
Considering the Income-Illness Relation
Focussing on the Lower End of Conditional Health Distributions

using Structured Additive Distributional Regression

Alexander Sohn∗1, Julia Lynch2, Stephan Klasen1 and Thomas Kneib1

1Georg August University of Göttingen, Germany.
2University of Pennsylvania, USA.

Version 0.2
Last changes: 21st October 2016

Abstract

In this paper we reconsider the relationship between income on health, taking a distri-

butional perspective rather than one centered on conditional expectation. We find that the

impact of income on health is is larger than generally estimated because aspects of the con-

ditional health distribution that go beyond the expectation imply worse outcomes for those

with lower incomes. For example, we find that the risk of very bad health is roughly halved

by doubling the net equivalent income from 15,000e to 30,000e, which is more than tenfold

of the magnitude of change found when considering expected health measures. This paper

therefore argues for the importance of a distributional perspective on health outcomes, which

contemplates stochastic variation among observably equivalent individuals.

JEL-Classification:

Keywords: Structured Additive Distributional Regression; ...

1 Introduction

Scores of papers assess the relationship between income and health status in a multivariate frame-

work. Both in epidemiology and health economics, the vast majority of these employ standard

regression methods (linear and generalized linear models) to assess the effect of variations of in-

come and other covariates on the expectation of health status. While adequate in many scenarios,
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this focus on expected health outcomes may neglect potentially important variation in health that

is associated with differences in income. In this paper, we build on recent research that attempts

to overcome the limitations of standard regression approaches and offer a more comprehensive

analysis of health outcomes (Duclos and Échevin, 2011; Makdissi and Yazbeck, 2014). A trans-

ition from point estimation to distributional estimation has been made feasible by the evolution

of computation capacity in the past decades, which now allows for rapid computation of the al-

gorithms required for complex distributional regression models. We apply the recently developed

technique of structured additive distributional regression (SADR) (Klein et al., 2015) to estimate

the relationship between self-reported health status (in both a standard ordered 5-response format

and in the more granular SF-12) and income, conditional on other standard covariates (e.g. age,

education, etc.).

The association between income and health is one of the most robustly documented findings in

the literatures on population health and health economics (Marmot, 2002; Kawachi et al., 2010).

Income has been found to be strongly associated with measures of health across a variety of

populations, even above a threshold of material deprivation (Backlund et al., 1996; Ettner, 1996;

McDonough et al., 1997; Ecob and Davey Smith, 1999; Case, 2001), and recent studies exploiting

exogenous variation in income have established causal effects of income on health(Kuehnle, 2014;

Case, 2001; Frijters et al., 2005; Lindahl, 2005).

Although debate on the causal mechanisms linking income to health is not fully settled, the

magnitude of the association between health and income is of critical concern for contemporary

political decision making, particularly in areas such as the minimum wage, social minimum, or

tax treatment of low earnings. In the literature on health economics, epidemiology and public

health, estimates of the relationship between income and health have tended to take one of three

forms: bivariate concentration indices summarizing the relationship between income and health

in a population (Wagstaff and van Doorslaer, 1994; Lynch and Kaplan, 1997; Gravelle, 1998;

Ecob and Davey Smith, 1999; Humphries and van Doorslaer, 2000; Gravelle, 2003; Lindahl, 2005;

Wagstaff, 2005, 2011); estimates of the effect of income and other covariates on mean health status

(Rogot et al., 1992; Ettner, 1996; Case, 2001; Contoyannis et al., 2004), and likelihood ratios that

express the conditional probability of being in a particular health state given a particular level

of income and other covariates (Benzeval et al., 2000; Frijters et al., 2005). The first two rely on

health measures that are plausibly interpreted as continuous, while the latter technique is often

used when the health outcome in question is measured using discrete (often binary) categories.

Each of these approaches to measuring the relationship between income and health is useful, but,

particularly when applied to the most widely used survey measures of health status, also has

limitations.

Concentration indices are the “workhorse [method] in most health economic studies” (Fleurbaey
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and Schokkaert, 2009, p.73) for quantifying the distribution of health in a population. Their

succinct form and resemblance to the Gini coefficient provide an intuitive scalar measure that is well

suited for portraying the magnitude of health inequalities related to socio-economic characteristics

(Wagstaff and van Doorslaer, 1994; Kakwani et al., 1997). Yet the concentration index by its

construction only allows for the relation of two variables or scales. Estimating the relationship

between health and income while jointly conditioning on a set of other covariates thought also

to be relevant for health is thus not possible using conventional concentration indices. While we

reconsider concentration indices later on, we leave this methodology aside for the moment and

concentrate on those analyses of the health-income nexus which employ regression methodology

to estimate the income-health relation while controlling for the effects of other covariates.

A second workhorse method, particularly prominent in the epidemiological literature, is the ana-

lysis of expected health outcomes expressed as odds ratios. In its most prevalent form, a logit

model is used to predict outcomes on a binary health measure conditioning on a set of variables.

One of the advantages of this method is that risk of having a particular outcome is easily related to

the conditional expectation derived from the model. Due to the simplicity and popularity of this

method, it is common practice to reduce health variables of higher complexity to a binary form

in order to facilitate the construction of odds ratios (Chamberlain, 1980; Benzeval et al., 2000;

Frijters et al., 2005). This reduction is problematic if the health outcome of interest does not ad-

here to the implicit assumptions required by such a reduction, including indifference among health

outcomes grouped together in either of the dichotomous response categories. For some health

measures, including general health status, a dichotomous representation of healthy/unhealthy is

clearly insufficient as important variations would be disregarded.

Possibly for this reason, the construction of more fine-grained scales has become widespread for

the analysis of health for various contexts. The most popular approach is to construct (quasi-

)continuous health measures. These can subsequently be analyzed using simple mean regression

models, like OLS. While these classical regression techniques have the capacity to generate inform-

ation about the relationship between quasi-continuous health outcomes and other covariates, in

practice the reported results generally attend solely to the conditional expectation derived from

these models. As is the case with logit modeling described above, this reduction is problematic as

potentially important variations beyond the mean are disregarded. For example, looking only at

the mean health outcome conditional on covariates ignores research on the utility associated with

varying health statuses, some of which suggests that an equal-sized change in health status above

or below the mean may in practice generate asymmetric changes in well-being (Finkelstein et al.,

2009).

One problem shared by both regression approaches is thus that they use only limited information

from the full distribution of health in the sample, either by dichotomizing the outcome from
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Figure 1: A contrast of coarsely conditioned health distributions. Top: Lowest 20% of net incomes.
Bottom: Highest 20% of net incomes. Left: self-rated health (SRH). Right: Physical component
score (PCS) of the SF-12. Grey lines indicate reference lines of middle group.

the outset or by considering only the conditional expectation of the outcome. Through such

information reduction, these approaches focus attention on one particular aspect of the relationship

between health and income (and/or other covariates) at the cost of ignoring other potentially

important changes in the health distribution that may occur in connection with changes in income

(and/or other covariates). While this narrowed perspective is adequate and indeed necessary in

many scenarios, properly estimating the effect of income on health requires a broader approach.

A simple trisection of the health distribution between those with high, medium and low incomes

reveals that the difference in the health outcomes by income go beyond differences in the mean.

Figure 1 shows the distribution of two measures of generalized health – self-rated health (SRH) and

a physical health score (PCS) – among those with high (top 20% w.r.t. net equivalent income) and

low (bottom 20% w.r.t. net equivalent income) incomes. The variation in health outcomes is much

more pronounced in the lower part of the income distribution, while those who are economically

well off are able to practically eliminate the risk of very bad health. While an assessment based
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on the distributions’ means captures the general trend of the health-income relation, the reduction

in information incurred by focussing on the mean leads us to underestimate the magnitude (and

thus the real-world importance) of the relationship between income and health.

The technique we use in this paper, SADR, produces estimates of the conditional distribution of

health that go beyond the expected health outcome. This approach leads to a starkly different

assessment on the magnitude of the association between income and health, when controlling for

a set of other covariates. For example, we find that for the “average Joe” and “average Jane,”

there is a difference in the risk of being severely ill of between 39% and 42% depending on whether

the net equivalent household income is the median income of the poorer half of the population

(15,000e) versus the median income of the richer half of the population (30,000e). The size of

the this income effect is more than ten times the difference in the simple expectation of health

status at these different income levels. The distributional approach also allows us to compare

between discrete and continuous health measures, which turn out to have similar magnitudes for

the income-health association. Thus distributional regression provides a shift in perspective which

points to a significantly greater association between income and health than a perspective based

on arithmetic averages alone would convey.

The structure of health care spending is generally such that far more resources are dedicated to

improvements at the lower end of the health spectrum than to improvements at the higher end

(Berk and Monheit, 2001). From this one may infer that at a societal level, the health-utility

relationship is concave rather than linear. If the relationship is concave, it is obviously not linear

– which is the only scenario in which a mean-based assessment would be warranted. Equally

importantly, if the health-utility relationship is concave, analyses of the effects of income (or other

covariates) on health ought to give more weight to the effects of covariate changes that affect the

low end of the health distribution. For both multicategorical and continuous health measures,

we thus propose the use of risk measures which focus explicitly on the lower end of the health

distribution.

The remainder of this paper is structured as follows. The next section explains how SADR can be

used to analyze conditional health distributions. In the subsequent section, we apply the approach

to health data from the 2012 wave of the German socio-economic panel (SOEP), modeling the

relationship between a discrete health score (self-rated health) and a quasi-continuous health score

(SF-12) and net equivalent household income while controlling for a set of other variables like

age, education, etc. We next illustrate the importance of taking a distributional perspective by

highlighting several measures produced by SADR that put the emphasis on health impacts at the

lower end of the spectrum. In the fourth and final section, we conclude.
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2 Taking a Distributional Perspective

The conventional regression approaches discussed above fall into the category of generalized linear

models, where the conditional expectation of a health outcome variable Y given a set of explanatory

variables x1, . . . , xK is related to a regression predictor η via the response function h, i.e.

