to the uncorrected CTRL and RCP4.5 runs (Figure 6). Fewer values are classified as outliers

after BC. This underlines the need for BC in threshold-based algorithms. All 4 applied bias correction approaches are able to

reduce these differences. LS and PLT as well as DMtheo and DMemp show similar results in terms of the width of the box and

the median value. Similar results are obtained for the other CORDEX GCM-RCM combinations (not shown).
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Figure 5. (a) Mean ORS date [DOY] across West Africa, for uncorrected RCP4.5 (2006–2100) run of CORDEX GCM-RCM combination

#1 (see Table 22), and (b-e) ORS differences (ORS (debiased RCP4.5) minus ORS (uncorr. RCP4.5)). The applied BC methods are: LS (b),

PLT (c), DMtheo (d), and DMemp (e) (see Table 1). White areas denote regions, in which no ORS date could be calculated due to rainfall

deficit. The values are averaged for calculated annual ORS dates for the period 2006–2100.
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Figure 6. Boxplot of observation (AgMERRA), uncorrected CTRL (both 1980–2005) and RCP4.5 (2006–2100) run of CORDEX GCM-

RCMcombination #1 (see Table 22), and bias-corrected (see 1) RCP4.5 runs for the estimated dates of the rainy season’s onset [DOY]. The

boxplots represent the mean values for each grid cell with the study region.

Table 3. Mean and standard deviation (in brackets) of ORS dates [DOY], calculated for the observation (AgMERRA), the uncorrected CTRL

(both 1980–2005) and RCP45 (2006–2100) run of different CORDEX GCM-RCM combinations (see Table 2), and bias-corrected (see Table

1) RCP4.5 runs across the entire West African domain.

ID # AgMERRA uncorr. uncorr. LS PLT DMtheo DMemp

CTRL RCP4.5 RCP4.5 RCP4.5 RCP4.5 RCP4.5

1 163 (60) 155 (48) 160 (48) 166 (56) 165 (56) 179 (56) 181 (53)

2 150 (57) 153 (57) 157 (61) 158 (60) 175 (60) 179 (55)

3 142 (67) 141 (64) 144 (61) 144 (61) 162 (65) 171 (61)

4 133 (55) 136 (60) 147 (67) 147 (67) 156 (74) 171 (65)

5 159 (59) 165 (58) 167 (59) 165 (58) 181 (57) 186 (53)

6 156 (68) 159 (67) 161 (63) 160 (64) 169 (62) 180 (58)

7 142 (60) 145 (60) 147 (63) 151 (61) 163 (59) 166 (57)

8 148 (67) 149 (63) 156 (62) 157 (60) 167 (57) 168 (54)

9 133 (61) 135 (61) 134 (54) 131 (55) 142 (68) 159 (58)

Range 26 30 32 34 39 26
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Figure 7. Spatial representation of the mean seasonal (JJAS) CSI for the uncorrected RCP4.5 run of CORDEX GCM-RCMcombination #1

(see Table 2) for the following staple crops: a) groundnut, b) maize, c) pearl millet, and d) sorghum, for the period 2006–2100. Higher CSI

values indicate higher climate suitability (see Appendix C).

3.3 Crop Suitability285

The crop suitability is calculated based on the different CORDEX GCM-RCM combinations and emission scenario RCP4.5

and for the following four staple crops across West Africa: groundnut, maize, pearl millet, and sorghum. It is noted again that

the main focus is on the quantification of the impact of different BC approaches rather than deriving accurate projections.

Figures 7 and 8 illustrate the spatial representation of the mean seasonal (JJAS) CSI for the uncorrected and the bias-

corrected RCP4.5 run of CORDEX GCM-RCM combination #1, respectively. By comparing Figures 7 and 8 it can be seen290

that higher CSI values are obtained after BC. This holds in general for all of the crops. Moreover, the spatial patterns change

remarkably. The regions suitable for growing crops (with medium to high CSI values) are relocated to the south and the extend

of the regions is shrinking. This effect is more pronounced for sorghum. After BC, the suitable region shrinks remarkably to a

relatively small band of about 12◦ latitude.

Figure 9 shows the spatial distribution of the coefficient of variation (CV) for the CSI, defined as the standard deviation295

in relation to the mean of the population across West Africa for 4 different staple crops. The CV is thus a measure of the

extent of variability, i.e. of the dispersion of a population. The population consists of 8 uncorrected CORDEX GCM-RCM

16



Figure 8. Same as for Figure 7, but based on bias-corrected data for T&P, both corrected by DMemp (randomly chosen).

