Modulverzeichnis

zu der Prüfungs- und Studienordnung für den konsekutiven Master-Studiengang "Matter to Life" (Amtliche Mitteilungen I Nr. 39/2019 S. 714)

Module

B.Phy.5608: Micro- and Nanofluidics	
B.Phy.5613: Soft Matter Physics	
B.Phy.5616: Biophysics of the cell	8832
B.Phy.5623: Theoretical Biophysics	
B.Phy.5625: X-ray Physics	
B.Phy.5648: Theoretische und computergestützte Biophysik	
B.Phy.5649: Biomolecular Physics and Simulations	
B.Phy.5657: Biophysics of gene regulation	
B.Phy.5658: Statistical Biophysics	
B.Phy.5660: Theoretical Biofluid Mechanics	
B.Phy.5663: Stochastic Dynamics	
M.MtL.1001: Introduction to Biophysics	
M.MtL.1002: Introduction to Physics of Complex Systems	8844
M.MtL.1003: Physical Chemistry of Life	
M.MtL.1004: Bioengineering/Synthetic Biology	
M.MtL.1005: Advanced Complex Systems and Biological Physics	8847
M.MtL.1006: Modern Experimental Methods	
M.MtL.1007: Biochemistry and Biophysics	
M.MtL.1101: Lab Rotation I	8850
M.MtL.1102: Lab Rotation II	8851
M.MtL.1201: Ethics in Synthetic Biology	
M.MtL.1202: Professional Skills in Science	8853
M.MtL.1203: Results of the Research Projects	
M.MtL.1406: Research seminar Matter to Life	8855
M.Phy.1401: Advanced Lab Course I	
M.Phy.1404: Methods of Computational Physics	
M.Phy.1405: Advanced Computational Physics	
M.Phy.5401: Advanced Statistical Physics	
M.Phy.5610: X-ray Tomography for Students of Physics and Mathematics	

Übersicht nach Modulgruppen

I. Master's degree programme "Matter to Life"

Following the regulations below, at least 120 C must be successfully completed.

The Master's degree programme "Matter to Life" comprises the scientific fields of biophysics, the dynamics of complex systems, physical (elementary) chemistry of life and synthetic biology.

1. Block I (Term 1-3)

Modules worth overall at least 90 C must be successfully completed within the following regulations.

a. Elementary subject-matter-oriented modules (Term 1-2)

aa. Subject-matter-oriented modules A

The following subject-matter-oriented modules worth overall 12 C must be successfully completed, provided that these or equivalent modules were not already completed successfully in the course of the Bachelor's degree programme:

M.MtL.1001: Introduction to Biophysics	s (6 C, 6 SWS)	8843
--	----------------	------

M.MtL.1002: Introduction to Physics of Complex Systems (6 C, 6 SWS)...... 8844

bb. Subject-matter-oriented modules B

The following subject-matter-oriented modules worth overall 25 C must be successfully completed:

M.MtL.1003: Physical Chemistry of Life (5 C, 3 SWS)	3845
M.MtL.1004: Bioengineering/Synthetic Biology (4 C, 2 SWS)	3846
M.MtL.1005: Advanced Complex Systems and Biological Physics (10 C, 4 SWS)	3847
M.MtL.1006: Modern Experimental Methods (6 C, 6 SWS)	3848

b. Advanced subject-matter-oriented modules (Term 2-3)

Depending on whether or not modules under letter a letters aa had to be completed, a number of modules worth overall at least 34 C or worth overall at least 22 C must be successfully completed; modules that were already successfully completed during the Bachelor's degree programme must not be taken into account:

B.Phy.5608: Micro- and Nanofluidics (3 C, 2 SWS)	8830
B.Phy.5613: Soft Matter Physics (3 C, 2 SWS)	8831
B.Phy.5616: Biophysics of the cell (6 C, 4 SWS)	8832
B.Phy.5623: Theoretical Biophysics (6 C, 4 SWS)	8833
B.Phy.5625: X-ray Physics (6 C, 4 SWS)	8834

B.Phy.5648: Theoretische und computergestützte Biophysik (4 C, 2 SWS)	. 8836
B.Phy.5649: Biomolecular Physics and Simulations (4 C, 2 SWS)	. 8838
B.Phy.5657: Biophysics of gene regulation (3 C, 2 SWS)	8839
B.Phy.5658: Statistical Biophysics (6 C, 4 SWS)	. 8840
B.Phy.5660: Theoretical Biofluid Mechanics (3 C, 2 SWS)	. 8841
B.Phy.5663: Stochastic Dynamics (6 C, 6 SWS)	. 8842
M.MtL.1007: Biochemistry and Biophysics (6 C, 7 SWS)	8849
M.MtL.1406: Research seminar Matter to Life (4 C, 2 SWS)	. 8855
M.Phy.1401: Advanced Lab Course I (6 C, 6 SWS)	. 8856
M.Phy.1404: Methods of Computational Physics (6 C, 6 SWS)	8857
M.Phy.1405: Advanced Computational Physics (6 C, 6 SWS)	8858
M.Phy.5401: Advanced Statistical Physics (6 C, 6 SWS)	. 8859
M.Phy.5610: X-ray Tomography for Students of Physics and Mathematics (3 C, 2 SWS)	. 8860

c. Practice-oriented modules (Term 3)

The following modules/research internships worth overall 22 C must be successfully completed:

M.MtL.1101: Lab Rotation I (11 C)8	850
M.MtL.1102: Lab Rotation II (11 C)8	851

d. Professional knowledge

The following modules worth overall 9 C must be successfully completed:	
M.MtL.1201: Ethics in Synthetic Biology (3 C, 2 SWS)	
M.MtL.1202: Professional Skills in Science (3 C, 2 SWS)8853	
M.MtL.1203: Results of the Research Projects (3 C, 2 SWS)	

2. Block II (Term 4)

Completion of the Master's thesis is worth 30 Credits.