µ = E(Y | x1, . . . , xK) = h(η).

The predictor in turn is usually modeled as a linear combination of the covariates1 entailed in

covariate vector (x1, . . . , xK)T , i.e.

η = β0 +
K∑
k=1

βkxk.

For example, in case of binary outcomes differentiating only between healthy and non-healthy

individuals, a logit or probit model is specified, in which the probability of an outcome π = P (Y =

1 | x1, . . . , xK) = E(Y | x1, . . . , xK) is related to the predictors via the cumulative distribution

function of the logistic and the standard normal distribution, respectively.

The most important feature of generalized linear models for our purposes is that they focus exclus-

ively on modeling the expectation of the response variable. Unlike in the case of binary responses,

where the distribution of the health outcome is completely determined by the expectation (i.e.

the success probability), when outcomes are more complex the expectation alone generally does

not represent the complete distribution of the health outcomes well. We will analyze both mul-

ticategorical and continuous measures for health outcomes and in these cases the deviations from

the expectation are typically at least as important as determinants of expected health. More im-

portantly, these deviations may also be driven by covariates such that more general features of

the health outcome distribution such as variance and skewness should also be modeled in terms of

regression predictors.

A distributional perspective is needed to allow us to not just consider the conditional expectation

of the health variable of interest, E(Y | x1, . . . , xK), but also to relate the complete underlying

conditional distribution, D(Y | x1, . . . , xK) to the covariates. To achieve this goal, we could for rely

on quantile regression as proposed by Koenker and Bassett (1978) to construct the distribution

from the conditional quantiles. Alternatively, conditional transformation models as proposed by

Hothorn et al. (2014) or the related distributional regression models proposed by Chernozhukov

et al. (2013) could be used. We will rely on structured additive distributional regression (SADR)

models as introduced in Klein et al. (2015), in which a parametric distribution type is assumed for

1More flexible alternatives have been developed in the context of generalized additive models (see Hastie and
Tibshirani, 1990) or structured additive regression models (see Fahrmeir et al., 2004), but we will restrict ourselves
to linear predictors in the following.
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the conditional distribution D(Y | x1, . . . , xK), but all parameters (not only the mean) are then

related to regression predictors based on a suitably chosen response function. More specifically,

we assume that the conditional distribution D(θ1(x1, . . . , xK), θ2(x1, . . . , xK), . . . , θL(x1, . . . , xK))

is characterised by a vector of L parameters θl(x1, . . . , xK), l = 1, . . . , L, and specify

gl(θl) = ηθl (1)

ηθl = βθl0 +
K∑
k=1

βθlk xk. (2)

Consequently, the vector of all regression coefficients β entails parameters not only for one predictor

but for all L predictors required to specify the response distribution.

The main advantage of the parametric distributional approach, especially when Bayesian simula-

tion is used to estimate the models, is that the models provide estimates and uncertainty measures

not only for the regression effects themselves but for the complete conditional distribution. As a

result, we are able to derive multiple health risk measures from these estimated distributions that

are both easy to interpret and of significance for policy decisions, as they shift the focus towards

the sick.

3 A Distributional Health Assessment for Germany

To illustrate the difference between a distributional perspective and conventional estimation meth-

odologies, we consider a very simple application using health data from the German Socio-Economic

Panel (SOEP, 2014).

3.1 The German Socio-Economic Panel

The German Socio-Economic Panel (SOEP) is a longitudinal household survey repeated annually

since 1984 (Wagner et al., 2007). For this study we use only the cross-sectional data from the 2012

survey, which contains information on over 10,000 households (see SOEP, 2014; Rahmann and

Schupp, 2013). The SOEP contains a rich array of sociodemographic information about individuals

in these households, as well as several measures of health status. In this paper we consider both the

standard five-response self-rated health item and the SF-12 physical health scale, as representative

ordinal and (quasi-)continuous health measures, respectively. Thus we show that our proposed

perspective is feasible for both discrete and continuous variables, both of which are frequently

used in the literature. Indeed, as we will show, our proposed perspective which focusses on the
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poor yields similar outcomes irrespective of whether we use self-rated health or the SF-12 physical

health scale. In the following, both health measures are related to a set of sociodemographic

variables that are standard in the literature (see below). Using only those individuals for whom

we have full information on these variables (see below), the 2012 SOEP yields 16,723 observations:

7,820 males and 8,903 females.

3.1.1 Self-rated health

In social epidemiological research, the most commonly used indicator of health status is generalized

self-rated health (SRH), captured in a single item with a Likert response scale: How would you

describe your current health?: Very good, good, satisfactory, poor or bad. Single-item SRH

measures have been found in multiple populations to be reliable and responsive to changes in health

status, and to predict health expenditure and outcomes (Idler and Benyamini, 1997; DeSalvo et al.,

2006). Because well-being is intimately tied to one’s sense of identity, single-item measures can

tap respondents’ ability to identify whether or not they are healthy quickly and holistically, and

drawing on information that may not (yet) be available to their physicians or to researchers as

diagnoses of specific conditions (Benyamini, 2011). DeSalvo et al. (2005, 2009) compare a standard

single-item SRH measure to more comprehensive batteries and find that despite its brevity and

simplicity, the single-item SRH is equally useful for predicting mortality, health care utilization,

and health expenditures.

3.1.2 The SF12

Every two years since 2002, the SOEP has included a battery of health-related questions, the “SF-

12v2TM Health Survey” (SF-12 Wagner et al., 2007). The SF-12 is a 12-item subset of Quality

Metric’s SF-36v2TM, which is used widely in the recent literature (e.g. Marcus, 2013; LaMontagne

et al., 2014; Eibich and Ziebarth, 2014) and provides measures of self-rated health in eight domains.

The SF-12 comprises 12 items that aim to capture ”practical, reliable and valid information about

functional health and well-being from the patient’s point of view” (OPTUM, 2015). Principal

component analysis is used to compute two superordinate scales on physical health (PCS) and

mental health (MCS), designed to have a mean of 50 and a standard deviation of 10. See Andersen

et al. (2007) for details on the computation.

The SF-12 is an alternative to the longer SF-36 and to single-item measures of general self-rated

health (SRH). The SF-12 has been found to be reliable, internally consistent, and to have good

convergent and discriminant validity (Gandek et al., 1998; Franks et al., 2003; Bohannon et al.,

2004; Cunillera et al., 2010). Across a variety of health outcomes and countries and with different
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patient populations, the SF-12 predicts physical and mental health outcomes, health related quality

of life, and medical expenditure (see Ware Jr. et al., 1996; Fleishman et al., 2006). In cross-

sectional and longitudinal tests of validity, the SF-12 generally yielded larger standard errors than

the SF-36 (?). Nevertheless, the SF-12 is a practical and widely accepted tool for measuring

population health and fo predicting health outcomes and expenditure. It has also been found

to map reliably onto the EQ-5D scale, making it useful for generating the preference weightings

needed to construct QALYs and other similar measures (Brazier and Roberts, 2004; Lawrence and

Fleishman, 2004; Gray et al., 2006). The SF-12 has been found in previous studies to be correlated

with income in a general population, even after adjusting for relevant covariates (Burdine et al.,

2000; Schnittker, 2004; König et al., 2010). In our analysis we use only the PCS subscale of the

SF-12. Differential item functioning by education, age and sex has been observed for the MCS

(Fleishman and Lawrence, 2003; Bourion-Bédès et al., 2015), and since the SOEP does not include

the institutionalized population, the sample is likely to be non-representative of the population

with very low MCS scores.

3.1.3 The Explanatory Variables

As our main explanatory variable of interest, we consider disposable income, measured as the

annual net equivalized household income of an individual, using the OECD equivalence scale to

adjust for household size and composition. Additionally, we consider a set of variables to control

for important socio-demographic variables that are correlated with income. For simplicity, we

base our specification on variables typically found in a Mincer-type wage equation, as is done for

example by Lorgelly and Lindley (2008).

For the annual net equivalized household income, we use the log transformation (LOGINC), which

has been shown to be a suitable parametrisation by Jones and Wildman (2005). In addition to

income, we consider the respondent’s age as a quadratic polynomial (AGE and AGESQ), to control

for differences in health induced by the inevitable biologically-induced deterioration of a persons

health over the life course (see Kiuila and Mieszkowsko, 2007).

To adjust for the well known relationship between education (or cultural capital in a broader sense)

and health, we control for respondent’s educational attainment measured using the ISCED97

education categories provided by the SOEP. Here, we use four education levels. The first level

(EDU1) includes all individuals who have only general elementary education or less (i.e. those

whose ISCED is between 0 and 2). The second level (EDU2) entails all persons with completed

secondary education (i.e. ISCED level 3) while the third level (EDU3) entails all with ISCED

levels 4 and 5, i.e. vocational training with Abitur or higher vocational training. The highest level

(EDU4) entails all those with completed higher education (i.e. ISCED level 6).
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Culturally induced health differences and the potential for a healthy migrant effect (see Bjornstrom

and Kuhl, 2014), are controlled for by additionally including a variable measuring whether the

respondent is a German national (GER).

We also account for the marital status of the person by considering four different statuses: The

first status (MAR1) is to be living in a partnership (response item married, living together and

response item registered partnership, living together), the second status (MAR2) is to be separated

(response item married, separated and response item divorced), the third status (MAR3) is to

be single (response item single) and the fourth status (MAR4) is to be widowed (response item

widowed).

Lastly, we control for local inequality and the general prosperity of the area in which respond-

ents live using a hierarchical regional effect for the federal state of residence of the individual

(DISTRICT) as is done by Eibich and Ziebarth (2014).