Table 4. Coefficient of variation (CV) of CSI for the 8 uncorrected CORDEX GCM-RCM runs (left column) and the 16 debiased T&P

combinations, for the 4 staple crops averaged over the entire West African domain.

Crop CV of 8 CORDEX GCM-RCM runs CV of 16 debiased T&P combinations

Groundnut 1.63 2.58

Maize 1.38 2.61

Pearl millet 1.15 2.46

Sorghum 0.94 2.28

simulations (left column) and 16 permuted T&P runs (right column). High dispersion values greater than 5 are found among

the bias-corrected runs, while dispersion is lower and spatially less extended for the corresponding uncorrected runs (Figures

9). Dispersion is greater for groundnut, maize, and pearl millet, but less pronounced for sorghum. The spatially averaged CV300

values for the entire West African domain is given in Table 4. It can be seen that the CV values are approximately doubled for

the 16 debiased T&P combinations, compared to the values of the 9 CORDEX GCM-RCM simulations.

The results suggest that BC increases the variability, and thus has a big impact on the results in agricultural CCIS. Accord-

ingly, impact assessments based on uncorrected or debiased climate simulations should be interpreted with great care.
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Figure 9. Coefficient of variation (CV) of CSI, for the uncorrected 8 CORDEX GCM-RCM simulations (2006–2100) under RCP4.5 scenario

(left column) and all bias-corrected simulations for CORDEC GCM-RCM combination #1, i.e. the 16 permuted T&P BC runs (right column)

for groundnut (top row, a) and b)), maize (second row, c) and d)), pearl millet (third row, e) and f)), and sorghum (bottom row, g) and h)).

White areas denote regions, in which the mean CSI is zero due to water- or temperature limitations, leading to non-defined CV values.
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Figure 10. Hit rate [%] between crop with the maximum CSI (2006–2100) and crop with maximum harvested area (2007). The hit rates are

shown for the uncorrected and bias-corrected RCP4.5 CORDEX simulations and the 16 bias-corrected T&P data, given as: BC of T–BC of P.

Figure 10 illustrates the hit rate between crop with maximum CSI and crop with maximum harvested area, both for uncor-305

rected and bias-corrected RCP4.5 CORDEX simulations. It is seen that some uncorrected CORDEX GCM-RCM simulations

have much higher hit rates than others, reaching hit rates up to 50% (#2), whereas the lowest hit rate is less than 20% (#8).

In cases of relatively high hit rates of the uncorrected simulations, none of the bias corrections can exceed the performance of

the uncorrected simulations. This is the case for run #1 ,#2, #4, and #5. For simulations with lower hit rates, BC can remarkably

increase the hit rates (e.g. runs #7 and #8). Among the 16 combinations of BC for T&P, the combination performing DMemp310

for both T & P shows the best results.
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4 Discussion

The discussion centers around the two research questions defined in this study. Moreover, new and promising avenues or alter-

natives in CCIS are discussed.

315

Is bias correction still required in CCIS using state-of-the-art high-resolution (region) climate projections?

It is well-documented that BC may impair the advantages of GCMs and RCMs by altering spatiotemporal field consistency,

relations among variables, and by violating conservation principles (Ehret et al., 2012). However, for cases in which the er-

ror is predominately time-independent (i.e. systematic), BC is considered as a useful and defensible post-processing tool to

transform the output from climate models in such a way that it is more suitable as input in CCIS (IPCC, 2015). In the case of320

impact models designed for field-scale studies driven by GCMs or RCMs, BC methods have the potential to better represent the

spatial patterns of the climate and derived agricultural impacts as well as the increased variability at smaller scales. This could

be confirmed by Glotter et al. (2014), who found that regardless of using raw GCM- or RCM input in CCIS for the US, the

yield distributions skewed low relative to those driven by observations. Dynamical downscaling of GCMs exacerbates the skew,

but applying even simple BC results in yield distributions largely consistent with those generated with historical observations.325

However, it is well-known that biases may differ regionally, and results from literature studies should be considered to decide

whether or not BC shall be applied. For West Africa, for instance, errors in GCMs are more pronounced over the Tropical

