Franz, M.,van der Post, D., Schülke, O., & Ostner, J. (2011). The evolution of cooperative turn-taking in animal conflict. BMC Evolutionary Biology, 11, 323.
Background
A fundamental assumption in animal socio-ecology is that animals compete over limited resources. This view has been challenged by the finding that individuals might cooperatively partition resources by “taking turns”. Turn-taking occurs when two individuals coordinate their agonistic behaviour in a way that leads to an alternating pattern in who obtains a resource without engaging in costly fights. Cooperative turn-taking has been largely ignored in models of animal conflict and socio-ecological models that explain the evolution of social behaviours based only on contest and scramble competition. Currently it is unclear whether turn-taking should be included in socio-ecological models because the evolution of turn-taking is not well understood. In particular, it is unknown whether turn-taking can evolve when fighting costs and assessment of fighting abilities are not fixed but emerge from evolved within-fight behaviour. We address this problem with an evolutionary agent-based model.
Results
We found that turn-taking evolves for small resource values, alongside a contest strategy that leads to stable dominance relationships. Turn-taking leads to egalitarian societies with unclear dominance relationships and non-linear dominance hierarchies. Evolutionary stability of turntaking emerged despite strength differences among individuals and the possibility to evolve within-fight behaviour that allows good assessment of fighting abilities. Evolutionary stability emerged from frequency-dependent effects on fitness, which are modulated by feedbacks between the evolution of within-fight behaviour and the evolution of higher-level conflict strategies.
Conclusions
Our results reveal the impact of feedbacks between the evolution of within-fight behaviour and the evolution of higher-level conflict strategies, such as turn-taking. Similar feedbacks might be important for the evolution of other conflict strategies such as winner-loser effects or coalitions. However, we are not aware of any study that investigated such feedbacks. Furthermore, our model suggests that turn-taking could be used by animals to partition low value resources, but to our knowledge this has never been tested. The existence of turn-taking might have been overlooked because it leads to societies with similar characteristics that have been expected to emerge from scramble competition. Analyses of temporal interaction patterns could be used to test whether turn-taking occurs in animals.