Georg-August-Universität Göttingen		3 C
Module B.Phy.5608: Micro- and Nanoflui	idics	2 WLH
Learning outcome, core skills:		Workload:
After successfully finishing this course, students will	l be familiar with basic	Attendance time:
hydrodynamics and their applications in biology, bio	physics, material sciences and	28 h
biotechnology. They should know the fundamentals	of fluid dynamics on small scales	Self-study time:
and be able to apply them independently to specific	questions.	62 h
Course: Lecture		
Examination: Oral exam (ca. 30 min.) or written of Examination requirements: Fluid dynamics, hydrodynamics on the micro- and no biology, biophysics, material sciences and biotechno	anoscale and its applications in	
	•••••••••••••••••••••••••••••••••••••••	
at low Reynolds numbers; soft lithography; fluidics i	•••••••••••••••••••••••••••••••••••••••	•
at low Reynolds numbers; soft lithography; fluidics in chip" applications; Navier-Stokes-Equation Admission requirements:	n biology and biophysics, "lab-on-a- Recommended previous know	-
at low Reynolds numbers; soft lithography; fluidics in chip" applications; Navier-Stokes-Equation Admission requirements: none	n biology and biophysics, "lab-on-a- Recommended previous know Introduction to Biophysics and/or Systems	Physics of Complex
at low Reynolds numbers; soft lithography; fluidics in chip" applications; Navier-Stokes-Equation Admission requirements: none	n biology and biophysics, "lab-on-a- Recommended previous know Introduction to Biophysics and/or	Physics of Complex
at low Reynolds numbers; soft lithography; fluidics in chip" applications; Navier-Stokes-Equation Admission requirements: none Language:	n biology and biophysics, "lab-on-a- Recommended previous known Introduction to Biophysics and/or Systems Person responsible for module	Physics of Complex
at low Reynolds numbers; soft lithography; fluidics in chip" applications; Navier-Stokes-Equation Admission requirements: none Language: German, English	n biology and biophysics, "lab-on-a- Recommended previous knowl Introduction to Biophysics and/or Systems Person responsible for module Prof. Dr. Sarah Köster	Physics of Complex
at low Reynolds numbers; soft lithography; fluidics in chip" applications; Navier-Stokes-Equation Admission requirements: none Language: German, English Course frequency:	 n biology and biophysics, "lab-on-a- Recommended previous knowl Introduction to Biophysics and/or Systems Person responsible for module Prof. Dr. Sarah Köster Duration: 	Physics of Complex
at low Reynolds numbers; soft lithography; fluidics in chip" applications; Navier-Stokes-Equation Admission requirements: none Language: German, English Course frequency: every 4th semester; summerterm, in even years	n biology and biophysics, "lab-on-a- Recommended previous knowl Introduction to Biophysics and/or Systems Person responsible for module Prof. Dr. Sarah Köster Duration: 1 semester[s]	Physics of Complex
at low Reynolds numbers; soft lithography; fluidics in chip" applications; Navier-Stokes-Equation Admission requirements: none Language: German, English Course frequency: every 4th semester; summerterm, in even years Number of repeat examinations permitted:	n biology and biophysics, "lab-on-a- Recommended previous knowl Introduction to Biophysics and/or Systems Person responsible for module Prof. Dr. Sarah Köster Duration: 1 semester[s] Recommended semester:	Physics of Complex

Georg-August-Universität Göttingen		3 C
Module B.Phy.5613: Soft Matter Physics		2 WLH
Learning outcome, core skills:		Workload:
After successfully finishing this course, students wi		Attendance time:
concepts of soft condensed matter physics and wil	I be able to apply them independently	28 h
to specific questions.		Self-study time: 62 h
Course: Soft Matter Physics (Lecture)		2 WLH
Examination: Written exam (120 min.) or oral ex Examination requirements: Intermolecular interactions; phase transitions; inter colloids; polymers; polymer networks; gels; fluid dy	face physics; amphiphilic molecules;	
Admission requirements: Recommended previous knowle		edge:
none	Introduction toBiophysics or/and	d Physics of
	complex systems or/and Solid Sta	te Physics or/and
	Materials Physics	
Language:	Person responsible for module:	
German, English	Prof. Dr. Sarah Köster	
Course frequency:	Duration:	
every 4th semester; summerterm, in odd years	1 semester[s]	
Number of repeat examinations permitted: three times	Recommended semester: Bachelor: 5 - 6; Master: 1 - 4	
Maximum number of students: not limited		

Georg-August-Universität Göttingen		6 C 4 WLH
Module B.Phy.5616: Biophysics of the c	:ell	
Learning outcome, core skills: After successful completion of this module, student principles concerning cells and living matter and are specific questions.	•••	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Lecture (Lecture)		3 WLH
Course: Excercises		1 WLH
 Examination: Written exam (120 min.) or oral exam (ca. 30 min.) Examination prerequisites: 50% of homework/problem sets have to be solved Examination requirements: Physical principles in cells, adhesion, motility, signal transduction, biopolymers and networks, extracellular matrix, experimental methods, membranes, current research. 		6 C
Admission requirements: none	Recommended previous knowled Introduction to Biophyiscs	edge:
Language: English, German	Person responsible for module: Dr. Florian Rehfeldt	
Course frequency:Duration:every 4th semester1 semester[s]		
Number of repeat examinations permitted: three times	Recommended semester: Bachelor: 5 - 6; Master: 1 - 3	
Maximum number of students: 20		

Georg-August-Universität Göttingen		6 C
Module B.Phy.5623: Theoretical Biophysics		4 WLH
Learning outcome, core skills: Learning outcome: Basics of probability theory, Bayes Theorem, Brownian motion, stochastic differential equations, Langevin equation, path integrals, Fokker-Planck equation, Ornstein-Uhlenbeck processes, thermophoresis, chemotaxis, Fluctuation Dissipation Theorems, Stochastic Resonance, Thermal Ratchet, motor proteins, hydrodynamics at the nanoscale, population dynamics, Jarzynski relations, non- equilibrium thermodynamics, neural networks.		Workload: Attendance time: 56 h Self-study time: 124 h
Core skills: The core coal is to teach students fundates stochastic systems in the widest sense, an the application biophysics of biomolecules, cells and populations.	•	
Course: Vorlesung mit Selbststudium Literatur		
Examination: Oral examination (approx. 30 minut Examination requirements: Derivation of fundamental relations describing stocha and explanation of differential equations, derivation of solutions for the various considered problems.	astic systems, derivation, handling	6 C
Admission requirements: none	Recommended previous knowle	edge:
Language: English, German	Person responsible for module: Prof. Dr. Jörg Enderlein	
Course frequency: every 4th semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: three times	Recommended semester: Bachelor: 4 - 6; Master: 1 - 4	
Maximum number of students: 20		

