Hell, Stefan, Prof. Dr. Dr. h.c. mult.

Professor, Director at the Max Planck Institute for Multidisciplinary Sciences


  • 1987 Diploma in Physics, Univ.of Heidelberg
  • 1990 Doctorate in Physics, Univ. of Heidelberg (summa cum laude)
  • 1991 – 1993 Postdoctoral Researcher, EMBL (European Molecular Biology Laboratory)
  • 1993 – 1996 Principal Investigator, Laser Microscopy Group; Univ. of Turku, Finland
  • 1996 Habilitation in Physics, Univ. Heidelberg; Physics teaching since 02/1996
  • 1997 – 2002 Head, Max-Planck Junior Group High Resolution Optical Microscopy, at the Max-Planck-Institute for Biophysical Chemistry Göttingen, Germany
  • since 10/2002 Director at the Max Planck Institute for Multidisciplinary Sciences, Head of Department of NanoBiophotonics
  • 2003 – 2017 Head of High Resolution Optical Microscopy Division, DKFZ Heidelberg
  • since 01/2004 Hon. Prof., Faculty of Physics, Univ. of Göttingen
  • 2014 Nobel Prize in Chemistry
  • 2014 Kavli Prize in Nanoscience
  • since 11/2015 Director at the Max Planck Institute for Medical Research,
    Head of Department of Optical Nanoscopy




Major Research Interests

Prominent methods developed in the research group include STED, RESOLFT and MINFLUX as well as MINSTED fluorescence nanoscopy, along with other concepts based on stochastic single-molecule switching, such as GSDIM. In these approaches, the resolution can be increased in all spatial dimensions down to the nanometer, molecular scale. The concepts have proven to be extremely valuable in biological research, and new measurement capabilities continue to be created based on the pioneering research in this group.


Homepage Department/Research Group

http://www.mpibpc.mpg.de/groups/hell/



Selected Recent Publications


  • Wolff JO, Scheiderer L, Engelhardt T, Engelhardt J, Matthias J, Hell SW (2023) MINLUX dissects the unimpeded walking of kinesin-1. Science 379(6636), 1004-1010
  • Weber M, von der Emde H, Leutenegger M, Gunkel P, Sambandan S, Khan TA, Keller-Findeisen J, Cordes VC, Hell SW (2022) MINSTED nanoscopy enters the Ångström localization range. Nat Biotechnol 41 (4), 569-576
  • Lincoln R, Bossi ML, Remmel M, D'Este E, Butkevich AN, Hell SW (2022) A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy. Nat Chem 14(9), 1013-1020
  • Bates M, Keller-Findeisen J, Przybylski A, Hüper A, Stephan T, Ilgen P, Cereceda Delgado AR, D’Este E, Egner A, Jakobs S, Sahl SJ, Hell SW (2022) Optimal Precision and Accuracy in 4Pi-STORM using Dynamic Spline PSF Models. Nat Meth 19(5), 603-612
  • Weber M, Leutenegger M, Stoldt S, Jakobs S, Mihaila TS, Butkevich AN, Hell SW (2021) MINSTED fluorescence localization and nanoscopy. Nat Photon 15(5), 361-366
  • Pape JK, Stephan T, Balzarotti F, Büchner, R., Lange, F, Riedel D, Jakobs S, Hell SW (2020) Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc Natl Acad Sci USA 117: 20607-20614
  • Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, Hell SW (2020) MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 17: 217-224
  • Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW (2018) MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc Natl Aacad Sci USA 115: 6117-6122
  • Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355: 606-612
  • Heine J, Reuss M, Harke B, D'Este E, Sahl SJ, Hell SW (2017) Adaptive-illumination STED nanoscopy. Proc Natl Aacad Sci USA 114:9797-9802
  • Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a Living Mouse Brain. Science 335, 551
  • Testa, I., N. T. Urban, S. Jakobs, C. Eggeling, K. I. Willig, S. W. Hell (2012) Nanoscopy of Living Brain Slices with Low Light Levels. Neuron 75, 992 – 1000
  • Grotjohann T, Testa I, Leutenegger M, Bock H , Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2012) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204 - 208
  • Vicidomini, G., Moneron, G., Han, K. Y., Westphal V., Ta H., Reuss M., Engelhardt J., Eggeling C., Hell S. W. (2011) Sharper low-power STED nanoscopy by time gating. Nature Meth. 8, 571 – 573
  • Liu KSY, Siebert M, Mertel S, Knoche E, Wegener S, Wichmann C, Matkovic T, Muhammad K, Depner H, Mettke C, Bückers J, Hell SW, Müller M, Davis GW, Schmitz D, Sigrist SJ (2011) RIM-Binding Protein, a Central Part of the Active Zone, Is Essential for Neurotransmitter Release. Science 334, 1565 - 1569
  • Maurer PC, Maze JR, Stanwix PL, Jiang L, Gorshkov AV, Zibrov AA, Harke B, Hodges JS, Zibrov AS, Yacoby A, Twitchen D, Hell SW, Walsworth RL, Lukin MD (2010) Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Phys. 6, 912-918
  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159-1163
  • Hell SW, Rittweger E (2009) Light from the dark. Nature 461, 1069-1070
  • Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement. Science 320, 246-249
  • Hell SW (2007) Far-Field Optical Nanoscopy. Science 316, 1153-1158
  • Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440 (7086), 935 – 939
  • Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, Jahn R, Eggeling C, and Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl. Acad. Soc. USA 130 (31), 11440-11445
  • Westphal V, Hell SW (2005) Nanoscale Resolution in the Focal Plane of an Optical Microscope. Phys. Rev. Lett. 94, 143903
  • Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102 (49), 17565 – 17569
  • Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nature Biotechn. 21 (11), 1303-1304
  • Hell SW (2003) Toward fluorescence nanoscopy. Nature Biotechn. 21 (11), 1347-1355
  • Dyba M, Hell SW (2002) Focal Spots of Size /23 Open Up Far-Field Fluorescence Microscopy at 33 nm Axial Resolution. Phys. Rev. Lett. 88, 163901
  • Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Soc. USA 97, 8206-8210