For further information on the variables see Section A.1 in the appendix.

3.2 Model specification

3.2.1 Choice of the Response Distribution

As pointed out in Section 2, the we need to specify a suitable parametric distribution that is able

to approximate the empirically observed conditional health distributions.

Self-rated health outcomes are measured on an ordinal five point scale, which means that their

distribution can be characterized by four probability parameters. We use a sequence of logit models

to differentiate between the five levels of the self-rated health score rather than to differentiate

only between two amalgamations of the levels as is standard in the literature. We first regress the

lowest response versus all higher health scores to differentiate low values of the score from all higher

scores. In the second step, we consider only individuals that reached at least the second response

level of the discrete health measure and contrast the second level it to all higher levels. Continuing

this sequence for higher levels provides us with a set of sequential logit models that characterize

the multinomial nature of the categorical health outcome while simultaneously acknowledging the

ordinal structure in a simple and interpretable fashion.2

Scores on continuous health measures, such as the SF-12, generally deviate significantly from a

symmetric distribution, such that regression specifications based on the normal distribution often

2Standard cumulative regression models for ordinal responses would be much more limited in their flexibility
since they would restrict covariate effects to be the same for the transition between all different stages of the
response.
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do not provide sufficient flexibility. For the PCS, we find that the conditional health distributions

generally feature a negative skewness and are thus converse to the more common symmetric or

positively skewed distributions for which which most parametric formulations are tailored. To be

able to employ well-established estimation routines for the standard parametric distributions, we

follow Erreygers and van Ourti (2011) and use a linear transformation gPCS of the health score

gPCS(H) = H∗ =
(H0 −H)

Hscale

, (3)

where H and H∗ denote the untransformed and the transformed PCS health score respectively,

while H0 is a constant ensuring that H∗ has a positive support if required. Lastly, Hscale is another

constant rescaling the transformed health score. In the following, we will use H0 = 100 and

Hscale = 10 ensuring that our transformed health score is not only positive but also restricted to

the interval (0, 10) which enhances numerical stability. Subsequently, we estimate the conditional

distributions of the transformed PCS using the well-known two parameter gamma distribution.3

Once this conditional distribution is estimated, one can easily obtain the conditional distribution of

the original PCS measure by simply applying the inverse transform, g−1
PCS. Note that the gamma

distribution is invariant under scaling such that we effectively model a shifted, reversed, scaled

gamma distribution for the health scores.

For both the categorical self-rated health scores and the (quasi) continuous SF-12, we thus specify

parametric conditional health distributions which require, respectively, four and two parameters

to be estimated with respect to the covariates. With the two distribution types chosen, let us now

turn to the specification of the predictors of the distributions’ parameters.

3.2.2 Predictor specification

Let us now turn to the specification of predictors For the sake of simplicity, we will specify one

generic predictor set-up which is applied to all parameters, i.e.

ηl = βθl0 + βθl1 AGE + βθl2 AGESQ+ βθl3 LOGINC + βθl4 GER + βθl5 EDU2 + βθl6 EDU3 + βθl7 EDU4

+ βθl8 MAR2 + βθl9 MAR3 + βθl10MAR4 + βθl11EAST + γθlDISTRICT (5)

3Using a representation of the gamma distribution where µ is the expectation parameter and s the shape
parameter, we can write its density as:

p(y | µ, s) =
( s
µ

)s ys−1

G(s)
exp

(
− s

µ
y
)
, (4)

where y denotes the transformed PCS outcome, which is H∗ in our case and where G denotes the Gamma function.
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where ηl is the predictor for for the lth parameter of the response distribution. The explanatory

variables (defined as outlined in Section 3.1.3) are all included in a linear fashion, supplemented

by two effects representing spatial variation in health outcomes. EAST is an effect-coded binary

variable scored one if the federal state is in the east of Germany, thus capturing the structural

differences between the former German Democratic Republic (GDR) and the Federal German

Republic (FDR). The differences within the former GDR and FDR are captured by random effects,

denoted by γDISTRICT. This regularizing approach is chosen over a plain use of fixed effects for all

federal states in order to enhance estimation stability (see Klein et al., 2015).

In order to relate the predictors to their corresponding parameters, we specify appropriate response

functions. For the categorical responses, these are simply given by logit response functions while

the exponential response function is used to ensure positivity of the two parameters for the gamma

distribution.

3.3 Parameter Estimates

The estimation is done in the software BayesX (Belitz et al., 2015) which employs Markov Chain

Monte Carlo (MCMC) simulation techniques to estimate posterior distributions in a Bayesian

framework. See Klein et al. (2015) for details on the estimation procedure. In the following set-up,

we use non-informative flat priors for the linear effect. For the spatial effect, we use Gaussian

random effects priors centered on zero with inverse gamma distributions (with hyperparameters

a = b = 0.001) used as hyperpriors for their variance. To obtain the posterior distribution, we draw

on one million MCMC realizations which are thinned out at a rate of 800 after a burn-in of 200,000

MCMC realizations. For the posterior distributions we thus obtain 1,000 MCMC realizations for

each parameter.

Before we go on to discuss our main findings concerning the impact of income on the two health

variables considered, we first portray the effects of all covariates on the predictors of the parameters

required to yield the distribution. While some of the parameters are interpretable in their own

right (for example µ for the gamma distribution), we focus on evaluating the resultant distribution

rather than the single parameters’ estimates.

Table 1 displays the estimates for the covariate effects on the predictors of the sequential logits for

the self-rated health outcomes. Here, we display the medians of the posterior distributions with

the 95% (symmetric) credible intervals denoted in the brackets. In order to conserve space, we do

not display the estimates for the the random effect estimates for the individual federal states but

show them separately in Table 5 in the appendix.

While the parameter π̃l can be interpreted individually, we will not analyze these effects in detail.
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males
ηπ̃1 ηπ̃2 ηπ̃3 ηπ̃4

const. 1.499[ 1.415; 1.592] 2.842[ 2.786; 2.902] 2.896[ 2.832; 2.969] -0.899[-1.036;-0.742]
AGE 0.084[ 0.083; 0.085] 0.038[ 0.037; 0.038] 0.025[ 0.025; 0.026] 0.068[ 0.066; 0.070]

AGE2 -0.001[-0.001;-0.001] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000] -0.001[-0.001; 0.000]
LOGINC -0.182[-0.187;-0.178] -0.458[-0.461;-0.455] -0.453[-0.458;-0.450] -0.298[-0.307;-0.290]

GER -0.207[-0.211;-0.203] -0.003[-0.006;-0.001] 0.266[ 0.262; 0.269] -0.124[-0.132;-0.117]
EDU2 0.024[ 0.020; 0.028] 0.069[ 0.067; 0.071] -0.011[-0.014;-0.008] 0.148[ 0.142; 0.154]
EDU3 0.064[ 0.059; 0.070] -0.133[-0.136;-0.129] -0.063[-0.068;-0.058] -0.172[-0.184;-0.161]
EDU4 -0.439[-0.443;-0.434] -0.246[-0.248;-0.242] -0.153[-0.157;-0.148] -0.117[-0.127;-0.107]
MAR2 -0.103[-0.110;-0.097] 0.215[ 0.211; 0.218] -0.030[-0.035;-0.026] 0.153[ 0.145; 0.161]
MAR3 -0.140[-0.146;-0.134] 0.084[ 0.081; 0.088] 0.326[ 0.321; 0.331] 0.056[ 0.046; 0.066]
MAR4 0.158[ 0.149; 0.167] -0.201[-0.205;-0.196] -0.093[-0.097;-0.088] -0.152[-0.161;-0.143]
EAST 0.247[ 0.072; 0.423] -0.002[-0.099; 0.095] -0.031[-0.100; 0.036] 0.037[-0.139; 0.207]

females
ηπ̃1 ηπ̃2 ηπ̃3 ηπ̃4

const. -1.787[-1.863;-1.692] 1.266[ 1.209; 1.330] 4.003[ 3.918; 4.089] -1.052[-1.216;-0.890]
AGE 0.142[ 0.141; 0.143] 0.092[ 0.091; 0.093] 0.021[ 0.020; 0.022] 0.034[ 0.032; 0.035]

AGE2 -0.001[-0.001;-0.001] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000]
LOGINC 0.004[ 0.000; 0.008] -0.461[-0.464;-0.458] -0.593[-0.598;-0.589] -0.160[-0.169;-0.152]

GER -0.106[-0.110;-0.101] -0.267[-0.270;-0.264] 0.009[ 0.004; 0.013] -0.071[-0.080;-0.063]
EDU2 0.082[ 0.079; 0.086] 0.040[ 0.038; 0.043] 0.091[ 0.088; 0.095] 0.312[ 0.305; 0.319]
EDU3 -0.064[-0.070;-0.059] 0.027[ 0.024; 0.031] -0.071[-0.076;-0.066] -0.343[-0.354;-0.332]
EDU4 -0.424[-0.428;-0.419] -0.334[-0.337;-0.331] -0.007[-0.012;-0.003] -0.159[-0.169;-0.149]
MAR2 -0.084[-0.093;-0.074] 0.167[ 0.163; 0.172] 0.006[ 0.001; 0.011] 0.248[ 0.238; 0.258]
MAR3 -0.394[-0.403;-0.386] 0.209[ 0.205; 0.213] 0.051[ 0.046; 0.057] -0.071[-0.082;-0.060]
MAR4 0.442[ 0.424; 0.462] -0.230[-0.236;-0.223] 0.016[ 0.009; 0.024] -0.057[-0.071;-0.044]
EAST 0.092[-0.077; 0.264] -0.024[-0.122; 0.072] -0.009[-0.120; 0.100] -0.089[-0.333; 0.148]

Table 1: Linear effects on ηπ̃1 ,ηπ̃2 ,ηπ̃3 and ηπ̃4 for PCS.