Georg-August-Universität Göttingen Module B.Phy.5625: X-ray physics	6 C 4 WLH
 Learning outcome, core skills: Knowledge in: Radiation-matter interaction Dosimetry, radiobiology and radiation protection Scattering experiments: photons, neutrons and electrons Fundamental concepts in diffraction and Fourier theory Structure analysis in crystalline and non-crystalline condensed matter Generation of x-rays and synchrotron radiation X-rays optics and detection X-ray spectroscopy, microscopy and imaging 	Workload: Attendance time: 56 h Self-study time: 124 h
 After taking the course, students will integrate fundamental concepts of matter-radiation interaction . are able to apply quantitative scattering techniques with short wavelength radiation for structure analysis of condensed matter, including problems in solid state, materials, soft matter, and biomolecular physics are able to plan and carry out x-ray laboratory experiments are prepared to participate in beamtimes at synchrotron, neutron or free-electron radiation sources can solve analytical problems in x-ray optics, diffraction and imaging 	1

Course: X-ray Physics	
Examination: Written examination (120 minutes) or oral examination (ca. 30 min.)	
or presentation (ca. 30 min.)	
Examination prerequisites:	
none	
Examination requirements:	
solve problems of the topics mentioned above on a quantitative level, including	
calculations of structure factor, correlation functions,	
 applications of Fourier theory to structure analysis and basic solutions to the phase problem, 	
 solve problems of wave optical propagation and diffraction 	
knowledge about interaction mechanisms and order -of-magnitude estimations,	
 knowledge about theoretical concepts and experimental implementations of different techniques, 	
 knowledge of laboratory skills (x-ray sources, detection, dosimetry) 	

Admission requirements:	Recommended previous knowledge:
none	none
Language:	Person responsible for module:
English, German	Prof. Dr. Tim Salditt

Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
three times	Bachelor: 6; Master: 1 - 2
Maximum number of students: 15	

Georg-August-Universität Göttingen	4 C
Module B.Phy.5648: Theoretical and Computational Biophysics	2 WLH
Learning outcome, core skills:	Workload:
This combined lecture and hands-on computer tutorial focuses on the basics of	Attendance time:
computational biophysics and deals with questions like "How can the particle dynamics	28 h
of thousands of atoms be described precisely?" or "How does a sequence alignment	Self-study time:
algorithm function?" The aim of the lecture with exercises is to develop a physical	92 h
understanding of those "nano maschines" by using modern concepts of non-equilibrium	
thermodynamics and computer simulations of the dynamics on an atomistic scale.	
Moreover, the lecture shows (by means of examples) how computers can be used	
in modern biophysics, e.g. to simulate the dynamics of biomolecular systems or to	
calculate or refine a protein structure. No cell could live without the highly specialized	
macromolecules. Proteins enable virtually all tasks in our bodies, e.g. photosynthesis,	
motion, signal transmission and information processing, transport, sensor system, and	
detection. The perfection of proteins had already been highly developed two billion years	
ago. During the exercises, the knowledge presented in the lecture will be applied to	
practical examples to further deepen and strengthen the understanding. By completing	
homework sets, which will be distributed after each lecture, additional aspects of the	
addressed topics during the lecture shall be worked out. The	
homework sets will be collected during the corresponding exercises.	

Course: Theoretical and Computational Biophysics (Lecture, Exercise)	
Examination: Oral examination (approx. 30 minutes)	4 C
Examination requirements:	
Protein structure and function, physics of protein dynamics, relevant intermolecular	
interactions, principles of molecular dynamics simulations, numeric integration, influence	
of approximations,	
	1

efficient algorithms, parallel programing, methods of electrostatics, protonation balances, influence of solvents, protein structure determination (NMR, X-ray), principal component analysis, normal mode analysis, functional mechanisms in proteins, bioinformatics: sequence comparison, protein structure prediction, homology modeling, and hands-on computer simulation.

Admission requirements: none	 Recommended previous knowledge: Introduction to Biophysics Introduction to Physics of Complex Systems
Language:	Person responsible for module:
English, German	HonProf. Dr. Karl Helmut Grubmüller
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
three times	Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students:	

30	

Georg-August-Universität Göttingen	4 C
Module B.Phy.5649: Biomolecular Physics and Simulations	2 WLH
Learning outcome, core skills:	Workload:
Learning objectives: This combined lecture and hands-on computer tutorial offers	Attendance time:
the possibility to deepen the knowledge about theory and computer simulations of	28 h
biomolecular systems, particularly proteins, and can be understood as continuation of	Self-study time:
the lecture with exercises "Theoretical and Computational Biophysics" (usually taking	92 h
place in the previous winter semester). During the exercises, the knowledge presented	
in the lecture will be applied to practical examples to further deepen and strengthen	
the understanding. By completing homework sets, which will be distributed after each	
lecture, additional aspects of the addressed topics during the lecture shall be worked	
out. The homework sets will be collected during the corresponding exercises.	
Competencies: Whereas the winter term lecture with exercises "Theoretical and	
Computational Biophysics" emphasized the principles of running and analysing simple	
atomistic force field-based simulations, this advanced course will broaden our view	
and introduce basic principles, concepts and methods in computational biophysics,	
particularly required to understand biomolecular function, namely thermodynamic	
quantities such as free energies and affinities. Further, inclusion of quantum mechanical	
simulation techniques will allow to also simulate chemical reactions, e.g., in enzymes.	