Atlantic, leading to relatively higher errors in RCMs (inherited by GCM lateral conditions) at the Guinean coast compared to

the Sahel (e.g., Paxian et al., 2016; Sultan and Gaetani, 2016). Although we do not explicitly analysed the spatial distribution

of the biases inherent in the climate projections, there is strong indication that the BC can have positive and negative impacts330

for the results obtained in CCIS (demonstrated for observed and simulated CSI across West Africa), depending on the per-

formance level of the uncorrected CORDEX GCM-RCM data. For specific GCM-RCM combinations with high performance

of the uncorrected simulations, it is found that BC, in general, can deteriorate the results. Thus, BC cannot be recommended

without restrictions before application in CCIS. It is rather suggested to check the skill for uncorrected and debiased data (for

the past and present) against climate reference data, before applying the BC for future climate projections. Moreover, the same335

performance analysis is recommended for the output variable(s) of interest after application of the impact model.

What is the range of uncertainties related to the application of different bias correction approaches in crop-climate impact

research?

As highlighted by many studies, uncertainty is per se high in crop-climate impact research. It is recommended to apply340

‘super-ensembles’ of climate projections in climate change impact assessment studies to address the uncertainties (Tao et al.,

2009a). To date, this has typically consisted of multiple GCM-RCM combinations, emission scenarios (future population

growth, economic and social development, technological changes, resource depletion, environmental management), and im-

pact models to consider all kind of inherent uncertainties. This can be confirmed by the results of this study. As an example for

the uncorrected CORDEX GCM-RCM combinations for West African, we found that the variability from the RCMs can be345
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relatively greater than that from the GCMs. Therefore, in the case of limited resources for CCIS, it is suggested to use an RCM

ensemble driven by fewer GCMs rather than a large GCM ensemble combined with one single RCM instead. Additionally, it is

worth noting that inherent RCM uncertainties are not considered in this study, but could be large, in particular for precipitation

(e.g., Laux et al., 2016; von Trentini et al., 2019). Approaches such as the presented Representative Temperature and Precipi-

tation (T&P) GCM Subsetting Approach help to quantify the uncertainty range of climate scenarios with low costs, but leave350

flexibility for impact modelers to decide based on their specific objectives (e.g. variables to be considered, aggregation time of

the variables) (Ruane and McDermid, 2017).

Due to their intrinsic limitations, each BC method has its own uncertainties. As observed in this study, the uncertainties

arising from the choice of BC approach can be more than double than those arising from the large-scale input data. This result

is in line with Hagemann et al. (2011), who state that BC on the climate change signal may be larger than the signal itself.355

Moreover, it has been demonstrated in this study that BC can even result in state changes in the climatic regime of a climate

scenario member, i.e. a specific member grouped as cool/wet can be grouped as hot/dry after BC. For impact modelers, this

means also that they should classify the climate regime of certain climate scenario members after the application of BC.

Due to the above-mentioned reasons, we claim that in general BC is still needed in CCIS. However, we strongly suggest

to include an ensemble of different BC methods (rather than relying on one single approach) in the ‘super-ensemble’ and to360

quantify the BC-related uncertainties. Thus, the question is not whether to bias correct or not, the question for the future is

rather how to bias correct to generate more reliable climate projections.

Are there new and promising avenues or alternatives in CCIS?

One avenue for deriving more reliable climate projections could be the use of multivariate BC approaches (e.g., Vrac, 2018;365

Cannon, 2018). These have the potential to better retain the physical consistency between the variables as derived from the

GCM-RCM combination. The multivariate approach of Cannon (2018) tested in ISIMIP has shown to be prone to artifacts

(Lange, 2020). Multivariate approaches also assume that the available GCM-RCM combinations are well calibrated and thus

are able to represent the joint dependency structures among the different variables of interest (Laux et al., 2019). Another avenue

could be the BC of the GCMs, before applying them in RCMs, i.e. as a pre-processing correction. Studies have suggested that370

dynamical downscaling of debiased GCM output does offer im- provements in fidelity when reproducing historical climate

(e.g., Xu and Yang, 2012). To date, no studies have evaluated the consequences in an impacts model (Glotter et al., 2014).

To circumvent issues and uncertainties related to downscaling and BC, the use of large-area crop models can be seen as

an alternative. Such models (e.g. GLAM (Challinor et al., 2005) and MCWLA (Tao et al., 2009b)) can potentially cope with

GCM or RCM output directly, but do not allow for detailed process descriptions, and thus cannot address all research questions375

field-scale models can. Nowadays, they are largely the same models applied at field and large scale in agricultural CCIS.