Here, we restrict ourselves to noting that the effects of various variables differ significantly across

the range of parameters estimated, both for males and females. Regarding LOGINC in particular,

the effects are significantly different at the 5% level for different parameters.

Table 2 shows the estimates for the predictors ηµ and ηs analogously to the table above. Again it

may be noted that the effects are significantly different for males and females and that both for µ

and for s, various covariates are significantly different from zero. For µ, which yields the conditional

expectation, it should be noted that due to the linear transformation the effects are reversed, so

that for example LOGINC has a negative impact on the predictor but thus a positive impact on

the expected health, as one would expect. Concerning s, note that although a direct interpretation

of the parameter is not feasible, one can observe that LOGINC as well as other variables have a

significant impact which indicates complex changes across the covariate space that go beyond the

changes in the conditional mean on which standard regression techniques focus.
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males females
ηµ ηs ηµ ηs

const. 1.637[ 1.562; 1.713] 3.382[ 2.709; 4.029] 1.777[ 1.700; 1.852] 3.186[ 2.554; 3.760]
AGE 0.007[ 0.006; 0.008] -0.045[-0.057;-0.034] 0.005[ 0.004; 0.007] -0.031[-0.043;-0.021]

AGE2 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000] 0.000[ 0.000; 0.000]
LOGINC -0.034[-0.041;-0.027] 0.152[ 0.091; 0.211] -0.041[-0.048;-0.034] 0.123[ 0.066; 0.183]

GER -0.010[-0.016;-0.004] 0.045[-0.017; 0.103] 0.007[ 0.001; 0.012] 0.042[-0.011; 0.099]
EDU2 0.014[ 0.009; 0.019] -0.077[-0.125;-0.032] 0.008[ 0.002; 0.013] -0.079[-0.123;-0.036]
EDU3 -0.006[-0.013; 0.001] 0.084[ 0.016; 0.147] -0.013[-0.021;-0.005] 0.038[-0.029; 0.101]
EDU4 -0.038[-0.044;-0.031] 0.062[ 0.000; 0.126] -0.026[-0.033;-0.019] 0.017[-0.045; 0.080]
MAR2 0.008[-0.002; 0.019] 0.023[-0.063; 0.105] 0.002[-0.006; 0.011] 0.000[-0.071; 0.063]
MAR3 0.006[-0.004; 0.015] -0.028[-0.107; 0.056] -0.002[-0.011; 0.006] -0.059[-0.128; 0.014]
MAR4 -0.019[-0.036;-0.003] -0.115[-0.246; 0.007] -0.003[-0.013; 0.007] -0.001[-0.081; 0.075]
EAST 0.010[-0.001; 0.021] 0.008[-0.074; 0.094] 0.009[-0.002; 0.019] 0.004[-0.044; 0.049]

Table 2: Linear effects on ηµ and ηs for PCS.

3.4 Considering the Distributional Changes

Since we employ non-linear link functions for our predictors, the impact of the variables varies

across the covariate space. This is well known from the literature on generalized linear models

(Nelder and Wedderburn, 1972). We thus employ effect displays as proposed by Fox (1987).

This means that we consider the effect of varying income while the other covariates are fixed at

a given value. Here we consider the effects for both males and females who can be considered

the “average Joe/average Jane”, i.e. who are 52 years of age, are married, live in North-Rhine

Westphalia (the most populous state in Germany), have standard secondary education and have

German nationality.4 See Section A.4 in the appendix for other covariate combinations.

To visualize how the distribution of self-rated health changes with income, we display in Figure

2 the change in the probability of falling in one of the five health categories as one moves from

the bottom to the top of the income distribution, as derived from the median results displayed in

Table 1. We consider the income range from 5,000e to 100,000e. The former constitutes the lower

bound as only 1% of our estimates fall below this sample due to social security levels in Germany,

while the latter is chosen as the upper bound as it roughly constitutes the threshold to the most

well-off 1% of the population. In this range we thus cover the whole population bar the bottom

and the top percent of the income distribution.

This visualization makes clear that the nature of the change in the health distribution across the

income distribution is complex, and that dichotomizing the outcome, e.g. by subsuming the levels

1-2 (not healthy) and 3-5 (healthy), is likely to submerge important variation within the aggregated

4See Section A.1 in the appendix for the covariate distribution underlying this choice. For the continuous variable
age we consider the arithmetic mean in our sample, while for the other categorical variables we consider the mode.
Note also that it would be possible to consider average marginal effects rather than the marginal effects at the
representative values. For the purposes of our paper, the marginal effects at the representative values were deemed
more intuitive and are thus considered in the the following.
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Figure 2: Income effect for self-rated health for men (left) and women (right). From red (poor
health) to dark green (very good health).

categories.

In Figure 3, we zoom in on the difference in the conditional distributions of health status for men

and women with a net equivalent income of 15,000e (roughly corresponds to the 25th percentile,

i.e. the median for the poorer half of the population) versus 30,000e(roughly corresponds to the

75th percentile, i.e. the median for the richer half of the population), with the other covariates

fixed at the values to yield “average Joe” and “average Jane”. The largest absolute differences

occur near the center of the health distribution, i.e. for poor, fair, and good health. Despite the

lower absolute levels, there are also noticeable changes at the bottom end of the health scale when

moving from the lower to higher income level. Meanwhile, there is little change at the higher end

of the distribution. This indicates that (more) money cannot buy (more) good health; but income

does seem to contribute significantly to safeguarding against bad health outcomes – especially very

bad ones, as we will see.
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Figure 3: Conditional Health Distributions (SRH) for 15,000e (top) and 30,000e (bottom) for
men (left) and women (right). With added focus on RM1.

Let us contemplate the risk of falling in one of the lowest response categories for health across the

two distributions (for income of 15,000eversus 30,000e). We can define the following three health

measures, which dichotomise the distribution in three different ways:

RM1 = P (HM ≤ bad health) with HM ∼ DM
x ,

RM2 = P (HM ≤ poor health) with HM ∼ DM
x ,

RM3 = P (HM ≤ ok health) with HM ∼ DM
x ,

where the health measures RM1,RM2,RM3 simply denote the risk of falling in one of the lowest

response categories as given by the multinomial health distribution DM
x which is dependent on the

covariate combination under consideration, x.

RM3 subsumes all health statuses below good into one category, thus representing the risk of

“not feeling good about one’s health”. The probability of falling into one of these three lowest
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categories changes from 0.67 to 0.61 among men when moving from the conditional distribution

for 15,000e to that for 30,000e – a change of 10%. For women, the probability falls from 0.58

to 0.50, a change of 13%. Although these differences are statistically significant, the magnitude is

not substantively grave.

Secondly, we consider RM2, which by construction directs the attention towards those who are

in poor or bad health (the bottom two health categories). This measure can therefore be seen

as the risk of not only “not feeling good” but as “not even feeling ok”. The change is of similar

magnitude in absolute numbers, but much greater in relative terms. When income is doubled for

men, the risk of low health status decreases by 34%, from 0.20 to 0.14, for men, while for women it

falls 30%, from 0.22 to 0.15. The income-related change in risk of low health status is thus roughly

2-3 times as great when we aggregate the bottom two health categories as when we consider the

bottom three categories together.

The third measure, RM1, is the most extreme measure which focusses on those who self-report a

truly bad health. Thus it expresses the risk of positively “feeling bad about one’s health”. For this

measure, the relative numbers are even more striking, with the probability of low health status

decreasing by 39% and 40% for men and women respectively (from .04 to .03) as income doubles.

The comparison of the three measures thus shows that the impact of household income on health

seems to be much more drastic at the lower end of the self-rated health variable. Not surprisingly,

this is also true when we consider the quasi-continuous PCS health score.

To characterize the relationship between income and the risk of low health using the SF12, we

display six distributional measures in Figure 4. The blue line denotes males and the red line

females, with the dashed lines denoting the 95% pointwise credible intervals.

The left-hand panels in 4 show the expectation (µ), the standard deviation(σ) and the skewness

(γ1) of the conditional distribution of the SF-12 across the full range of income. Note that we

display these measures for the untransformed, original PCS variable, so that the effects are directly

interpretable. The right-hand panels depict three measures of the risk of low health analogous to

the ones used above. We portray the conditional probability that a person will fall below threshold

values on the PCS scale representing the lower half (i.e. in the lowest 50%, denoted T0.50), the

lowest quintile (i.e. the lowest 20%, denoted T0.20) and the lowest vingtile (i.e. the lowest 5%,

denoted T0.05) of the aggregate health distribution, depending on their income.5 These measures

can thus be seen as analogous variants of the risk measures RM1, RM2 and RM3 from above,

indicating the risk of bad health. The measure RC0.50 thus yields the level of risk of belonging to

the lower half of the health distribution, which can be seen as roughly equivalent to “not feeling

good about one’s health”. Accordingly, RC0.20 yields the level of risk of belonging to the “sickest”

5These values are obviously not the only viable options but chosen on the grounds as to provide roughly analogous
risk measures to the risk measures based on the self-rated health responses. More research is needed concerning
the use of adequate scalar measures to assess this and other aspects of conditional health distributions.
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Figure 4: Left: Effect of income on mean, standard deviation and skewness of PCS. Right: Effect
of income on risk of falling below lowest quintile, decile and vingtile of PCS.