Course: Lecture with Exercises Biomolecular Physics and Simulations		
Examination: Oral examination (approx. 30 minutes)	4 C	
Examination requirements:		
Basic knowledge and understanding of the material covered in the course such as:		
Free energy calculations, Rate Theory, Non-equilibrium thermodynamics, Quantum		
mechanical methods (Hartree-Fock and Density Functional Theory), enzymatic		
catalysis; "handson" computational calculations and simulations		

Admission requirements: none	Recommended previous knowledge: B.Phy.5648 Theoretical and Computational Biophysics
Language:	Person responsible for module:
English, German	HonProf. Dr. Karl Helmut Grubmüller
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
three times	Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students: 30	

Georg-August-Universität Göttingen		3 C
Module B.Phy.5657: Biophysics of ge	ne regulation	2 WLH
Learning outcome, core skills:		Workload:
Objectives:		Attendance time:
The students will learn basic concepts of the bio		28 h
physical mechanisms and their physiological fur theoretical analysis of such systems and their dy		Self-study time: 62 h
Competences:	ynamics.	02 11
After successful participation in the module, stud	dents should be able to analyze	
problems in gene regulation using the theoretica	-	
Course: Biophysics of gene regulation (Lectu	ure)	WLH
Course frequency: each winter semester	,	
Examination: written examination (60 Min.) o	r oral examination (approx. 30 Min.)	3 C
Examination: written examination (60 Min.) o Examination requirements:		3 C
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis	sms of regulation, thermodynamic	3 C
Examination: written examination (60 Min.) o Examination requirements:	sms of regulation, thermodynamic	3 C
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis	sms of regulation, thermodynamic	
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis modelling, deterministic and stochastic dynamic	sms of regulation, thermodynamic	edge:
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis modelling, deterministic and stochastic dynamic Admission requirements:	sms of regulation, thermodynamic s Recommended previous knowl	edge:
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis modelling, deterministic and stochastic dynamic Admission requirements: none	sms of regulation, thermodynamic s Recommended previous knowl Basic knowledge in statistical phy	edge:
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis modelling, deterministic and stochastic dynamic Admission requirements: none Language:	sms of regulation, thermodynamic s Recommended previous knowl Basic knowledge in statistical phy Person responsible for module	edge:
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis modelling, deterministic and stochastic dynamic Admission requirements: none Language: English, German	Recommended previous knowl Basic knowledge in statistical phy Person responsible for module Prof. Dr. Stefan Klumpp	edge:
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis modelling, deterministic and stochastic dynamic Admission requirements: none Language: English, German Course frequency:	Recommended previous knowl Basic knowledge in statistical phy Person responsible for module Prof. Dr. Stefan Klumpp Duration:	edge:
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis modelling, deterministic and stochastic dynamic Admission requirements: none Language: English, German Course frequency: every 4th semester	Sems of regulation, thermodynamic s Recommended previous knowl Basic knowledge in statistical phy Person responsible for module Prof. Dr. Stefan Klumpp Duration: 1 semester[s]	edge:
Examination: written examination (60 Min.) o Examination requirements: Physical principles of gene regulation, mechanis modelling, deterministic and stochastic dynamic Admission requirements: none Language: English, German Course frequency: every 4th semester Number of repeat examinations permitted:	Sems of regulation, thermodynamic S Recommended previous knowl Basic knowledge in statistical phy Person responsible for module Prof. Dr. Stefan Klumpp Duration: 1 semester[s] Recommended semester:	edge:

Georg-August-Universität Göttingen		6 C
Module B.Phy.5658: Statistical Biophy	sics	4 WLH
Learning outcome, core skills:		Workload:
Objectives:		Attendance time:
The students will learn basic concepts of statistica	al biophysics at the molecular, cellular	56 h
and population level, as well as methods for the theoretical analysis of biophysical systems.		Self-study time: 124 h
Competences:		
After successful participation in the module, stude basic concepts of statistical biophysics and be ab	• •	
Course: Statistical Biophysics (Lecture with in Course frequency: each winter semester	ntegrated problem sessions)	WLH
Examination: written examination (120 Min.) o Examination requirements: Physical principles of biological systems on the m application of methods from statistical physics to b	olecular, cellular and population level,	6 C
	biological and biophysical problems.	
Admission requirements:	Recommended previous knowledge	-
none	Recommended previous knowledge in biophysics an	d statistical physics
•	Recommended previous knowledge	d statistical physics
none Language:	Recommended previous knowledge in biophysics an Person responsible for module	d statistical physics
none Language: English, German	Recommended previous knowledBasic knowledge in biophysics anPerson responsible for moduleProf. Dr. Stefan Klumpp	d statistical physics
none Language: English, German Course frequency:	Recommended previous knowled Basic knowledge in biophysics an Person responsible for module Prof. Dr. Stefan Klumpp Duration:	d statistical physics
none Language: English, German Course frequency: every 4th semester	Recommended previous knowled Basic knowledge in biophysics an Person responsible for module Prof. Dr. Stefan Klumpp Duration: 1 semester[s]	d statistical physics
none Language: English, German Course frequency: every 4th semester Number of repeat examinations permitted:	Recommended previous knowled Basic knowledge in biophysics an Person responsible for module Prof. Dr. Stefan Klumpp Duration: 1 semester[s] Recommended semester:	d statistical physics

Georg-August-Universität Göttingen		3 C
Module B.Phy.5660: Theoretical Biofluid Mechanics		2 WLH
5		Workload: Attendance time:
		28 h
introduced and employed to investigate blood flow and circulation, the propulsion of organisms and transport facilitated by fluid flow.		Self-study time: 62 h
Students will learn to set up theoretical models for a r	ange of biological systems	
involving fluids employing the Navier-Stokes equation	and appropriate boundary	
conditions. The course will prepare the students to simplify, assess and analyze models to investigate the intricate role of fluids in biological settings.		
Course: Theoretical Biofluid Mechanics (Lecture)		
Examination: Written exam (60 minutes) or oral exam (approx. 30 minutes) Examination requirements: Solving Navier-Stokes equation in simple geometry, derive simplified equations from models of fluid flow and transport, explore theoretical models in limiting parameter range and assess prediction in relation to modeled biological system. The exam will be oral, if max. 20 students take part at the first date of the course.		3 C
Oherwise it will be a written exam.		
Admission requirements: none	Recommended previous knowledge: Basic knowledge of calculus and algebra	
Language:	Person responsible for module:	
English, German	Prof. Dr. Stefan Klumpp Contact: Karin Alim	
Course frequency: every 4th semester; Every second Summerterm in	Duration: 1 semester[s]	
Rotation to Microfluidic		
Number of repeat examinations permitted: Recommended semester:		