There are several limitations to this study, which are summarized as follows:
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– The study does not address the error structures as well as physical reasons for the biases in the CORDEX data, nor does

it consider the inherent issues of the applied BC methods individually. Further research, based on the understanding of380

the mechanisms that drive the errors and uncertainties in the projected changes is needed (Sultan and Gaetani, 2016).

– This study lacks a comprehensive validation for both the bias-corrected T&P input variables as well as the results

obtained by the calculation of the ORS and CSI. Moreover, we assumed the season JJAS (122 days) as the growing cycle

for all four crops over the entire study region. The results will deviate if refined location-specific assumptions will be

included, however, it is not expected that this will change our main conclusions.385

– Only T&P are considered in this study. It is expected that the effect of BC of further variables such as solar radiation,

humidity, wind speed in CCIS might add additional uncertainty. The effect might be similar in magnitude as for T&P.

– The impact of the reference data set for the BC is not the subject of this study. We are aware that the choice of the

reference data, time period for calibration & validation, interpolation strategy may impact the results. For the reference

data, we refer the reader to the study of Parkes et al. (2019), who analysed how the choice of the reference data sets may390

influence the projected sensitivity of crop yield to weather. In this study, we solely rely on AgMERRA (Ruane et al.,

2015), an alternative to be tested in the future is e.g. the WFDE5 dataset (Cucchi et al., 2020).

5 Summary and Conclusions

We investigated the impacts of four bias correction methods on the simulated temperature, precipitation, onset of the rainy

season, and crop suitability index for West Africa using CORDEX GCM-RCM model simulations. Major conclusions are that:395

– BC can potentially improve the performance of climate projections in agricultural impact studies. The performance gain,

however, depends not only on the BC approach, but also on the applied GCM-RCM simulation, the applied impact

model, the input variables and their multivariate co-variability as well as the region of interest.

– BC is an additional source of uncertainty in the entire modelling chain of a CCIS. Under certain circumstances, BC

approaches can even lead to state changes of the climatic regime of climate scenarios. Uncertainties from a single BC400

can be larger than the signal of climate change itself. Therefore, single BC methods should be used with great caution,

and their uncertainties need to be quantified. We strongly suggest the use of an ensemble of BC methods in CCIS and

quantify the BC-inherent uncertainties following a super-ensemble probabilistic assessment within the modelling chain.

The findings of this study will support (regional) impact modelers who apply BC methods for generating robust regional

climate change impact assessments on crop yields and other agricultural performance indicators. The bias-corrected T&P405

ensemble will be provided to encourage further CCIS across West Africa in agriculture, but also from other disciplines, such

as hydrology and energy.
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6 Data availability

The bias-corrected T&P data generated for this study is provided at PANGAEA (Data Publisher for Earth & Environmental

Science), accessible under: https://doi.pangaea.de/10.1594/PANGAEA.922245. CORDEX data can be retrieved from differ-410

ent ESGF nodes. Please follow http://www.csag.uct.ac.za/cordex-africa/how-to-download-cordex-data-from-the-esgf/ to get

more information. AgMERRA can be obtained from https://data.giss.nasa.gov/impacts/agmipcf/agmerra/. SPAM data can be

obtained from https://www.mapspam.info/data/.
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Appendix A: Distance-weighted average remapping

In this study, we employed the distance-weighted average (DWA) remapping method to interpolate time series for precipitation415

and temperature from the coarser CORDEX climate simulations to the grid of the AgMERRA data, which are used as ’pseudo-

obervations’. The approach looks for the nearest four neighbors and calculates the weights w as a function of the distance,

using:

w = 1/(d+ε)∑4
n=1(1/(dn+ε))

,

where ε is a very small number to prevent division by zero and d is the distance between the destination grid cell and the420

source grid cell. dn is the distance of the n neighbor grid cell(s). d is calculated as follows:

d= cos−1(cos Θdcos Θs(cos Φdcos Φs + sin Φdsin Φs) + sin Θdsin Θs),

where Θ is the latitude,Φ is the longitude, and the subscripts d and s denote the destination and the source grids, respectively.

Appendix B: Bias Correction Approaches

Please note that in the technical description of the different bias correction methods P and T are used for precipitation and425

temperature, respectively. V (Variable) is used if the method can be applied more generally, and is not explicitly dedicated

to P or T. The terms obs and mod denote the observed (i.e. the AgMERRA data) and modeled time series (i.e. the different

CORDEX GCM-RCM combinations), respectively. For calibration, the period 1980–2005 is used, which is applied to correct

the CORDEX GCM-RCM combinations of RCP4.5 for 2006–2100. The BC data is provided upon request.