20% of the population, which can be seen as roughly equivalent to people associating the health

status as slightly sick, that is no longer “o.k.”. Lastly, RC0.05 denotes the risk of falling into the

lowest 5% of the health distribution, which would be associated with severe sickness and thus can

roughly be seen as the equivalent to a person positively “feeling bad about one’s health”. More

formally, the second set of risk measures can be defined as

RC0.05 = P (HC ≤ T0.05) with HC ∼ DC
x ,

RC0.20 = P (HC ≤ T0.20) with HC ∼ DC
x ,

RC0.50 = P (HC ≤ T0.50) with HC ∼ DC
x ,

where the health variable HC is now considered as continuous. The risk is thus given by the condi-

tional distribution, DC
x , which the variable is thought to follow for an individual with characteristics

x, and the threshold value Tα, which we take to be a quintile from the aggregate distribution of
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Figure 5: Conditional health distributions (PCS) for average Joe (left) and average Jane (right)
for 15,000e (top) and 30,000e (bottom). With added focus on RC0.05.

The estimated full conditional distributions for the SF-12 for ”average Joes” and ”average Janes”

are displayed in Figure 5. Again we focus on the contrast between 15,000e, representing the median

income level of the poorer half of the sample population, and 30,000e, representing the median

income level of the richer half of the sample population. While the displayed distributions appear

rather similar at the first glance, a closer look at the different distributions’ attributes reveals some

substantial differences. For an annual net equivalent income of 15,000e the average physical health

value is 45.3 and 45.1 for men and women respectively. In contrast, for an income of 30,000e ,

we obtain 46.7 and 46.6. Thus the average male described above with a net equivalent income of

30,000e roughly has a 3% higher expected physical health score as an otherwise equivalent male

with a net equivalent income of 15,000e. For a female the difference is also roughly 3%. This

effect is well known and discussed extensively in the literature.

Next to the mean, the standard deviation also decreases from 9.5 to 8.8 and 9.3 to 8.7 for men
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and women respectively. This 7% decrease means that men and women with higher income face a

lower risk to experience very low health outcomes for a given mean. Additionally, the distribution

becomes slightly more right skewed, with the skewness increasing from -0.4 to -0.3 for both men and

women. This constitutes a 4% and 5% increase respectively. This change in skewness also increases

the probability of an individual finding himself on the lower outskirts of the health distribution.

These results thus indicate that the nature of the association of income with health beyond the

mean, with the risk of very low health scores - indicating severe sickness - driven not only by a

deteriorating mean but also by a higher standard deviation and a less left-skewed distribution.

As indicated by the higher order moments, the increase in the health risks are higher when directing

the focus further towards the lower end of the health spectrum. Considering RC0.50 for males, we

still find a moderate change in the risk from 0.70 to 0.65, constituting a decrease of 6%. For

women, we see a decrease from 0.70 to 0.65, i.e. by 7%. This change can be seen as of a similar

magnitude as RM3 and also similar to the relative change observed for the expected outcome (see

above). The relative difference increases to 20% (0.27 to 0.22) and 23% (0.27 to 0.21) for men

and women respectively, when considering RC0.20. The greatest relative effect is seen for RC0.05,

which sees the risk of falling into the lowest health quintile of the population at 0.06 for “average

Joe” and 0.05 for “average Jane” at 15,000e, whereas having an income twice as high reduces that

risk down to 0.03 for both, a decrease of 39% and 42% respectively. In other words, the risk of

extremely bad health can be roughly halved by doubling the net equivalent income from 15,000eto

30,000e. Obviously, the magnitude of this effects is structurally different from the observed 3%

increase observed for expected health.

3.5 Reconsidering the Angle of the Health Assessment Perspective

Considering the whole conditional health distribution and changes thereof over the covariate space

thus yields potentially starkly different magnitudes for the assessment of the association between

income and health. The differences are summarised in Table 5. The relative difference is the

absolute difference divided by the measure for 15,000e.

The table shows that the association becomes significantly greater if we focus on the lower health

spectrum, with the mean portraying a measure of around 3% while a heavy focus on the lower

spectrum by RM1 and RC0.05 yield differences in the order of 39%-42%, i.e. more than tenfold in

terms of magnitude.

The conventional perspective generates significant results that allow us to infer the existence of a

relationship between income and health. How, then, does our more complicated statistical artillery

help us, beyond the results more easily generated using well-established mean-based analyses?
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males
15,000e 30,000e Difference

RM3 0.67[ 0.67; 0.68] 0.61[ 0.60; 0.61] 10.11%[10.01%;10.20%]
RM2 0.20[ 0.20; 0.21] 0.14[ 0.13; 0.14] 33.64%[33.41%;33.87%]
RM1 0.04[ 0.04; 0.05] 0.03[ 0.03; 0.03] 39.21%[38.77%;39.71%]

µ 45.33[43.84;46.69] 46.65[45.11;47.97] 2.90%[ 2.27%; 3.40%]
RC0.50 0.68[ 0.63; 0.74] 0.65[ 0.59; 0.71] 5.53%[ 3.75%; 7.83%]
RC0.20 0.27[ 0.22; 0.33] 0.22[ 0.17; 0.28] 19.92%[15.14%;25.91%]
RC0.05 0.06[ 0.03; 0.08] 0.03[ 0.02; 0.06] 38.98%[30.05%;48.95%]

females
15,000e 30,000e Difference

RM3 0.58[ 0.58; 0.58] 0.50[ 0.50; 0.50] 13.27%[13.15%;13.39%]
RM2 0.22[ 0.21; 0.22] 0.15[ 0.15; 0.15] 29.54%[29.32%;29.80%]
RM1 0.04[ 0.04; 0.05] 0.03[ 0.03; 0.03] 40.38%[39.96%;40.89%]

µ 45.09[43.69;46.36] 46.63[45.19;47.87] 3.43%[ 2.82%: 4.01%]
RC0.50 0.70[ 0.65; 0.75] 0.65[ 0.60; 0.71] 7.24%[ 5.14%; 9.48%]
RC0.20 0.27[ 0.23; 0.33] 0.21[ 0.17; 0.27] 22.83%[17.88%;28.13%]
RC0.05 0.05[ 0.04; 0.08] 0.03[ 0.02; 0.05] 42.36%[33.98%;50.58%]

Table 3: Seven measures on the health-income association.

The answer to this important question lies in the fact that while average population health is

an important construct for many purposes, we cannot properly calculate the utility of alternative

distributions of health using only this summary statistic. This is because the utility function for

health is generally thought to be concave. If the utility gain from increases in health status at

the low end of the health spectrum is greater than at the high end, changes to the distribution of

income that do not affect the mean health of the population but lessen the number of people in

very poor health would nevertheless be preferable at a societal level. At a policy level, too, there

are good reasons to care at least as much about the risk of people being in poor health as about

average health achievement in the population, since the primary purpose of public or private health

insurance is to cover the cost of caring for those who are ill, rather than focussing on improving the

health of the already healthy even further. When we think about the relationship between health

and income, then, we want to be able to pay attention not only to the average effect of income

on health, but also to the where in the health distribution people of various incomes are more

likely to fall. That is what SADR allows us to do. The results we have shown here demonstrate

that given the significantly greater likelihood of being in bad health at lower income levels, that

while the income-health relation (focussing on average health) may not be of great magnitude, the

income-illness relation (concentrating on the ill) certainly is of considerable magnitude.
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4 Conclusion

In this paper, we have shown that generalized linear models, whether they deal with (coerced)

binary responses or continuous responses, focus on the conditional expectation. Yet, we argue

that where the distribution of health outcome is more complex it is often insufficient to solely

look at the expectation. For this reason we propose a distributional perspective that allows for a

focus on risks regarding the lower end of the full conditional health distribution. Using structured

additive distributional regression we show that it is possible to estimate such full conditional health

distributions for both multicategorical and continuous measures of health outcomes. Looking at

health data from the German Socio-Economic Panel, we find that the standard expectation-based

perspective may neglect potentially important aspects of the relationship between health and

income. In particular, we show that the risk of being in very poor health is much more strongly

related to income than the average health status. We find that the risk for the “average Joe”

and “average Jane” of belonging to the severely sick population increases between 39% and 42%

when the net equivalent household income is changed from the median income of the poorer

half of the population (15,000e) to the median income of the richer half (30,000e) in Germany.

This exceeds the income-related change in average health status that is estimated using standard

estimation techniques by more than tenfold. This suggests that mean-based perspectives may

underestimate the effect of changes in the income distribution on well-being (given a concave

health-utility relationship) and/or on health care expenditures (given that health care is more cost

intensive at the lower end of the health distribution).

Based on the findings of this paper, we propose that future estimates of the health-income rela-

tionship take into account not only the mean reported health (or the probability of a dichotomized

health measure in an income group), but also employ risk measures focusing on very poor health

outcomes like the the ones used in this paper. Not only would this put more emphasis on the

the lower end of the spectrum, where we argue it is merited. In addition to addressing problems

associated with non-linearities with respect to well-being and/or health care and mean regression

(see above), a distributional approach and risk-based measures may also unify the interpretation

of the otherwise starkly different results that can arise depending on whether discrete data (and

odds-ratios) or continuous data (and arithmetic means) are used for the assessment. We find that

using SADR, the estimated magnitude of the income-health relationship is very similar for the

single-item self-rated health measure and the SF-12. The distributional approach thus may con-

tribute to the convergence of findings from the epidemiological literature (which mainly employs

discrete measures like self-rated health and odds ratios) and the health economics literature (which

tends to employ continuous measures like the SF-12 and arithmetic means).