Number of repeat examinations permitted:	Recommended semester:
three times	Bachelor: 3 - 6; Master: 1 - 4
Maximum number of students: not limited	

Georg-August-Universität Göttingen		6 C	
Module B.Phy.5663: Stochastic Dynamics		6 WLH	
Learning outcome, core skills: Lernziele: The students will learn basic concepts and the dynamic equations of stochastic dynamics as well as methods for their theoretical and computational analysis. Kompetenzen: After successful participation in the module, students should have working knowledge of basic concepts and methods of stochastic dynamics and be able to apply them to selected problems.		Workload: Attendance time: 84 h Self-study time: 96 h	
Course: Stochastic Dynamics (Lecture)		4 WLH	
Course: Stochastic Dynamics (Exercise)		2 WLH	
Examination: written examination (120 Min.) or oral examination (approx. 30 Min.) or small project with written term paper (approx. 8-10 pages) Examination requirements: Approaches to stochastic dynamics and dynamic equations (random walks, Master equation, Langevin equation, Fokker-Planck equation), analytical solution methods, simulation algorithms.		6 C	
Admission requirements: none	Recommended previous knowled Basic knowledge of statistical physic programming	knowledge of statistical physics and	
Language: English, German	Person responsible for module: Prof. Dr. Stefan Klumpp		
0	Descritere		

Course frequency:	Duration:
every 4th semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
three times	Bachelor: 5 - 6; Master: 1 - 4
Maximum number of students:	
not limited	

Georg-August-Universität Göttingen		6 C
	weice	6 WLH
Module M.MtL.1001: Introduction to Biophysics		
 Learning outcome, core skills: After attending this course, students will have basic knowledge about the build-up of cells and the function of the components transport phenomena on small length scales, derivation and solution of the diffusion equation laminar hydrodynamics and its application in biological systems (flow, swimming, motility) reaction kinetics and cooperativity, including enzymes non-covalent interaction forces self-assembly biological (lipid) membrane build-up and dynamics biopolymer physics and cytoskeletal filaments, including filament and cell mechanics neurobiophysics 		Workload: Attendance time: 84 h Self-study time: 96 h
 neurobiophysics experimental methods, including state-of-the-art 	microscopy	
Course: Introduction to Biophysics (Lecture) Contents: components of the cell; diffusion, Brownian motion and random walks; low Reynolds number hydrodynamics; chemical reactions, cooperativity and enzymes; biomolecular interaction forces and self-assembly; membranes; polymer physics and mechanics of the cytoskeleton; neurobiophysics; experimental methods and microscopy		4 WLH
Course: Introduction to Biophysics (Exercise)		2 WLH
 Examination: Written examination (120 min.) or oral examination (approx. 30 min.) Examination prerequisites: At least 50% of the homework of the excercises have to be solved successfully. Examination requirements: Knowledge of the fundamental principles, theoretical descriptions and experimental methods of biophysics. 		6 C
Admission requirements: none	Recommended previous knowledge: none	
Language: English	Person responsible for module: Prof. Dr. Sarah Köster	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: once	: Recommended semester: Master: 1 - 4	
Maximum number of students:		

Course frequency:

once

30

each winter semester

Number of repeat examinations permitted:

Maximum number of students:

Georg-August-Universität Göttingen		6 C
Module M.MtL.1002: Introduction to Physics of Complex Systems		6 WLH
Learning outcome, core skills:		Workload:
Sound knowledge of essential methods and concepts	from Nonlinear Dynamics and	Attendance time:
Complex Systems Theory, including practical skills fo	r analysis and simulation (using, for	84 h
example, the programming language python) of dyna	mical systems.	Self-study time:
		96 h
Course: Introduction to Physics of Complex Systems (Lecture)		4 WLH
Course: Introduction to Physics of Complex Systems (Exercise)		2 WLH
Examination: written examination (120 Min.) or oral examination (approx. 30 Min.)		6 C
Examination prerequisites:		
At least 50% of the homework of the exercises have to be solved successfully.		
Examination requirements:		
Knowledge of fundamental principles and methods of Nonlinear Physics Modern		
experimental techniques and theoretical models of Complex Systems theory.		
Admission requirements: Recommended previous knowle		dge:
none	Basic programming skills (for the exercises)	
Language:	Person responsible for module:	
English	Prof. Dr. Stefan Klumpp	

Recommended semester:

Duration:

1

1 semester[s]

Georg-August-Universität Göttingen		5 C
Module M.MtL.1003: Physical Chemistry of Life		3 WLH
Learning outcome, core skills:		Workload:
Students will obtain a fundamental understanding	of the physico-chemical fundamentals	Attendance time:
of life, in particular the molecular and mesoscopic	c forces and interactions and their	42 h
description. They will learn to independently solve	e problems in physical chemistry and	Self-study time:
their application to living systems		108 h
Course: Physical Chemistry of Life (Lecture)		3 WLH
Distance Learning		
Examination: Written examination (120 minutes) Examination prerequisites: At least 50% of the homework of the exercises have to be solved successfully. Examination requirements: intermolecular forces, polymers and polyelectrolytes, colloids, surfaces and interfaces, electrochemistry.		5 C
Admission requirements: none	Recommended previous knowledge: Some knowledge of elementary physical chemistry	
Language: English	Person responsible for module: Prof. Dr. Andreas Janshoff Prof. Dr. Michael Grunze (Univ. Heidelberg)	
Course frequency:	Duration:	
each winter semester	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
once	1	
Maximum number of students:		