B1 Linear scaling (LS) of precipitation and temperature430

An additive correction of the mean value is the simplest form of bias correction of temperature T. The mean bias of the model

is calculated for each month m of the period used for calibration and is then added to the model data, i.e. the RCM data of

the validation period (hereinafter referred to as Method 1a, equation B1) at every time step T (here: daily). The same additive

value can be potentially used for debiasing future climate projections under the assumption of stationary biases.

Tcorr,m(t) = Tmod,m(t) + (Tobs,m−Tmod,m),435

where corr denotes the corrected time series. For precipitation data, instead of using a monthly additive term, monthly

scaling factors are calculated. The ratio of the mean monthly sums between observed and modeled precipitation is calculated

for the calibration period and then used to scale the model data for the validation period at each time step t (here: daily):
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Pcorr,m(t) = Pmod,m(t) · Pobs,m
Pmod,m

.

In the setting of spatial disaggregation and bias correction as applied in this study, this approach corresponds to the agricul-440

tural CCIS well-established ’delta change’ method. Instead of impressing the ’delta’ to observations, it is impressed here to the

spatially disaggregated (based on AgMERRA) historical baseline simulations.

B2 Power law transformation (PLT) of precipitation and temperature

Linear correction methods as described above only adjust the first-order statistical moment, i.e. the mean values, but leave the

standard deviation or variance unaffected, because both are multiplied by the same factor. As an alternative, (Shabalova et al.,445

2003; Leander and Buishand, 2007) used a power transformation method, which corrects also the coefficient of variation (CV).

In this BC method, the variable of interest V is transformed to a corrected value Vcorr for every time step (here: daily) by

Vcorr,m(t) = am ·Vmod,m(t)bm .

First, the value of b is estimated such that the CV of the corrected daily variable matches that of the observed variable. This

is done using a simple root-finding algorithm but the estimated values are also cross-checked using discrete values within a450

reasonable solution space of b. The factor a is then determined such that the mean of the transformed daily values corresponded

with the observed mean. The estimation is done for every running month separately first and later averaged to obtain a long-term

monthly mean for both values, i.e. am and bm. This allows one to generate monthly transformation functions for correcting

the future climate projections. The resulting value of a depends on b, however, b only depends on the CV and it thus estimated

independently from a. Main shortcoming is that this method cannot adequately correct the wet-day probability (Teutschbein455

and Seibert, 2012).

B3 Distribution mapping (DM) of precipitation and temperature

Another frequently used approach is distribution mapping (DM), originally developed by Sutanto et al. (2019). It is based on

the concept of matching the CDFs between the observed and the modeled time series. The obtained transformation function

over the full distribution is then used to debias the modeled time series:460

F−1
obs(Fmod(Vmod)),

where Fmod is the CDF of the variable to be corrected (Vmod), and F−1
obs is the inverse CDF corresponding to the observed

variable (Vobs). The DM is thus capable to correct for the mean, variance, but also the distribution, which means that it also

preserves the extreme values ((Themeßl et al., 2011; Fang et al., 2015). In literature, there exist various derivatives of this

method, all of them having their pros and cons. Sometimes the mapping functions are derived for each season or month465

separately (Fang et al., 2015), however, in most of the cases they are derived over all values. In this study, we apply the DM
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over all the values (for each grid cell separately). In this study, we employ the DM based on theoretical distribution functions

(DMtheo) using a fitted gamma and normal distribution for precipitation and temperature, respectively, as well as DM based

on the empirical distribution functions (DMemp).

B3.1 DM for precipitation and temperature based on theoretical distribution functions (DMtheo)470

For correcting daily precipitation, the gamma distribution function is often the first choice of a theoretical distribution function

since it is able to model positively skewed data. The probability density function (PDF) for a gamma random variable, where

α and β represent the shape and rate parameter, respectively, for the non-zero precipitation values:

fΓ(p|α,β) = xα−1 · 1
βα · e

−p
β ,p≥ 0,α,β > 0,

where Γ(.) represents the gamma function. In our study we applied the maximum-likelihood estimator exclusively sine it475

is known to be more accurate and robust compared to the method of moments or least-squares (Piani et al., 2010; Teng et al.,

2015).