Several extensions to the present approach might be considered. One particularly interesting modi-
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fication to model the full joint distribution of health and income with respect to other covariates

such as age and education. This would be feasible by applying bivariate structured additive dis-

tributional regression, which uses copula structures to model the interrelations of the dependent

variables (see Klein et al., forthcoming) and would allow for the construction of conditional con-

centration curves across the covariate space. While technically challenging, this approach would

not only incorporate the workhorse method in the health economics literature into the proposed

framework, but would also allow researchers to consider distributional aspects beyond the mean

without the need to define threshold values. Such advancements are needed because, to para-

phrase Thomas Piketty (2014), failing to deal with the distributional nature of the health-income

relationship rarely serves the interests of the least well-off.
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A Appendix

A.1 Data

As primary source for our data, we use the SOEP database (Wagner et al., 2007). We use all

available samples in 2012, i.e. samples A-L. Concerning the wave, we only consider the wave from

2012, i.e. wave BC, for all questions on current status. For questions asked with respect to the

whole last year, we consider questions from 2013, referring back to 2012, i.e. questions from wave

BD. Only taking those values for which we have the full set of variables, as described below, this

yields 16,732 observations (7,820 males and 8,903 females).

As for the dependent variable we simply take the single item self-rate health response (bcp91) on

the one hand. On the other hand, we consider the physical condition score from the SF-12 (PCS)

which is directly available via the HEALTH file in the SOEP.

As a variable for income we use the household’s net income as the base (i1110213 from the

BCPEQUIV file) and divide it by the equivalised household size, based on the OECD equivalence

scale (using the variables bchhgr and bckzahl from the BCKIND file). Thereby the first adult is

given a weight of 1, whereas to every additional person aged 14 and over is given the weight of 0.5.

Each child aged 13 and under is given a weight of 0.3. Each individual living in the household is

then given the household’s net equivalent income.

For the explanatory variable age, we simply use the year of birth (gebjahr) and subtract it from

2012, while the sex is determined by the variable bcsex.

The education level is taken on grounds of the variable ISCED12 (from the person-related status

and generated variables PGEN). All observations equal or lower than 5 (higher vocational training)

are put in the category no higher education with only those persons with a value of 6 (higher

education) considered for the category higher education.

The nationality is obtained directly from the SOEP based on the person’s contemporary status

(BCP139).

The marrital status is taken from the 6 item response to the family status available in the SOEP

(BCP129), which is reduced to four categories as described in the text.

For the spatial effect we use the variable bcbula with the variable east set to unity for all federal

states formerly belonging to the German Democratic Republic, including the whole of Berlin. West

Berlin (as defined prior to 1990) is not accounted for in our sample and treated like a state from

the former East.
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A.2 Model Selection

For model selection, we use the DIC which has been shown to work well for distributional regression

models (Klein et al., 2015). As the primary focus of this paper is on the existence of covariate

effects beyond the mean, we focus solely on the comparison of three regression models and their

distributional assumptions.6 A comprehensive model selection analysis is beyond the scope of this

paper and thus we confine ourselves to a comparison of the following three models:

M1 As benchmark model, we consider a homoskedastic, gaussian model. In this model the focus

is solely directed towards the expectation (µ), with the other parameter (σ2) considered a

nuisance parameter and set as a constant. This is the standard assumption used for most

generalised linear models employed in the literature on the health-income relation.

M2 As a second model, we consider a heteroskedastic, gaussian model. In this model the variance

is now no longer considered a constant as we explicitly allow the standard deviation of the

normal distribution to vary across the covariate space. While this already considerably

enhances flexibility, the normal distribution is by definition symmetric such that it does not

allow for the modelling of changing skewness over the covariate space.

M3 As a third model, we consider a two parameter gamma distribution with both parameters

allowed to vary across the covariate space. In contrast to the normal distribution, the gamma

distribution is not confined to a symmetric form and varies its skewness in relation to its

scale parameter.

Modelassumption male female
M1 N (µ varying, σ2 constant) 19871.1 23154.2
M2 N (µ varying, σ2 varying) 19484.2 22881.6
M3 Γ (µ varying, σ varying) 18977.6 22492.3

Table 4: DIC results on distributional assumptions for PCS.

The resultant DICs for these three models are displayed in Table 4. The DICs displayed in Table

4 indicate that out of the three distributions the gamma distribution (M3) is the best suited

distribution, as it has the lowest DIC in all four cases. However, it should be re-emphasised, that

the choice of the models here can only be seen as preliminary and further research must be done

on the choice of adequate parametric conditional health distributions. Thus, we will consider only

the gamma distribution for our assessment of the relation between income and physical health.

6We thus do not consider the issues of variable selection and simply rely on the variable selection proposed by
Lorgelly and Lindley (2008) to be adequate for the construction of a generic predictor applied for all parameters.
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A.3 Random Effects

Table 5 displays the random effects for the individual federal states for the multinomial. The

federal states are are abbreviated according to the abbreviations for regions at the EU level7.

As one can observe there are significant changes associated with the different states, which is in

line with the literature on regional health differences (Eibich and Ziebarth, 2014).

males
ηπ̃1 ηπ̃2 ηπ̃3 ηπ̃4

SH -0.229[-0.413;-0.036] 0.113[ 0.008; 0.225] 0.001[-0.120; 0.135] -0.057[-0.323; 0.228]
HH -0.212[-0.390;-0.020] -0.247[-0.352;-0.135] -0.058[-0.177; 0.074] 0.082[-0.178; 0.359]
NI -0.111[-0.296; 0.080] -0.106[-0.207; 0.002] 0.347[ 0.230; 0.480] -0.437[-0.689;-0.151]

HB 0.846[ 0.664; 1.036] 0.122[ 0.018; 0.233] -0.498[-0.618;-0.363] 0.558[ 0.303; 0.850]
NW 0.091[-0.092; 0.283] -0.005[-0.105; 0.103] 0.097[-0.019; 0.226] -0.180[-0.430; 0.100]
HE -0.170[-0.353; 0.021] -0.043[-0.145; 0.065] 0.076[-0.041; 0.206] -0.043[-0.294; 0.233]
RP 0.180[-0.001; 0.374] 0.076[-0.024; 0.185] -0.059[-0.181; 0.073] -0.226[-0.486; 0.056]

BW -0.225[-0.407;-0.033] 0.003[-0.098; 0.112] 0.014[-0.102; 0.144] -0.546[-0.798;-0.271]
BY -0.169[-0.350; 0.021] -0.124[-0.225;-0.015] 0.179[ 0.059; 0.309] 0.351[ 0.101; 0.631]
SL 0.558[ 0.381; 0.751] 0.478[ 0.380; 0.590] 0.143[ 0.026; 0.269] 1.114[ 0.858; 1.390]
BE 0.085[-0.107; 0.272] 0.135[ 0.017; 0.245] 0.063[-0.078; 0.199] 0.082[-0.211; 0.364]
BB 0.185[-0.016; 0.375] -0.131[-0.250;-0.020] 0.245[ 0.101; 0.381] 0.085[-0.211; 0.373]
MV 0.223[ 0.019; 0.416] 0.103[-0.016; 0.216] -0.206[-0.346;-0.068] 0.060[-0.231; 0.348]
SN 0.209[ 0.010; 0.398] 0.038[-0.079; 0.152] 0.051[-0.092; 0.186] -0.402[-0.691;-0.119]
ST -0.210[-0.413;-0.013] 0.237[ 0.118; 0.349] 0.173[ 0.032; 0.308] 0.541[ 0.249; 0.825]
TH 0.124[-0.079; 0.321] -0.076[-0.194; 0.037] -0.048[-0.186; 0.090] 0.329[ 0.042; 0.618]

females
ηπ̃1 ηπ̃2 ηπ̃3 ηπ̃4

SH -0.285[-0.473;-0.091] -0.168[-0.271;-0.056] 0.001[-0.078; 0.082] 0.078[-0.113; 0.276]
HH -0.005[-0.190; 0.195] -0.309[-0.413;-0.197] -0.041[-0.118; 0.043] -0.014[-0.202; 0.190]
NI 0.216[ 0.026; 0.412] 0.170[ 0.069; 0.277] -0.086[-0.163;-0.005] 0.215[ 0.031; 0.416]

HB 0.275[ 0.087; 0.471] 0.051[-0.051; 0.165] 0.182[ 0.104; 0.267] 0.306[ 0.114; 0.518]
NW 0.175[-0.013; 0.375] 0.171[ 0.070; 0.277] -0.050[-0.128; 0.033] -0.036[-0.225; 0.162]
HE 0.126[-0.061; 0.324] 0.095[-0.007; 0.202] -0.044[-0.120; 0.038] -0.246[-0.432;-0.050]
RP -0.040[-0.226; 0.160] 0.094[-0.007; 0.204] 0.169[ 0.093; 0.253] -0.376[-0.567;-0.168]

BW 0.317[ 0.131; 0.514] -0.095[-0.195; 0.015] -0.075[-0.152; 0.006] -0.046[-0.234; 0.157]
BY -0.130[-0.316; 0.066] 0.072[-0.029; 0.181] 0.000[-0.079; 0.082] 0.135[-0.055; 0.335]
SL -0.125[-0.306; 0.074] 0.154[ 0.055; 0.265] 0.066[-0.013; 0.146] 0.358[ 0.169; 0.554]
BE -0.320[-0.517;-0.126] 0.313[ 0.195; 0.424] -0.093[-0.189;-0.003] 0.755[ 0.528; 0.968]
BB 0.230[ 0.024; 0.421] -0.177[-0.295;-0.068] 0.037[-0.066; 0.128] 0.151[-0.081; 0.365]
MV -0.182[-0.389; 0.017] 0.230[ 0.114; 0.341] 0.267[ 0.164; 0.359] -0.520[-0.751;-0.300]
SN -0.131[-0.332; 0.068] 0.128[ 0.011; 0.238] 0.118[ 0.017; 0.209] -0.005[-0.232; 0.210]
ST 0.997[ 0.792; 1.200] -0.130[-0.247;-0.019] -0.004[-0.104; 0.086] -0.141[-0.372; 0.070]
TH -0.024[-0.230; 0.174] -0.092[-0.209; 0.018] -0.178[-0.278;-0.087] 0.188[-0.038; 0.400]

Table 5: Random effects for federal states on ηπ̃1 ,ηπ̃2 ,ηπ̃3 and ηπ̃4 for SRH.