Georg-August-Universität Göttingen	4 C
Module M.MtL.1004: Bioengineering/Synthetic Biology	2 WLH
Learning outcome, core skills:	Workload:
Students will obtain an understanding of the concepts and methods of synthetic biology	Attendance time:
and bioengineering at the molecular to cellular level. They will learn approaches to	28 h
design biological structures, devices, and systems and will further be introduced to key	Self-study time:
applications of synthetic biology.	92 h
 Upon successful completion of the module, students have a detailed understanding of quantitative aspects of gene expression and gene regulatory processes; anoverview of the main research directions within synthetic biology and the major related technologies; the ability to apply their knowledge to design simple gene circuits themselves; a very good understanding of nonlinear dynamics and dynamic systems in synthetic biological systems and the ability to independently analyze dynamical systems; a good understanding of the role of stochastic processes in synthetic biology and key analytical methods. The students are able to analyze and simulate stochastic processes in the computer model; the ability to assess and evaluate current developments in synthetic biology 	

Course: Synthetic biology (Lecture)	2 WLH
Distance Learning	
Examination: Oral examination (approx. 25 minutes)	4 C
Examination requirements:	
biomacromolecules, biological nanostructures, molecular machines and devices,	
chemical reaction networks, synthetic gene circuits, design of dynamic functions and	
behaviors, cell-free synthetic biology and artificial cells	

Admission requirements: none	Recommended previous knowledge: Some knowledge of Elementary Physical Chemistry, Biophysics and/or Biochemistry
Language: English	Person responsible for module: Prof. Dr. Andreas Janshoff Prof. Dr. Friedrich Simmel (TU München)
Course frequency: each winter semester	Duration: 1 semester[s]
Number of repeat examinations permitted: once	Recommended semester: 1
Maximum number of students: 30	

Georg-August-Universität Göttingen	10 C
Module M.MtL.1005: Advanced Complex Systems and Biological Physics	4 WLH
Learning outcome, core skills: Students will extend their knowledge in the physics of complex systems and biophysics through the study of selected advanced topics. The emphasis is on connecting textbook-level knowledge with current research though a combination of introductory presentations by the lecturer(s), student presentations, self-study and scientific group discussions. In addition, students will learn and practise to apply the concepts from the introductory lectures on biophysics and physics of complex systems to specific problems in the physics of living systems and to critically assess current scientific literature.	Workload: Attendance time: 56 h Self-study time: 244 h
Course: Advanced Complex Systems and Biological Physics (Lecture, Seminar)	4 WLH
 Examination: Oral examination (approx. 45 minutes) Examination prerequisites: Presentation (approx. 20 min.) Examination requirements: In the final oral examination, the students demonstrate their broad knowledge in biophysics and the physics of complex systems and show that they recognize the interrelationships of the areas in biophysics and physics of complex systems and that they can place specific scientific questions within the context of these interrelationships. 	10 C

Admission requirements:	Recommended previous knowledge:
none	Introduction to Biophysics, Introduction to Physics of
	Complex Systems
Language:	Person responsible for module:
English	Prof. Dr. Stefan Klumpp
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
once	2
Maximum number of students: 30	

Georg-August-Universität Göttingen Module M.MtL.1006: Modern Experimental Methods	6 C 6 WLH
Learning outcome, core skills: Knowledge about advanced applied optics, radiation-matter interaction, spectroscopy, microscopy and imaging techniques in biophysics After taking this course, students will have quantitative insight into modern experimental techniques for biophysics, in particular optical techniques from basic to advances microscopy including confocal, light sheet and nanoscopy, optical spectroscopy including time-resolved techniques (transient absorption), single molecule techniques (e.g. FCS), electron microscopy, neutron and x-ray diffraction (including protein crystallography), NMR spectroscopy, and X-ray imaging. Students have the competence to reduce the complexity to underlying physics of radiation-matter interaction, to use Fourier-based methods in signal theory, concepts of wave and quantum optics, as well as quantitative data analysis. Hand-on examples of experimental applications and data recording will be introduced by short teaching units in the laboratory along with the courses, and a deeper unit of a 3 days practical in one of the technquies.	Workload: Attendance time: 84 h Self-study time: 96 h
Course: Modern Experimental Methods (Lecture, Exercise)	6 WLH
Examination: written examination (120 min.) or oral (approx. 30 min.) exam or presentation (approx. 30 min., 2 weeks preparation time) Examination requirements: Theoretical and practical knowledge of modern methods of experimental methods of biophysics.	6 C

Admission requirements:	Recommended previous knowledge:
none	Introduction to Biophysics
Language:	Person responsible for module:
English	Prof. Dr. Tim Salditt
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
once	2
Maximum number of students: 15	

Georg-August-Universität Göttingen		6 C
Module M.MtL.1007: Biochemistry and Biophysics		7 WLH
Learning outcome, core skills: Molecular Biochemistry and Biophysics of different cla biophysical methods for analysis of biomolecules. Work with state of the art equipment, critical review of detailed analysis of experiments and corresponding p acquisition of expert knowhow from publications.	current topics in biochemistry,	Workload: Attendance time: 98 h Self-study time: 82 h
Course: Biochemistry and Biophysics (Lecture) Contents: Spectroscopy of biomolecules (fluorescence, FT-IR, CD, UV/Vis), modern microscopic methods (optical microscopy, scanning probe microscopy), functional analysis of different classes of biomolecules.		1,5 WLH
Course: Biochemistry and Biophysics (Tutorial)		0,5 WLH
Course: Methods course: Biochemistry and Biophysics (Internship)		5 WLH
Examination: Written examination (90 minutes) Examination prerequisites: regular participation in the lab course and report for the lab curse (max. 20 pages) Examination requirements: Basics in modern analysis methods used for biomolecules		6 C
Admission requirements: none	Recommended previous knowledge:	
Language: German, English	Person responsible for module: Prof. Dr. Claudia Steinem	

Duration:

2

1 semester[s]

Recommended semester:

Course frequency: each summer semester

once

30

Number of repeat examinations permitted:

Maximum number of students:

Maximum number of students:

Georg-August-Universität Göttingen		11 C
Module M.MtL.1101: Lab Rotation I		
Learning outcome, core skills:		Workload:
By working under supervision of a PhD student on a current scientific research project, students will be familiarized with an advanced topic in the field of Biophysics/Physics of Complex Systems. They will learn to successfully perform a sub-task within a larger research project and finally present the results to a professional audience.		Attendance time: 0 h Self-study time: 330 h
Students will be able to organize, conduct, evaluate and present small, manageable projects in the field of Biophysics/Physics of Complex Systems, obeying the rules of good scientific practice.		
Course: Lab Rotation in Biophysics and Phys	ics of Complex Systems	WLH
Examination: written report (max. 10 pages) Examination requirements: Methods for in-depth familiarization in a scientific literature, scientific presentation, good scientific p		11 C
Admission requirements: none	Recommended previous knowledge: Introduction to Biophysics, Introduction to Physics Complex Systems	
Language: English	Person responsible for module: Prof. Dr. Stefan Klumpp	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: once	Recommended semester: 3	

Georg-August-Universität Göttingen	11 C
Module M.MtL.1102: Lab Rotation II	
Learning outcome, core skills:	Workload:
By working under supervision of a PhD student on another current scientific research	Attendance time:
project, students will be familiarized with another advanced topic in the field of	0 h
Biophysics/Physics of Complex Systems. They will learn to successfully perform a sub-	Self-study time:
task within a larger research project and finally present the results to a professional audience.	330 h
Students will be more able to organize, conduct, evaluate and present small, manageable projects in the field of Biophysics/Physics of Complex Systems, obeying the rules of good scientific practice.	
Course: Lab Rotation in Biophysics and Physics of Complex Systems II	WLH
Examination: written report (max. 10 pages)	11 C
Examination requirements:	
Methods for in-depth familiarization in a scientific field of work, critical review of	
literature, scientific presentation, good scientific practice.	

Admission requirements: none	Recommended previous knowledge: Introduction to Biophysics, Introduction to Physics of Complex Systems
Language:	Person responsible for module:
English	Prof. Dr. Stefan Klumpp
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
once	3
Maximum number of students: 15	

Georg-August-Universität Göttingen		3 C
Module M.MtL.1201: Ethics in Synthetic Biology		2 WLH
Learning outcome, core skills:		Workload:
Upon successful completion of the module, students will have a basic understanding of relevant ethical issues in Synthetic Biology. They will be able to explain and discuss ethical difficulties within the discipline as well as to interested laypersons and contribute to the social discourse on these topics.		Attendance time 28 h Self-study time: 62 h
Course: Ethics in Synthetic Biology (Lecture) Distance Learning		2 WLH
Examination: Written examination (120 minutes) Examination requirements: biosafety; dual-use research; cultural concepts of natural and artificial, living and non- living; economic aspects of synthetic biology, patentability; mechanisms of participation and societal decision-making related to synthetic biology		3 C
Admission requirements: none	Recommended previous knowle	edge:
Language: English	Person responsible for module: Prof. Dr. Eberhard Bodenschatz	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: once	Recommended semester: 1	
Maximum number of students: 30		

Georg-August-Universität Göttingen	3 C
Module M.MtL.1202: Professional Skills in Science	2 WLH
Learning outcome, core skills:	Workload:
The students are trained in scientific writing and oral presentation skills which enable	Attendance time:
them to adequately structure and compose scientific texts, particularly for written and	28 h
oral reports on experimental and theoretical findings in the field of their studies. They get	Self-study time:
introduced to the principles of good scientific practice and comprehension of adequate	62 h
measures to secure ethical standards in science. In addition, the students gain an	
understanding of laboratory safety principles and knowledge of adequate measures and	
procedures to secure laboratory safety standards in a research environment.	
	0.14/1.1

Course: Professional skills in science (Key competence)	2 WLH
Examination: Oral presentation (approx. 30 min.), not graded	3 C
Examination requirements:	
Demonstration of writing competence, oral presentation skills, lab safety rules and	
regulations in a scientific context in the English language at an advanced level.	

Admission requirements:	Recommended previous knowledge:
none	none
Language:	Person responsible for module:
English	Prof. Dr. Eberhard Bodenschatz
Course frequency:	Duration:
once a year	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
once	1 - 2
Maximum number of students: 15	

Maximum number of students:

Georg-August-Universität Göttingen Module M.MtL.1203: Results of the Research Projects		3 C 2 WLH
Learning outcome, core skills: The specific skills practiced in the seminar include efficient and concise presentation of own scientific results in English, development of a differentiated scientific vocabulary, and the critical discussion of the scientific data in the broader context of their relevance for current research.		Workload: Attendance time: 28 h Self-study time: 62 h
Course: Results of the Research Projects (Key competence)		2 WLH
Examination: oral presentation (approx. 20 min.), not graded Examination requirements: Demonstration of adequate oral presentation skills including the critical discussion and evaluation of the data presented. Admission requirements: Recommended previous knowled		3 C
none	none Person responsible for module:	
Language:	Person responsible for module:	
Language: English	Person responsible for module: Prof. Dr. Sarah Köster Prof. Dr. Stefan Klumpp	
	Prof. Dr. Sarah Köster	:

Georg-August-Universität Göttingen		4 C
Module M.MtL.1406: Research seminar Matter to Life		2 WLH
Learning outcome, core skills: After successful completion of the module, students sh reasoning and evaluate own and others' presentations		Workload: Attendance time: 28 h Self-study time: 92 h
Course: Research seminar Matter to Life (Seminar)		2 WLH
Examination: Oral Presentation (approx. 60 minute Examination prerequisites: regular participation Examination requirements: Preparation of complex topics for presentation and scie		4 C
Admission requirements:	Recommended previous know	vledge:

Admission requirements:	Recommended previous knowledge:
none	none
	Person responsible for module: Prof. Dr. Stefan Klumpp
Course frequency: every 4th semester	Duration: 1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
once	1 - 3
Maximum number of students:	
15	