For temperature values, the Gaussian distribution with mean µ and standard deviation σ is known to give good results

(Teutschbein and Seibert, 2012):

fN (t|µ,σ) = 1
σ·
√

2π
· e

−(t−µ)2

2σ2 , t ∈ R,480

where N(.) represents the Gaussian (Normal) function. Thus, for correction of precipitation and temperature, equation B3

is applied where the CDFs FΓ and F−1
Γ as well as FN and F−1

N are applied, respectively.

B3.2 DM for precipitation and temperature based on the empirical distribution functions (DMemp)

The DM method can also be applied without any assumption about the underlying distribution function, i.e. a transformation

functions are derived based on the empirical distributions. It is therefore generally applicable to all variables of interest and485

can correct for the mean, variance, full distribution (quantiles), i.e. also extremes, but also corrects intrinsically the wet-day

frequencies. In literature, it is also referred to as quantile mapping (QM). The adjustment can be written in terms of the

empirical distribution (ecdf ) and its inverse (ecdf−1) (see (e.g., Fang et al., 2015; Themeßl et al., 2011)):

Vcorr(t) = ecdf−1
obs(ecdfmod(Vmod(t))).
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Appendix C: Crop suitability490

C1 Calculation of CSI

The suitability of a crop in response to climate variables is assessed by the Crop Suitability Index (CSI), following the approach

of Hijmans et al. (2001). Based on the total monthly rainfall amounts as well as the monthly mean air temperature, the CSI

applies the amount and mean of P&T, respectively, over the length of the growing season for 5 selected staple crops in West

Africa. The threshold values for the growing season can be obtained from FAO (1976). Please note that we applied the default495

Ecocrop parameters in this study and did not validate the threshold values for West Africa.

Based on these threshold values for non-suitable, marginal, and optimal conditions for T&P (see Figure C1), the CSI values

are calculated. For optimum (non-suitable) conditions, the CSI is restricted to 1 (0), for marginal conditions the values are

linearly interpolated, leading to values ranging from 0 to 1, which can be classified as follows: 0 < 0.25 (not suitable), 0.25 <

0.5 (marginally suitable), 0.5 < 0.75 (suitable), and 0.75 < 1 (highly suitable) (Ramirez-Villegas et al., 2013).500

Figure C1. Schematic diagram of CSI, depending on threshold values for T&P. Threshold values for marginal (light grey) and optimal (dark

grey) conditions vary for the different crops. T&P values outside the range of marginal conditions are non-suitable conditions for growing.

For the calculation of the CSI, both the start of the growing season as well as the length of the vegetation cycle is important.

Both depend on the crop under consideration and variety.
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For the planting date, we used the values, obtained by the ORS approach of Laux et al. (2008) for the period 2006–2100 and

the RCP4.5 scenario averaged over the entire domain and the different CORDEX RCM-GCM runs. Therefore, we assumed

mid-May until June for planting and accounted for the T&P conditions from June until the end of September (JJAS, 122 days505

in total) as a rough guess for the growing cycle for all crops. It is noted that both the start and the length of the growing cycle

are not expected to follow the actual ones since we are only interested in the relative differences due to different BC approaches

applied to the CORDEX RCM-GCM simulations. Note that #9 (see Table 2) is excluded from the CSI calculations, because

Tmean is not available.

C2 Validation of CSI510

SPAM (Spatial Production Allocation Model) data is used in this study as a reference to compare the spatial patterns of crop

suitability. The SPAM data were re-sampled to 0.25◦× 0.25◦ following the distance-weighted average (DWA) remapping

method (see Figure C2) in order that they align with the spatially disaggregated and bias-corrected climate data. For each grid

cell, the crop with the maximum harvest area is assigned as a dominant crop. The underlying assumption is that the harvested

area of the different crops is correlated to their climatic suitability values. Thus, maximum harvested are is seen as a proxy for515

the potential suitability of growing crops at a specific location and is therefore applied as an approximate validation of crop

suitability (see section 2.7). The grid-wise number of hits between crop with maximum harvest area and maximum CSI values,

obtained by different BC methods, is counted.
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Figure C2. Harvested area (ha) under rainfed conditions for a) groundnut, b) maize, c) pearl millet, and d) sorghum. The data is obtained

from the SPAM 2017 v1.1 Sub-Saharan Africa dataset and regridded using distance-weighted average (DWA) remapping method.
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