Project related publications

19.   Zhu, L., Q. Zheng, Y. Wang, K. Krüger, A.M. Wodtke, O. Bünermann, J. Zhao, H. Guo, and B. Jiang, Mechanistic Insights into Non-Adiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions. JACS Au 4, 4518-4526 (2024). DOI:10.1021/jacsau.4c00909
18.   Krüger, K., N. Hertl, A.M. Wodtke, and O. Bünermann, Temperature dependence of the Ge(111) surface electronic structure probed by inelastic H atom scattering. Physical Review Materials 8, 034603 (2024). DOI:10.1103/PhysRevMaterials.8.034603
17.   Liebetrau, M., Y. Dorenkamp, O. Bünermann, and J. Behler, Hydrogen Atom Scattering at the Al2O3 (0001) Surface: A Combined Experimental and Theoretical Study. Physical Chemistry Chemical Physics 26, 1696-1708 (2024). DOI:10.1039/d3cp04729f
16.   Krüger, K., Y. Wang, L. Zhu, B. Jiang, H. Guo, A.M. Wodtke, and O. Bünermann, Isotope efect suggests site-specific nonadiabaticity on Ge(111)c(2x8). Natural Sciences 4, e20230019 (2024). DOI:10.1002/ntls.20230019
15.   Krüger, K., Y. Wang, S. Tödter, F. Debbeler, A. Matveenko, N. Hertl, X. Zhou, B. Jiang, H. Guo, A.M. Wodtke, and O. Bünermann, Hydrogen atom collisions with a semiconductor efficiently promote electrons to the conduction band. Nature Chemistry 15, 326- 331(2023). DOI:10.1038/s41557-022-01085-x
News&Views from H. Nienhaus, Mysterious energy losses, Nature Chemistry 15, 301–302 (2023). DOI:10.1038/s41557-023-01145-w
Feature from J.L. Miller, A solid-state failure of the Born–Oppenheimer approximation, Physics Today 76, 16-17 (2023). DOI:10.1038/s41557-023-01145-w
14.   Hertl, N., K. Kruger, and O. Bünermann, Electronically Nonadiabatic H Atom Scattering from Low Miller Index Surfaces of Silver. Langmuir 38, 14162-14171 (2022). DOI:10.1021/acs.langmuir.2c02140
13.   Lecroart, L., N. Hertl, Y. Dorenkamp, H. Jiang, T.N. Kitsopoulos, A. Kandratsenka, O. Buenermann, and A.M. Wodtke, Adsorbate modification of electronic nonadiabaticity: H atom scattering from p(2 × 2) O on Pt(111). Journal of Chemical Physics 155, 034702 (2021). DOI:10.1063/5.0058789
12.   Hertl, N., A. Kandratsenka, O. Buenermann, and A.M. Wodtke, Multibounce and Subsurface Scattering of H Atoms Colliding with a van der Waals Solid. Journal of Physical Chemistry A 125, 5745-5752 (2021). DOI:10.1021/acs.jpca.1c03433
11.   Buenermann O., A. Kandratsenka, and A.M. Wodtke, Inelastic Scattering of H Atoms from Surfaces. Journal of Physical Chemistry A 125, 3059-3076 (2021). DOI:10.1021/acs.jpca.1c00361
10.   Jiang, H., X. Tao, M. Kammler, F. Ding, A.M. Wodtke, A. Kandratsenka, T.F. Miller III, and O. Buenermann, Small Nuclear Quantum Effects in Scattering of H and D from Graphene. Journal of Physical Chemistry Letters 12, 1991-1996 (2021). DOI:10.1021/acs.jpclett.0c02933
9.Wille, S., H. Jiang, O. Buenermann, A.M. Wodtke, J. Behler, and A. Kandratsenka, An experimentally validated neural-network potential energy surface for H-atom on free-standing graphene in full dimensionality. Physical Chemistry Chemical Physics 22, 26113 (2020). DOI:10.1039/d0cp03462b
8.Jiang, H., Y. Dorenkamp, K. Krueger, and O. Buenermann, Inelastic H and D atom scattering from Au(111) as benchmark for theory. The Journal of Chemical Physics 150, 184704 (2019). DOI:10.1063/1.5094693
7.Jiang, H., M. Kammler, F. Ding, Y. Dorenkamp, F.R. Manby, A.M. Wodtke, T.M Miller III, A. Kandratsenka, and O. Buenermann, Imaging covalent bond formation by H atom scattering from graphene. Science 364, 379–382 (2019). DOI:10.1126/science.aaw6378
Perspective from L. Hornekær, Stabilizing a C–H bond on graphene with sound, Science 364, 331-332 (2019). DOI:10.1126/science.aax1980
6.Buenermann, O., H. Jiang, Dorenkamp, D.J. Auerbach, and A.M. Wodtke, An ultrahigh vacuum apparatus for H atom scattering from surfaces. Review of Scientific Intruments 89, 094101 (2018). DOI:10.1063/1.5047674
5.Dorenkamp, Y., C. Volkmann, V. Roddatis, S. Schneider, A.M. Wodtke, and O. Buenermann, Inelastic H Atom Scattering from Ultrathin Aluminum Oxide Films Grown by Atomic Layer Deposition on Pt(111). The Journal of Physical Chemistry C 122, 10096–10102 (2018). DOI:10.1021/acs.jpcc.8b02692
4.Dorenkamp, Y., H. Jiang, H. Koeckert, N. Hertl, M. Kammler, S.M. Janke, A. Kandratsenka, A.M. Wodtke, and O. Buenermann, Hydrogen collisions with tansition metal surfaces: Universal electronically nonadiabatic adsorption. The Journal of Chemical Physics 148, 1346-1349 (2018). DOI:10.1063/1.5008982
3.Kandratsenka, A., H. Jiang, Y. Dorenkamp, S.M. Janke, M. Kammler, A.M. Wodtke, and O. Buenermann, Unified description of H-atom–induced chemicurrents and inelastic scattering. PNAS 115, 680-684 (2018). DOI:10.1073/pnas.1710587115
2.Buenermann, O., H. Jiang, Y. Dorenkamp, A. Kandratsenka, S.M. Janke, D.J. Auerbach, and A.M. Wodtke, Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption. Science 350, 1346-1349 (2015). DOI:10.1126/science.aad4972
Perspective from H. Brune, In the wake of collision, Science 350, 1321 (2015). DOI:10.1126/science.aad8005
1.Kaufmann, S., D. Schwarzer, C. Reichardt, A.M. Wodtke, and O. Buenermann, Generation of ultra-short hydrogen atom pulses by bunch-compression photolysis. Nature Communications 5, 5373 (2015). DOI:10.1038/ncomms6373