Table 6 displays the random effects for the parameters of the gamma distribution.

As for the multinomial case, we can observe significant health variations for both parameters

7See http://www.bmelv-statistik.de/de/daten-tabellen-suche/abkuerzungen-der-bundeslaender/.
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for some federal states, although in case of σ significance is restricted to Hesse and Baden-

Wuerttemberg for males alone.

males females
ηµ ησ ηµ ησ

SH 0.011[-0.010; 0.031] -0.009[-0.161; 0.160] 0.008[-0.012; 0.028] -0.008[-0.092; 0.070]
HH -0.025[-0.049;-0.003] -0.045[-0.221; 0.116] -0.017[-0.039; 0.003] 0.019[-0.055; 0.128]
NI 0.000[-0.019; 0.017] -0.046[-0.162; 0.080] 0.005[-0.013; 0.021] -0.025[-0.110; 0.036]

HB -0.003[-0.025; 0.022] -0.119[-0.335; 0.046] -0.003[-0.026; 0.020] -0.009[-0.102; 0.071]
NW 0.007[-0.011; 0.020] -0.022[-0.123; 0.095] 0.012[-0.004; 0.026] -0.007[-0.070; 0.056]
HE 0.000[-0.019; 0.016] 0.135[ 0.013; 0.294] 0.000[-0.017; 0.016] 0.029[-0.033; 0.124]
RP 0.009[-0.010; 0.028] 0.024[-0.111; 0.164] 0.003[-0.015; 0.021] -0.017[-0.099; 0.046]

BW -0.010[-0.026; 0.004] 0.219[ 0.104; 0.352] -0.007[-0.023; 0.006] 0.025[-0.036; 0.109]
BY -0.006[-0.023; 0.009] 0.017[-0.095; 0.134] -0.002[-0.017; 0.013] 0.013[-0.047; 0.081]
SL 0.019[-0.006; 0.047] -0.147[-0.369; 0.027] 0.002[-0.021; 0.026] -0.017[-0.125; 0.062]
BE -0.002[-0.024; 0.020] -0.127[-0.297; 0.043] 0.001[-0.021; 0.020] -0.001[-0.078; 0.082]
BB 0.002[-0.019; 0.023] 0.095[-0.057; 0.263] 0.002[-0.017; 0.022] 0.016[-0.061; 0.115]
MV 0.003[-0.021; 0.025] 0.068[-0.095; 0.272] 0.011[-0.012; 0.033] -0.001[-0.082; 0.082]
SN -0.001[-0.022; 0.019] -0.058[-0.203; 0.074] -0.001[-0.022; 0.019] -0.006[-0.088; 0.064]
ST 0.007[-0.014; 0.031] -0.013[-0.182; 0.149] 0.003[-0.018; 0.026] -0.017[-0.121; 0.061]
TH -0.008[-0.030; 0.015] 0.034[-0.134; 0.210] -0.015[-0.036; 0.007] 0.010[-0.068; 0.107]

Table 6: Random effects for federal states on ηµ and ησ for PCS.

A.4 Other Covariate Combinations

In this section we show the seven health measures displayed in Section 3.5 for “average Joe” and

“average Jane” for a different set of characteristics. For the sake of brevity and simplicity, we

constrain the sets considered to 7 different sets, always varying only one covariate while keeping

all the other covariates at the values used for “average Joe” and “average Jane”.

Tables 7 and 8 display the seven health measures for two other ages, namely the first and the third

quartile of the ages in the sample: 40 years and 66 years, respectively.

As can be seen from the tables, the general structure persists, whereby the differences between the

health measures for the two different income levels becomes more pronounced as the focus is shifted

towards the lower end of the health spectrum. Moreover, one may note that the health situation

is generally better for younger individuals than for older individuals, which is to be expected given

the physical deterioration of the body as part of the ageing process.

Table 9 displays the seven health measures for non-German nationals. Again the basic pattern

remains such that income related differences are more more pronounced (in relative terms) in the

lower end of the health spectrum. One other thing which can be observed from the table is the

lower health risks and slightly better average health enjoyed by non-German nationals, which is in

line with the healthy-migrant effect found in the literature (see Bjornstrom and Kuhl, 2014).
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Table 10 displays the seven health measures for individuals in the fourth education level, i.e. those

individuals with higher education. Again, the basic pattern remains in the sense that income

related differences are significantly higher when focussing on the lower end of the health spectrum.

As one would expect, higher education levels additionally mean a higher average health outcome

and lower risk measures for both men and women, c.p.

Table 11 displays the seven health measures for individuals in the third marrital status, i.e. those

individuals who are sinlge, which is the second most frequent observed marrital status in our

sample. As above, the basic pattern is such that income related differences are significantly higher

when looking at the lower end of the health spectrum. In terms of the absolute levels, we observe

a slightly lower average health and slightly elevated risks, which is reasonable given the positive

health effects that stable relationships are thought to have.

Tables 12 and 13 display the seven health measures for two other federal states in Germany, namely

BadenWurttemberg and Mecklenburg-Western Pomerania. BadenWurttemberg is a very wealth

state in the South-West of Germany while Mecklenburg-Western Pomerania is an economically

rather depressed state in the North-East of Germany. As can be seen from the tables, the general

structure persists again, i.e. the differences between the health measures for the two different

income levels becomes more pronounced as the focus is shifted towards the lower end of the health

spectrum. As one would expect the wealthier federal state BadenWurttemberg also features better

health measures than the poorer Mecklenburg-Western Pomerania, which is to be expected given

the positive effects of gdp on state finances and thus available funds for the health infrastructure

in these regions.

males
15,000e 30,000e Difference

RM3 0.53[ 0.53; 0.53] 0.46[ 0.45; 0.46] 13.94%[13.81%;14.07%]
RM2 0.14[ 0.14; 0.14] 0.09[ 0.09; 0.09] 37.39%[37.14%;37.63%]
RM1 0.03[ 0.03; 0.03] 0.02[ 0.01; 0.02] 42.79%[42.34%;43.30%]

µ 48.95[47.54;50.15] 50.18[48.72;51.36] 2.51%[ 2.94%; 1.96%]
RC0.50 0.55[ 0.49; 0.61] 0.49[ 0.43; 0.56] 10.30%[ 7.13%;13.42%]
RC0.20 0.14[ 0.10; 0.19] 0.10[ 0.07; 0.14] 30.14%[22.74%;37.99%]
RC0.05 0.02[ 0.01; 0.03] 0.01[ 0.00; 0.02] 52.95%[40.94%;63.24%]

females
15,000e 30,000e Difference

RM3 0.46[ 0.46; 0.46] 0.38[ 0.38; 0.39] 16.65%[16.51%;16.79%]
RM2 0.15[ 0.15; 0.15] 0.10[ 0.10; 0.10] 33.38%[33.13%;33.64%]
RM1 0.02[ 0.02; 0.03] 0.01[ 0.01; 0.01] 44.05%[43.60%;44.56%]

µ 48.50[47.12;49.65] 49.95[48.57;51.09] 2.99%[ 3.50%; 2.45%]
RC0.50 0.57[ 0.51; 0.63] 0.50[ 0.44; 0.57] 11.61%[ 8.65%;14.64%]
RC0.20 0.15[ 0.12; 0.20] 0.11[ 0.08; 0.15] 31.01%[24.75%;37.99%]
RC0.05 0.02[ 0.01; 0.03] 0.01[ 0.00; 0.02] 52.86%[42.70%;61.48%]

Table 7: Seven measures on the health-income association for 40yrs of age (all other covariates the
same).
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males
15,000e 30,000e Difference

RM3 0.77[ 0.77; 0.77] 0.72[ 0.71; 0.72] 7.21%[ 7.13%; 7.28%]
RM2 0.27[ 0.27; 0.27] 0.19[ 0.18; 0.19] 30.32%[30.12%;30.56%]
RM1 0.06[ 0.06; 0.06] 0.04[ 0.04; 0.04] 36.05%[35.63%;36.56%]

µ 41.10[39.48;42.51] 42.49[40.91;43.93] 3.38%[ 4.04%; 2.70%]
RC0.50 0.81[ 0.76; 0.85] 0.78[ 0.73; 0.84] 2.71%[ 1.47%; 4.24%]
RC0.20 0.43[ 0.37; 0.49] 0.37[ 0.32; 0.44] 12.99%[ 9.53%;17.13%]
RC0.05 0.13[ 0.09; 0.18] 0.09[ 0.06; 0.13] 29.29%[22.27%;37.06%]

females
15,000e 30,000e Difference

RM3 0.70[ 0.70; 0.70] 0.63[ 0.63; 0.63] 9.66%[ 9.56%; 9.76%]
RM2 0.31[ 0.30; 0.31] 0.23[ 0.23; 0.23] 25.22%[25.02%;25.46%]
RM1 0.07[ 0.07; 0.07] 0.04[ 0.04; 0.05] 36.48%[36.05%;36.99%]

µ 40.83[39.25;42.18] 42.49[40.95;43.83] 4.07%[ 4.77%; 3.36%]
RC0.50 0.83[ 0.79; 0.87] 0.80[ 0.75; 0.84] 3.73%[ 2.43%; 5.35%]
RC0.20 0.44[ 0.38; 0.50] 0.37[ 0.31; 0.43] 15.70%[12.28%;19.74%]
RC0.05 0.12[ 0.09; 0.16] 0.08[ 0.06; 0.12] 33.37%[26.40%;40.95%]

Table 8: Seven measures on the health-income association for 66yrs of age (all other covariates the
same).