Georg-August-Universität Göttingen		6 C
Module M.Phy.1401: Advanced Lab Course I		6 WLH
Learning outcome, core skills:		Workload:
After successful completion of the module, student	ts have	Attendance time:
familiarised themselves independently with co	omplex issues,	84 h
performed experimental tasks under guidance	e in a team,	Self-study time:
 and have writen scientific protocols within good scientific practice. 		96 h
Course: Advanced Lab Course I		
Examination: Oral examination (approx. 30 minutes)		6 C
Examination prerequisites:		
4 successful performed experiments.		
Examination requirements:		
Advanced experimental methods for solving physical problems.		
Admission requirements: Recommended previous knowle		/ledge:
none	none	
Language:	Person responsible for modul	e:
English, German	StudiendekanIn der Fakultät für Physik	
Course frequency:	Duration:	
each winter semester	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
three times	1	
Maximum number of students:		
not limited		

Georg-August-Universität Göttingen		6 C
Module M.Phy.1404: Methods of Computational Physics		6 WLH
Learning outcome, core skills: After successful completion of the module students will be familiar with the key methods and algorithms of computational physics. Students will be able to select and deploy appropriate computational approaches in order to model and analyse a range of classical and quantum systems.		Workload: Attendance time: 84 h Self-study time: 96 h
Course: Computational lab course		2 WLH
Course: Methods of Computational Physics (Lecture)		4 WLH
Examination: written (120 min.) or oral exam (approx. 30 min.) Examination prerequisites: Successful completion of 6 computational projects Examination requirements: Projects may include: Monte Carlo for phase transitions, rare event simulations, exact numerics for quantum systems, quantum Monte Carlo, simulations of disordered/glassy systems.		6 C
Admission requirements: none	Recommended previous knowledge: Basic knowledge of equilibrium statistical mechanic and 1-particle quantum mechanics.	
Language: English, German	Person responsible for module: Prof. Dr. Fabian Heidrich-Meisner	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: three times	Recommended semester: 1 - 3	
Maximum number of students: 30		

Georg-August-Universität Göttingen Module M.Phy.1405: Advanced Computational Physics		6 C 6 WLH
Learning outcome, core skills: After successful completion of the module students should be familiar with the complete project cycle of advanced computational physics work. Students will be able to build and refine appropriate models for solutions of specific physical problems, select and implement advanced computational approaches using both existing software and own codes, and analyse the resulting data.		Workload: Attendance time: 84 h Self-study time: 96 h
Course: Computational lab course		
 Examination: Oral examination (approx. 30 minutes) Examination prerequisites: Successful completion of 3 problem-driven computational projects (50% of the achievable score in each project) Examination requirements: Projects may include: Monte Carlo for phase transitions, rare event simulations, exact numerics for quantum systems, quantum Monte Carlo, simulations of disordered/glassy systems. 		6 C
Admission requirements: none	 Recommended previous knowledge: Methods of Computational Physics Advanced Statistical Physics Advanced Quantum Mechanics 	
Language:	Person responsible for module:	

Language:	Person responsible for module:
English, German	Prof. Dr. Marcus Müller
Course frequency:	Duration:
each summer semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
three times	2
Maximum number of students: 30	

Georg-August-Universität Göttingen		6 C
Module M.Phy.5401: Advanced Statistical Physics		6 WLH
Learning outcome, core skills: After successful completion of the module students will be familiar with the core concepts and mathematical methods of statistical physics both in and out of equilibrium. Students will be able to model and analyse interacting or fluctuation-dominated systems using methods from statistical physics, and be aware of a range of application domains including soft matter, biophysics and network dynamics.		Workload: Attendance time: 84 h Self-study time: 96 h
Course: Advanced Statistical Physics (Lecture)		4 WLH
Course: Advanced Statistical Physics (Exercise)		2 WLH
Examination: written (120 min.) or oral exam (approx. 30 min.) Examination prerequisites: At least 50% of the homework of the excercises have to be solved successfully.		
Admission requirements: Recommended previous knowledge: none Basic knowledge of statistical mechanics of		•

none	Basic knowledge of statistical mechanics of equilibrium
Language:	Person responsible for module:
English	Prof. Dr. Matthias Krüger
Course frequency:	Duration:
each winter semester	1 semester[s]
Number of repeat examinations permitted:	Recommended semester:
three times	1
Maximum number of students: 80	

Georg-August-Universität Göttingen		3 C
Module M.Phy.5610: X-ray Tomography for Students of Physics and Mathematics		2 WLH
 Learning outcome, core skills: Knowledge in: Principles of Radiography and Tomography Radiation Safety / Reconstruction Algorithms and practical Implementation of algorithms, testing of algorithms, cone beam reconstruction phase retrieval and phase contrast treatment of artefacts, filters quantitative assessment of image quality image segmentation Taking the course students will be able to : operate laboratory equipment, perform tomographic alignment and to setup tomographic scans to reconstruct data based on Matlab toolbox (Salditt Group) to analyse data, perform segmentation 		Workload: Attendance time: 28 h Self-study time: 62 h
Course: Course: X-ray Tomography Contents: • one week self-study in preparation based on tute Aspelmeier /Aeffner (De Gruyter 2017),	orials and the textbook by Salditt/	
 a full one week course with morning lectures including Matlab tutorials afternoon tomography practice in the laboratory using three different instruments (liquid metal jet, rotating anode, high energy), overnight scans Matlab-based reconstruction (Server IRP, Toolbox Salditt Group) 		
 Examination: Oral examination (approx. 45 minutes) Examination requirements: Presentation of a successful scan and reconstruction, oral discussion of the data and analysis 		3 C
Admission requirements: none	Recommended previous knowle Electrodynamics, Matlab/Python	edge:
Language: English	Person responsible for module: Prof. Dr. Tim Salditt	

Maximum number of students: 15	
Additional notes and regulations:	
1 week in October before start of lectures.	
Partial overlap with Physicists' tomography course.	