males
15,000e 30,000e Difference

RM3 0.55[ 0.55; 0.55] 0.48[ 0.47; 0.48] 13.67%[13.54%;13.80%]
RM2 0.17[ 0.17; 0.17] 0.11[ 0.11; 0.11] 36.18%[35.92%;36.45%]
RM1 0.03[ 0.03; 0.03] 0.02[ 0.02; 0.02] 41.70%[41.21%;42.19%]

µ 46.39[44.77;47.91] 47.67[45.96;49.12] 2.75%[ 3.24%; 2.17%]
RC0.50 0.65[ 0.59; 0.72] 0.61[ 0.54; 0.69] 6.63%[ 4.53%; 9.52%]
RC0.20 0.23[ 0.17; 0.29] 0.17[ 0.12; 0.23] 23.44%[17.16%;30.42%]
RC0.05 0.04[ 0.02; 0.06] 0.02[ 0.01; 0.04] 43.76%[33.40%;55.07%]

females
15,000e 30,000e Difference

RM3 0.56[ 0.56; 0.56] 0.48[ 0.48; 0.49] 13.62%[13.49%;13.76%]
RM2 0.28[ 0.28; 0.29] 0.21[ 0.20; 0.21] 26.99%[26.74%;27.24%]
RM1 0.05[ 0.05; 0.05] 0.03[ 0.03; 0.03] 38.68%[38.21%;39.21%]

µ 44.34[42.71;45.83] 45.92[44.27;47.32] 3.55%[ 4.11%; 2.90%]
RC0.50 0.74[ 0.68; 0.79] 0.69[ 0.62; 0.75] 6.52%[ 4.50%; 8.94%]
RC0.20 0.30[ 0.24; 0.36] 0.23[ 0.17; 0.30] 22.57%[17.10%;28.81%]
RC0.05 0.06[ 0.03; 0.09] 0.03[ 0.02; 0.06] 43.04%[33.41%;52.54%]

Table 9: Seven measures on the health-income association for non-German nationals (all other
covariates the same).
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males
15,000e 30,000e Difference

RM3 0.62[ 0.62; 0.62] 0.55[ 0.54; 0.55] 11.60%[11.48%;11.69%]
RM2 0.20[ 0.20; 0.20] 0.13[ 0.13; 0.13] 34.19%[33.94%;34.41%]
RM1 0.05[ 0.05; 0.05] 0.03[ 0.03; 0.03] 39.59%[39.14%;40.04%]

µ 46.16[44.83;47.44] 47.41[46.12;48.71] 2.71%[ 3.29%; 2.19%]
RC0.50 0.65[ 0.60; 0.70] 0.61[ 0.55; 0.67] 6.47%[ 4.36%; 8.67%]
RC0.20 0.24[ 0.20; 0.29] 0.19[ 0.15; 0.24] 21.43%[16.60%;27.13%]
RC0.05 0.05[ 0.03; 0.07] 0.03[ 0.02; 0.04] 41.04%[32.26%;50.20%]

females
15,000e 30,000e Difference

RM3 0.51[ 0.51; 0.52] 0.44[ 0.43; 0.44] 15.13%[15.00%;15.24%]
RM2 0.16[ 0.16; 0.17] 0.11[ 0.11; 0.11] 32.17%[31.93%;32.40%]
RM1 0.03[ 0.03; 0.04] 0.02[ 0.02; 0.02] 42.60%[42.15%;43.06%]

µ 46.34[45.08;47.53] 47.83[46.60;49.05] 3.22%[ 3.81%; 2.66%]
RC0.50 0.64[ 0.60; 0.69] 0.59[ 0.54; 0.64] 8.21%[ 6.20%;10.52%]
RC0.20 0.24[ 0.20; 0.28] 0.18[ 0.15; 0.22] 23.80%[19.28%;28.84%]
RC0.05 0.05[ 0.03; 0.06] 0.03[ 0.02; 0.04] 42.52%[34.90%;50.27%]

Table 10: Seven measures on the health-income association for the fourth education level (all other
covariates the same).

males
15,000e 30,000e Difference

RM3 0.73[ 0.73; 0.73] 0.67[ 0.67; 0.67] 8.20%[ 8.11%; 8.29%]
RM2 0.23[ 0.23; 0.24] 0.16[ 0.16; 0.16] 31.79%[31.57%;32.03%]
RM1 0.07[ 0.06; 0.07] 0.04[ 0.04; 0.04] 37.03%[36.59%;37.53%]

µ 45.14[43.59;46.61] 46.42[44.85;47.91] 2.85%[ 3.45%; 2.27%]
RC0.50 0.68[ 0.62; 0.73] 0.65[ 0.58; 0.70] 5.32%[ 3.47%; 7.46%]
RC0.20 0.29[ 0.23; 0.34] 0.23[ 0.18; 0.29] 18.82%[13.69%;24.39%]
RC0.05 0.07[ 0.04; 0.10] 0.04[ 0.02; 0.07] 36.79%[27.47%;46.40%]

females
15,000e 30,000e Difference

RM3 0.64[ 0.64; 0.64] 0.57[ 0.56; 0.57] 11.34%[11.23%;11.46%]
RM2 0.27[ 0.26; 0.27] 0.19[ 0.19; 0.20] 27.08%[26.86%;27.34%]
RM1 0.06[ 0.06; 0.07] 0.04[ 0.04; 0.04] 37.87%[37.41%;38.37%]

µ 45.07[43.65;46.43] 46.60[45.13;48.03] 3.39%[ 3.97%; 2.83%]
RC0.50 0.69[ 0.64; 0.74] 0.65[ 0.58; 0.70] 6.94%[ 5.02%; 9.37%]
RC0.20 0.28[ 0.23; 0.33] 0.22[ 0.17; 0.28] 21.91%[16.96%;27.61%]
RC0.05 0.06[ 0.04; 0.08] 0.03[ 0.02; 0.06] 41.03%[32.39%;49.66%]

Table 11: Seven measures on the health-income association for the third marrital status (all other
covariates the same).
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males
15,000e 30,000e Difference

RM3 0.60[ 0.59; 0.60] 0.52[ 0.52; 0.53] 12.50%[12.37%;12.62%]
RM2 0.17[ 0.17; 0.18] 0.11[ 0.11; 0.11] 35.70%[35.44%;35.98%]
RM1 0.04[ 0.04; 0.04] 0.02[ 0.02; 0.03] 40.93%[40.47%;41.44%]

µ 47.24[45.82;48.69] 48.48[47.06;49.95] 2.64%[ 3.19%; 2.06%]
RC0.50 0.61[ 0.55; 0.67] 0.56[ 0.50; 0.63] 7.33%[ 5.11%;10.10%]
RC0.20 0.21[ 0.16; 0.26] 0.16[ 0.11; 0.21] 23.18%[17.35%;29.86%]
RC0.05 0.04[ 0.02; 0.06] 0.02[ 0.01; 0.04] 42.91%[33.07%;53.63%]

females
15,000e 30,000e Difference

RM3 0.55[ 0.55; 0.56] 0.48[ 0.47; 0.48] 14.07%[13.95%;14.22%]
RM2 0.20[ 0.20; 0.21] 0.14[ 0.14; 0.14] 30.39%[30.17%;30.69%]
RM1 0.04[ 0.04; 0.04] 0.02[ 0.02; 0.02] 41.24%[40.84%;41.82%]

µ 46.46[45.10;47.83] 47.95[46.61;49.34] 3.22%[ 3.83%; 2.66%]
RC0.50 0.65[ 0.59; 0.71] 0.59[ 0.53; 0.66] 8.68%[ 6.41%;11.35%]
RC0.20 0.22[ 0.18; 0.27] 0.17[ 0.12; 0.21] 25.73%[20.76%;31.82%]
RC0.05 0.04[ 0.02; 0.05] 0.02[ 0.01; 0.03] 45.89%[37.79%;54.90%]

Table 12: Seven measures on the health-income association for BadenWurttemberg (all other
covariates the same).

males
15,000e 30,000e Difference

RM3 0.63[ 0.63; 0.63] 0.56[ 0.56; 0.56] 11.53%[11.45%;11.64%]
RM2 0.24[ 0.24; 0.24] 0.16[ 0.16; 0.16] 32.72%[32.52%;32.95%]
RM1 0.04[ 0.04; 0.04] 0.02[ 0.02; 0.02] 38.73%[38.32%;39.26%]

µ 45.89[44.67;47.15] 47.17[45.91;48.38] 2.78%[ 3.33%; 2.23%]
RC0.50 0.66[ 0.61; 0.71] 0.62[ 0.57; 0.67] 6.05%[ 4.19%; 8.06%]
RC0.20 0.25[ 0.21; 0.30] 0.20[ 0.16; 0.25] 20.59%[15.86%;25.92%]
RC0.05 0.05[ 0.03; 0.08] 0.03[ 0.02; 0.05] 39.65%[31.28%;48.80%]

females
15,000e 30,000e Difference

RM3 0.67[ 0.66; 0.67] 0.59[ 0.59; 0.60] 10.80%[10.71%;10.89%]
RM2 0.24[ 0.23; 0.24] 0.17[ 0.17; 0.17] 27.97%[27.77%;28.22%]
RM1 0.05[ 0.05; 0.06] 0.03[ 0.03; 0.03] 38.76%[38.35%;39.27%]

µ 45.24[44.03;46.44] 46.78[45.54;47.95] 3.40%[ 4.01%; 2.79%]
RC0.50 0.69[ 0.65; 0.74] 0.64[ 0.59; 0.69] 7.27%[ 5.35%; 9.29%]
RC0.20 0.27[ 0.23; 0.32] 0.21[ 0.17; 0.25] 22.87%[18.54%;27.65%]
RC0.05 0.05[ 0.04; 0.07] 0.03[ 0.02; 0.05] 41.92%[34.65%;50.19%]

Table 13: Seven measures on the health-income association for Mecklenburg-Western Pomerania
(all other covariates the same).
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